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Abstract 

This note presents a simple yet effective variation of genetic algorithm (GA) for solving 

RCPSP, denoted as 2-Phase Genetic Algorithm (2PGA). The 2PGA implements GA 

parent selection in two phases: Phase-1 includes the best current solutions in the parent 

pool, and Phase-2 excludes the best current solutions from the parent pool. The 2PGA 

carries out the GA evolution by alternating the two phases iteratively. In exploring a 

solution space, the Phase-1 emphasizes intensification in current neighborhood, while 

the Phase-2 emphasizes diversification to escape local traps. The 2PGA was tested on 

the standard benchmark problems in PSPLIB, the results have shown that the algorithm 

is effective and has produced some of the best heuristic solutions. 

Key words: resource-constrained project scheduling problem, RCPSP, genetic 

algorithm, selection pressure, metaheuristics, optimization. 

1 Introduction 

  

The Resource-Constrained Project Scheduling Problem (RCPSP) is a well-known 

classic optimization problem. Its purpose is to schedule a set of project activities, 

subject to precedence and renewable resource capacities constraints, with the goal 

of minimizing the overall project total completion time (make-span) 

 

The RCPSP is known to be NP-hard, meaning that for large instances, finding the 

optimal solution in a reasonable amount of time is infeasible. Therefore, 

Metaheuristic Algorithms, such as genetic algorithm (GA), tabu search, simulated 

annealing, scatter search, etc., are commonly used to solve the problem [4, 7, 8, 12, 

23].  Among the Metaheuristic Algorithms, GA is the mostly studied approach.  

 

The GA is a population-based algorithm. It is based on the survival of the fittest 

principle, and imitates the biologic evolution through 1) parent selections, 2) 

crossover to produce the next generation, and 3) mutations. The GA select good 

solutions from a large diversified solution population it generated, and it has been 

shown to be effective in solving a variety of discrete optimization problems including 

RCPSP. 
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A variety of GA-based approaches for solving RCPSP have been proposed, such as 

presented in [2, 6, 7, 11, 16, 18, 22, 25], and many others. A hybrid approach is also 

a very active area, e.g., GA + local-search or GA + exact-methods. The goal is to 

leverage the global exploration of GA with the local exploitation of other methods, 

to build more powerful and robust algorithms [7, 11]. In this note, we focus on a basic 

but less studied area: the parent selection for next generation in GA. 

 

A simple variation of genetic algorithm is presented, called 2PGA, for solving RCPSP. 

The 2PGA both reinforces and relaxes the survival of the fittest principle. The parent 

selection is implemented in two phases: Phase-1includes the best current solutions into 

the parent pool, and Phase-2 excludes the best current solutions from the parent pool. The 

2 phases alternate through the iteration of 2PGA. By alternating the inclusion and 

exclusion of the current best solution, the 2PGA balances the intensification and 

diversification in searching the solution space. The testing results on PSPLIB [17] have 

shown that this approach is effective. 

  

2 Resource Constrained Project Scheduling Problem 

 

Activities 

A project needs to complete a set A = {1, ..., N} activities, each activity is represented 

as an integer. Dummy activities 0 and N+1 are added to represent the project’s start 

and end, respectively. There are precedential relations amount the activities, each 

activity can only start after all its predecessors are finished. The immediate 

predecessors of activity j are denoted by set 𝑃𝑗  . The dummy activity 0 is the 

predecessors all activities and dummy activity N+1 has all activities as its 

predecessors. 

  

Resources 

Activities need resources to process. There are K renewable resource types, 

resources are denoted as set R = {𝑅1,..., 𝑅𝐾}. Resource 𝑅𝑘has a limited capacity of 𝑅𝐶𝑘. 

The resource requirement of activity j on 𝑅𝑘  𝑖𝑠  denoted as 𝑟𝑗,𝑘 . The uninterrupted 

processing time of activity j is denoted as 𝑡𝑗 . Dummy activities 0 an N+1 don’t have 

resource requirement. The start time of activity j on resource k is denoted as 𝑠𝑗 , and 

the finish time 𝑓𝑗= 𝑠𝑗  + 𝑡𝑗 . The processing time of dummy activities 0 and N+1  𝑎𝑟𝑒 𝑡0 

= 𝑡𝑁+1= 0. 

 

RCPSP 

The goal for solving RCPSP is to minimize the time to finish all activities, which is 

known as make-span, subject to the activity precedence and resource capacity 
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constraints. A project schedule is a set start/finishing times 𝑠𝑗  /𝑓𝑗  , 𝑗 =0, …, N+1. A 

RCPSP can be formulated as follows. 

 
                              min (𝒇𝑵+𝟏) 

                                 s.t. 

                                 ∑ 𝒓𝒋,𝒌 < 𝑹𝑪𝒌𝒋∈𝑨𝒌
, ⩝ 𝒌, 𝑹𝒌 ∈R 

                                 𝒔𝒋 ≥ 𝒇𝒊∈𝑷𝒋
,  ⩝ 𝒋∈A 

 

where 𝐴𝑘is the set of activities that are processed on resource k at the same time; 

𝑅𝐶𝐾is the capacity of resource  𝑅𝑘; 𝑃𝑗is the set of immediate predecessors of activity 

j, R is the set of all resources, A is the set of all activities. 

 

3 Two Phase Genetic Algorithm (2PGA) 

 

Schedule Representation 

An activity-list approach [12] is used in 2PGA to represent an individual schedule. 

An activity-list is a permutation of all activities in a precedence feasible order and 

each activity is represented as an integer j ∈ {0, …, N+1}.  activity-lists are encoded 

schedules and correspond to chromosomes in genetic operations, which are the 

basic units to perform crossovers, mutations, and to form populations. 

Serial Schedule Generation Scheme (SSGS) 

An activity list (AL) is an encoding of a schedule. An AL is converted to a project 

schedule using SSGS [12] that is a decoding process. Assume an AL is implemented 

as an array denoted as A, SSGS iterates from 𝐴[0] to  𝐴[𝑁 + 1] sequentially, note that 

the order of activities in AL satisfies precedence constraints. At step 𝑖  of SSGS, 

assume  𝐴[𝑖] contains activity 𝑗, 𝑗 needs to wait for two conditions to start: 1) the 

finish of all its predecessors (𝑃𝑗) ; and 2) the available capacities can satisfy its 

resource requirements. By iterating through an AL, SSGS assigns start/finish times 

to all activities in the AL, 𝐴[𝑁 + 1] =  activity N + 1,  is a dummy activity, its 

start/finish time 𝑠𝑁+1 = 𝑓𝑁+1is the project’s make-span. 

Crossover 

The solution space of 2PGA contains all precedence feasible activity permutations 

represented by ALs (activity lists). For generating new permutations, a two-point 

crossover operation is used in 2PGA to mix two existing ALs (parents) to produce 

two new ALs (children).  Denote the two parents ALs as F and M, and the two 

children ALs as D an S, the two-point crossover operation to produce D is as follows: 
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1. Generate 2 random numbers 𝒓𝟏 and 𝒓𝟐, 𝟎 < 𝒓𝟏 ≤ 𝒓𝟐 ≤ 𝑵 

2. Set  𝑫[𝒊] = 𝑴[𝒊], 𝟎 < 𝒊 ≤ 𝒓𝟏  

3. Set 𝑫[𝒊] = 𝑭[𝒋], 𝒓𝟏 < 𝒊 ≤ 𝒓𝟐, 𝟎 < 𝒋 ≤ 𝑵, 𝒋 𝒊𝒔 𝒍𝒐𝒘𝒆𝒔𝒕 𝒊𝒏𝒅𝒆𝒙, 

                                                       𝑭[𝒋] not in D 

4. Set 𝑫[𝒊] = 𝑴[𝒋], 𝒓𝟐 < 𝒊 ≤ 𝑵,  𝒓𝟏 < 𝒋 ≤ 𝑵, 𝒋 𝒊𝒔 𝒍𝒐𝒘𝒆𝒔𝒕 𝒊𝒏𝒅𝒆𝒙, 

                                                       𝑴[𝒋] not in D 

By switching M and F, another child S can be produced in the same manner. 

It has been proved that the crossover operation keeps the children ALs precedence 

feasible [12]. 

Mutation 

A mutation operation changes some activities’ order in an AL. If a mutation in activity 

permutation violates the precedence feasibility, a repair procedure is then carried 

out for correction. 

Mutations in an activity list can be in several forms: 1) move one activity to a different 

position; 2) exchange two activities’ positions; 3) move several activities 

simultaneously to different positions; and 4) a combination of the above. 

The repair procedure works by iterate through the activities that violate the 

precedence, and move each of them backward to a feasible position. 

Initial Population Generation  

The activities and their precedence relations correspond a directed acyclic graph 

(DAG), with nodes as activities and directed edges as their precedence relations. 

Generating a precedence feasible activity list corresponds to a topological sort on the 

DAG. The result of the topological sort establishes a partial order for activities. The 

precedence feasible activity list is generated using the following topological sort. 

The eligible activities are those that either don’t have predecessors or their 

predecessors are already in AL, we keep a set E of eligible activities in generating a 

precedence feasible AL through the following steps: 

0. Initialize AL size = 0, append the dummy activity 0 to AL, 

Initialize E with eligible activities, 

1. Randomly pick an activity in E and append to AL, 

2. If some ineligible activities become eligible, add them to set E, 

3. Repeat step 1 and 2, until E becomes empty, then append the dummy activity N+1 to 

AL. 
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The generated ALs will be called individuals in the following description, where 

each individual is a particular activity permutation (activity list). When a specified 

number of individuals are generated, together they form the initial population. The 

2PGA then uses SSGS to generate a schedule for each individual and takes the 

schedules’ make-span as individuals’ fitness measure. An individual is the 

encoding of a schedule, it is characterized by a particular permutation of activities, 

which can be considered as an individual’s DNA, if this individual is chosen as a 

parent, part of its DNA will be passed to the next generation. 

Forword-Backward Improvement (a.k.a. double justification) 

Forward scheduling is a procedure, in which activities are scheduled as early as 

possible subject to their natural precedence and resource capacity constraints. In 

contrast, backward scheduling works on the same activities and resource capacity 

constraints, but activity precedence relations are reversed, i.e., successors become 

predecessors, and vice versa. The backward scheduling can be thought as starting at 

a given project finish time and scheduling in backward direction. The effect of the 

backward scheduling is to make the activities in a project start/finish as late as 

possible for the given project finish time.  

Studies have shown that the backward scheduling can often improve schedules (in 

terms of make-span) generated by forward scheduling [24].   

In the 2PGA, both forward and backward scheduling perform the same type of 

crossover, mutation, and selection operations. The backward scheduling is based on 

the population produced by the forward scheduling, and vice versa, the iteration of 

alternating precedence directions is as follows: 

0. For a given population, repeat:  

1. Selection, crossover, and mutation to produce the next population based on 

forward precedence, then reverse the precedence relations, do step 2, 

2. Selection, crossover, and mutation to produce the next population based on 

reversed precedence, then reverse the precedence relations, do step 1. 

Selection 

In a Genetic Algorithm (GA), selection imitates the natural selection in evolution. Its 

purpose is to select individuals (candidate solutions) from the current population 

as parents for the next generation. The fundamental idea is the Survival of the 

Fittest. Solutions with better fitness should have a greater chance to be selected and 

pass their DNA (solution characteristics) to the next generation of individuals. 
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By biased on good solutions, selection guides the GA explore the most promising 

regions of the solution space, incrementally improving the overall quality of the 

population. 

The search focus in solution space is influenced by adjusting the selection pressure.  

Strong selection pressure, i.e., highly biased on the current best individuals, leads 

to search intensification in the current neighborhood of solution space, facilitating 

faster convergence but may be trapped in local optima. 

Weak selection pressure, i.e., less biased on the current best individuals, leads to 

search diversification in the solution space, facilitating exploring a wider range of 

solutions, while leading to slow convergence but with better capability to escape 

local traps.  

The selection pressure can be adjusted. For instance, in the Tournament Selection 

method, k individuals are randomly chosen from the current population, and the 

individual with the highest fitness is selected as a parent. For this method, increasing 

parameter k makes selection pressure stronger. 

The GA incrementally improve solutions through the selection from populations 

based the survival of the fittest principle. However, the best current solutions may 

also be local traps that prevent the GA from searching wider areas. Therefore, the 

key to success is the balance between the intensification and diversification of 

search in solution space.  

We address the balance issue using a 2-phase GA (2PGA) approach. The only 

difference between the two phases lies in the selection. The basic selection method 

in 2PGA is described as follows. 

Assume for a given population denoted as set POP, 𝑁𝑝parents are to be selected for 

the next generation. For both phases, the population is partitioned into two sets: the 

first set contains individuals with the best fitness (make-span) in the population, the 

set of such individuals is denoted as F with size 𝑁𝐹 . The second set is POP\F.  

Phase 1. All the individuals in F are selected as the parents, and other 

(𝑁𝑝 − 𝑁𝐹) parents are selected from the individuals in POP\F.    

Phase 2. All the individuals in F are excluded from the parent pool. And all 

𝑁𝑝 parents are selected from the individuals in POP\F.  

For both phases, the parent selection is biased on the individuals with better fitness 

in POP\F, for this purpose, any relevant selection methods can be used (e.g., Roulette 

Wheel, Tournament, Rank-Based, Elitism, etc.). 
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2PGA Procedure 

The goal of the 2PGA is to find an individual (an individual is simply a permutation 

of all activities), when decoded as a schedule, has the shortest make-span.  

The 2PGA uses: two-point crossover, mutation as a combination of one-activity-

move, activity-exchange, group-activity-move, SSGS schedule generation scheme, 

forward backward improvement, and the 2-phase selection method, as described in 

the previous sections. A general description of 2PGA is given as follows. 

2PGA Parameters  

The parameters include: the number of individuals in population; the number of 

parents for each generation; the numbers of iterations and the sizes of the F for 

Phase 1 and phase 2. 

The parameters are problem size dependent and can be dynamically adjusted to 1) 

expand or narrow the range of search and 2) change the balance between strong 

and weak selection pressures (i.e., the balance of search intensification and 

diversification). 

A candidate solution list is used to stores current best solutions (individuals), the 

individuals in the list also serve as high fitness parents when the population fitness 

deteriorates. The list also contains the final solution. 

Phase 1/2 Iteration 

In the 2PGA, the only difference between phase 1 and phase 2 is the parents 

selection methods. The phase 1/2 iteration is the following 

0. Start from a current population   

1. Perform Phase 1/2 iteration with the specified number of times 

1.1 select parents from the current population using phase 1/2 method. 

1.2 crossover parents to generate a new population and set it as the 

current population. 

1.3 perform mutation on the current population. 

1.4 compute fitness of the current population based on SSGS generated 

schedules. 

1.5 update the candidate solution list. 

1.6 in case individuals have forward activity precedence, reverse the 

precedence, otherwise, reverse backward precedence to forward 

precedence, repeat steps 1.1~1.5. 
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2PGA evolution process 

1. Set parameters, initialize the candidate solution list 

2. Generate the initial population as the current population, compute fitness of 

the population 

3. 2PGA Main Iteration 

3.1 Phase 1 iteration 

3.2 Phase 2 iteration 

3.3 If termination condition is satisfied, the current best solution is the 

final solution, otherwise, repeat step 3.1~3.3. 

4 Computation Results 

PSPLIB is widely used standard benchmark library for testing RCPSP algorithms. It has 

four datasets J30, J60, J90, and J120, containing RCPSP problems with 30, 60, 90, and 

120 activities, respectively, the difficulty increases with the number of activities. Each 

dataset also contains the current best solutions. 

The 2PGA is tested on all the four datasets. At the time of testing, it had reproduced 

all the current best solutions to the four datasets. Furthermore, it also improved a 

number of current solutions for J120. At the time of this writing, the 2PGA accounts 

for 90 best current heuristic solutions for J120 dataset, as shown in j120hrs.sm in 

PSPLIB [17], which are also shown in Table 1. 

            Table 1. The current best J120 heuristic solutions produced by 2PGA 

RCPSP 

No. 

 

 

Make 
Span 

 

RCPSP 

No. 

 

Make 
Span 

 

RCPSP 

No. 

 

Make 
Span 

 

RCPSP 

No. 

 

Make 
Span 

 

RCPSP 

No. 

 

Make 
Span 

 
59 125 135 85 186 103 370 163 522 158 

72 97 144 81 264 183 372 178 565 185 

73 89 157 234 272 140 376 124 566 161 

76 94 158 200 313 189 377 155 567 184 

112 162 165 140 316 131 378 140 569 179 

116 117 166 123 317 145 380 122 571 166 

117 136 167 108 319 138 382 125 572 162 

118 125 168 120 320 128 386 108 573 167 

119 162 169 129 321 122 387 111 574 167 

120 121 170 136 322 135 388 98 575 141 

122 119 171 146 323 127 391 104 576 126 

123 105 172 127 327 107 459 149 577 120 

124 143 173 134 328 112 469 127 578 145 

128 112 174 134 329 142 470 137 580 140 

129 91 175 138 332 111 471 118 581 147 

130 99 180 134 334 106 505 206 582 132 

133 85 183 91 365 145 519 168 583 130 

134 92 188 106 367 139 520 196 584 131 
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5 Concluding Remarks 

 

Genetic Algorithm (GA) is based on the survival of the fittest principle. The parent 

selection for the next generation is biased on the individuals with better fitness. In general 

GA implementations, diverse individuals are generated through the randomization in 

selection, crossover, and mutation.  

In contrast, the 2PGA explicitly alternates the inclusion and exclusion of the fittest 

individuals in the selection, while still using randomization for crossover, mutation, and 

also for the completion of selection. In so doing, the balance between search 

intensification and diversification can be adjusted. The computation results have shown 

the effectiveness of this approach. 

After the exclusion of the fittest individuals from parent pools, while populations become 

more diversified, the fitness may suffer. As a result, the search may proceed in a 

worsening direction. However, for problems with multiple local optima, allowing going 

worse temporarily is the only way to navigate through the complex terrain and escape 

local traps. In case of the population deteriorating, the stored current best solutions can 

be used to recover the population fitness. Note that similar approach is also used by other 

optimization methods. 

The Tabu Search [9, 10] is an improved local search with the capability to escape local 

optima. It uses a tabu list to forbid recently visited solutions or moves. In doing so, it may 

force the search to move in a worsening direction. But it is such moves that make the 

Tabu Search work. The simulated annealing also allows bad moves though with 

decreased probability. 

In the context of nonlinear programming, the Watchdog method [14] is used to 

reach the global optimum. The method allows the object function to become worse 

in the line search steps. Its Watchdog element conducts periodic checks. After a 

certain number of worsening steps, the algorithm then uses backtrack or reset to 

bring the search back on track. 

Note that the variation of selection pressures during the GA iterations can be 

implemented in different ways, e.g., not limited to two phases or changing the 

selection pressures gradually. The 2PGA is just one of the implementations. 

In summary, the 2PGA represents a useful way for balancing intensification and 

diversification in GA. The computation results have shown its effectiveness for 

solving RCPSP. And as a general approach, the 2PGA may also be applied to other 

optimization problems. 
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