

1

An Effective Two-Phase Genetic Algorithm for Solving the

Resource Constrained Project Scheduling Problem (RCPSP)

 D. Sun and S. Zhou

Abstract

This note presents a simple yet effective variation of genetic algorithm (GA) for solving

RCPSP, denoted as 2-Phase Genetic Algorithm (2PGA). The 2PGA implements GA

parent selection in two phases: Phase-1 includes the best current solutions in the parent

pool, and Phase-2 excludes the best current solutions from the parent pool. The 2PGA

carries out the GA evolution by alternating the two phases iteratively. In exploring a

solution space, the Phase-1 emphasizes intensification in current neighborhood, while

the Phase-2 emphasizes diversification to escape local traps. The 2PGA was tested on

the standard benchmark problems in PSPLIB, the results have shown that the algorithm

is effective and has produced some of the best heuristic solutions.

Key words: resource-constrained project scheduling problem, RCPSP, genetic

algorithm, selection pressure, metaheuristics, optimization.

1 Introduction

The Resource-Constrained Project Scheduling Problem (RCPSP) is a well-known

classic optimization problem. Its purpose is to schedule a set of project activities,

subject to precedence and renewable resource capacities constraints, with the goal

of minimizing the overall project total completion time (make-span)

The RCPSP is known to be NP-hard, meaning that for large instances, finding the

optimal solution in a reasonable amount of time is infeasible. Therefore,

Metaheuristic Algorithms, such as genetic algorithm (GA), tabu search, simulated

annealing, scatter search, etc., are commonly used to solve the problem [4, 7, 8, 12,

23]. Among the Metaheuristic Algorithms, GA is the mostly studied approach.

The GA is a population-based algorithm. It is based on the survival of the fittest

principle, and imitates the biologic evolution through 1) parent selections, 2)

crossover to produce the next generation, and 3) mutations. The GA select good

solutions from a large diversified solution population it generated, and it has been

shown to be effective in solving a variety of discrete optimization problems including

RCPSP.

2

A variety of GA-based approaches for solving RCPSP have been proposed, such as

presented in [2, 6, 7, 11, 16, 18, 22, 25], and many others. A hybrid approach is also

a very active area, e.g., GA + local-search or GA + exact-methods. The goal is to

leverage the global exploration of GA with the local exploitation of other methods,

to build more powerful and robust algorithms [7, 11]. In this note, we focus on a basic

but less studied area: the parent selection for next generation in GA.

A simple variation of genetic algorithm is presented, called 2PGA, for solving RCPSP.

The 2PGA both reinforces and relaxes the survival of the fittest principle. The parent

selection is implemented in two phases: Phase-1includes the best current solutions into

the parent pool, and Phase-2 excludes the best current solutions from the parent pool. The

2 phases alternate through the iteration of 2PGA. By alternating the inclusion and

exclusion of the current best solution, the 2PGA balances the intensification and

diversification in searching the solution space. The testing results on PSPLIB [17] have

shown that this approach is effective.

2 Resource Constrained Project Scheduling Problem

Activities

A project needs to complete a set A = {1, ..., N} activities, each activity is represented

as an integer. Dummy activities 0 and N+1 are added to represent the project’s start

and end, respectively. There are precedential relations amount the activities, each

activity can only start after all its predecessors are finished. The immediate

predecessors of activity j are denoted by set 𝑃𝑗 . The dummy activity 0 is the

predecessors all activities and dummy activity N+1 has all activities as its

predecessors.

Resources

Activities need resources to process. There are K renewable resource types,

resources are denoted as set R = {𝑅1,..., 𝑅𝐾}. Resource 𝑅𝑘has a limited capacity of 𝑅𝐶𝑘.

The resource requirement of activity j on 𝑅𝑘 𝑖𝑠 denoted as 𝑟𝑗,𝑘 . The uninterrupted

processing time of activity j is denoted as 𝑡𝑗 . Dummy activities 0 an N+1 don’t have

resource requirement. The start time of activity j on resource k is denoted as 𝑠𝑗 , and

the finish time 𝑓𝑗= 𝑠𝑗 + 𝑡𝑗 . The processing time of dummy activities 0 and N+1 𝑎𝑟𝑒 𝑡0

= 𝑡𝑁+1= 0.

RCPSP

The goal for solving RCPSP is to minimize the time to finish all activities, which is

known as make-span, subject to the activity precedence and resource capacity

3

constraints. A project schedule is a set start/finishing times 𝑠𝑗 /𝑓𝑗 , 𝑗 =0, …, N+1. A

RCPSP can be formulated as follows.

 min (𝒇𝑵+𝟏)

 s.t.

 ∑ 𝒓𝒋,𝒌 < 𝑹𝑪𝒌𝒋∈𝑨𝒌
, ⩝ 𝒌, 𝑹𝒌 ∈R

 𝒔𝒋 ≥ 𝒇𝒊∈𝑷𝒋
, ⩝ 𝒋∈A

where 𝐴𝑘is the set of activities that are processed on resource k at the same time;

𝑅𝐶𝐾is the capacity of resource 𝑅𝑘; 𝑃𝑗is the set of immediate predecessors of activity

j, R is the set of all resources, A is the set of all activities.

3 Two Phase Genetic Algorithm (2PGA)

Schedule Representation

An activity-list approach [12] is used in 2PGA to represent an individual schedule.

An activity-list is a permutation of all activities in a precedence feasible order and

each activity is represented as an integer j ∈ {0, …, N+1}. activity-lists are encoded

schedules and correspond to chromosomes in genetic operations, which are the

basic units to perform crossovers, mutations, and to form populations.

Serial Schedule Generation Scheme (SSGS)

An activity list (AL) is an encoding of a schedule. An AL is converted to a project

schedule using SSGS [12] that is a decoding process. Assume an AL is implemented

as an array denoted as A, SSGS iterates from 𝐴[0] to 𝐴[𝑁 + 1] sequentially, note that

the order of activities in AL satisfies precedence constraints. At step 𝑖 of SSGS,

assume 𝐴[𝑖] contains activity 𝑗, 𝑗 needs to wait for two conditions to start: 1) the

finish of all its predecessors (𝑃𝑗) ; and 2) the available capacities can satisfy its

resource requirements. By iterating through an AL, SSGS assigns start/finish times

to all activities in the AL, 𝐴[𝑁 + 1] = activity N + 1, is a dummy activity, its

start/finish time 𝑠𝑁+1 = 𝑓𝑁+1is the project’s make-span.

Crossover

The solution space of 2PGA contains all precedence feasible activity permutations

represented by ALs (activity lists). For generating new permutations, a two-point

crossover operation is used in 2PGA to mix two existing ALs (parents) to produce

two new ALs (children). Denote the two parents ALs as F and M, and the two

children ALs as D an S, the two-point crossover operation to produce D is as follows:

4

1. Generate 2 random numbers 𝒓𝟏 and 𝒓𝟐, 𝟎 < 𝒓𝟏 ≤ 𝒓𝟐 ≤ 𝑵

2. Set 𝑫[𝒊] = 𝑴[𝒊], 𝟎 < 𝒊 ≤ 𝒓𝟏

3. Set 𝑫[𝒊] = 𝑭[𝒋], 𝒓𝟏 < 𝒊 ≤ 𝒓𝟐, 𝟎 < 𝒋 ≤ 𝑵, 𝒋 𝒊𝒔 𝒍𝒐𝒘𝒆𝒔𝒕 𝒊𝒏𝒅𝒆𝒙,

 𝑭[𝒋] not in D

4. Set 𝑫[𝒊] = 𝑴[𝒋], 𝒓𝟐 < 𝒊 ≤ 𝑵, 𝒓𝟏 < 𝒋 ≤ 𝑵, 𝒋 𝒊𝒔 𝒍𝒐𝒘𝒆𝒔𝒕 𝒊𝒏𝒅𝒆𝒙,

 𝑴[𝒋] not in D

By switching M and F, another child S can be produced in the same manner.

It has been proved that the crossover operation keeps the children ALs precedence

feasible [12].

Mutation

A mutation operation changes some activities’ order in an AL. If a mutation in activity

permutation violates the precedence feasibility, a repair procedure is then carried

out for correction.

Mutations in an activity list can be in several forms: 1) move one activity to a different

position; 2) exchange two activities’ positions; 3) move several activities

simultaneously to different positions; and 4) a combination of the above.

The repair procedure works by iterate through the activities that violate the

precedence, and move each of them backward to a feasible position.

Initial Population Generation

The activities and their precedence relations correspond a directed acyclic graph

(DAG), with nodes as activities and directed edges as their precedence relations.

Generating a precedence feasible activity list corresponds to a topological sort on the

DAG. The result of the topological sort establishes a partial order for activities. The

precedence feasible activity list is generated using the following topological sort.

The eligible activities are those that either don’t have predecessors or their

predecessors are already in AL, we keep a set E of eligible activities in generating a

precedence feasible AL through the following steps:

0. Initialize AL size = 0, append the dummy activity 0 to AL,

Initialize E with eligible activities,

1. Randomly pick an activity in E and append to AL,

2. If some ineligible activities become eligible, add them to set E,

3. Repeat step 1 and 2, until E becomes empty, then append the dummy activity N+1 to

AL.

5

The generated ALs will be called individuals in the following description, where

each individual is a particular activity permutation (activity list). When a specified

number of individuals are generated, together they form the initial population. The

2PGA then uses SSGS to generate a schedule for each individual and takes the

schedules’ make-span as individuals’ fitness measure. An individual is the

encoding of a schedule, it is characterized by a particular permutation of activities,

which can be considered as an individual’s DNA, if this individual is chosen as a

parent, part of its DNA will be passed to the next generation.

Forword-Backward Improvement (a.k.a. double justification)

Forward scheduling is a procedure, in which activities are scheduled as early as

possible subject to their natural precedence and resource capacity constraints. In

contrast, backward scheduling works on the same activities and resource capacity

constraints, but activity precedence relations are reversed, i.e., successors become

predecessors, and vice versa. The backward scheduling can be thought as starting at

a given project finish time and scheduling in backward direction. The effect of the

backward scheduling is to make the activities in a project start/finish as late as

possible for the given project finish time.

Studies have shown that the backward scheduling can often improve schedules (in

terms of make-span) generated by forward scheduling [24].

In the 2PGA, both forward and backward scheduling perform the same type of

crossover, mutation, and selection operations. The backward scheduling is based on

the population produced by the forward scheduling, and vice versa, the iteration of

alternating precedence directions is as follows:

0. For a given population, repeat:

1. Selection, crossover, and mutation to produce the next population based on

forward precedence, then reverse the precedence relations, do step 2,

2. Selection, crossover, and mutation to produce the next population based on

reversed precedence, then reverse the precedence relations, do step 1.

Selection

In a Genetic Algorithm (GA), selection imitates the natural selection in evolution. Its

purpose is to select individuals (candidate solutions) from the current population

as parents for the next generation. The fundamental idea is the Survival of the

Fittest. Solutions with better fitness should have a greater chance to be selected and

pass their DNA (solution characteristics) to the next generation of individuals.

6

By biased on good solutions, selection guides the GA explore the most promising

regions of the solution space, incrementally improving the overall quality of the

population.

The search focus in solution space is influenced by adjusting the selection pressure.

Strong selection pressure, i.e., highly biased on the current best individuals, leads

to search intensification in the current neighborhood of solution space, facilitating

faster convergence but may be trapped in local optima.

Weak selection pressure, i.e., less biased on the current best individuals, leads to

search diversification in the solution space, facilitating exploring a wider range of

solutions, while leading to slow convergence but with better capability to escape

local traps.

The selection pressure can be adjusted. For instance, in the Tournament Selection

method, k individuals are randomly chosen from the current population, and the

individual with the highest fitness is selected as a parent. For this method, increasing

parameter k makes selection pressure stronger.

The GA incrementally improve solutions through the selection from populations

based the survival of the fittest principle. However, the best current solutions may

also be local traps that prevent the GA from searching wider areas. Therefore, the

key to success is the balance between the intensification and diversification of

search in solution space.

We address the balance issue using a 2-phase GA (2PGA) approach. The only

difference between the two phases lies in the selection. The basic selection method

in 2PGA is described as follows.

Assume for a given population denoted as set POP, 𝑁𝑝parents are to be selected for

the next generation. For both phases, the population is partitioned into two sets: the

first set contains individuals with the best fitness (make-span) in the population, the

set of such individuals is denoted as F with size 𝑁𝐹 . The second set is POP\F.

Phase 1. All the individuals in F are selected as the parents, and other

(𝑁𝑝 − 𝑁𝐹) parents are selected from the individuals in POP\F.

Phase 2. All the individuals in F are excluded from the parent pool. And all

𝑁𝑝 parents are selected from the individuals in POP\F.

For both phases, the parent selection is biased on the individuals with better fitness

in POP\F, for this purpose, any relevant selection methods can be used (e.g., Roulette

Wheel, Tournament, Rank-Based, Elitism, etc.).

7

2PGA Procedure

The goal of the 2PGA is to find an individual (an individual is simply a permutation

of all activities), when decoded as a schedule, has the shortest make-span.

The 2PGA uses: two-point crossover, mutation as a combination of one-activity-

move, activity-exchange, group-activity-move, SSGS schedule generation scheme,

forward backward improvement, and the 2-phase selection method, as described in

the previous sections. A general description of 2PGA is given as follows.

2PGA Parameters

The parameters include: the number of individuals in population; the number of

parents for each generation; the numbers of iterations and the sizes of the F for

Phase 1 and phase 2.

The parameters are problem size dependent and can be dynamically adjusted to 1)

expand or narrow the range of search and 2) change the balance between strong

and weak selection pressures (i.e., the balance of search intensification and

diversification).

A candidate solution list is used to stores current best solutions (individuals), the

individuals in the list also serve as high fitness parents when the population fitness

deteriorates. The list also contains the final solution.

Phase 1/2 Iteration

In the 2PGA, the only difference between phase 1 and phase 2 is the parents

selection methods. The phase 1/2 iteration is the following

0. Start from a current population

1. Perform Phase 1/2 iteration with the specified number of times

1.1 select parents from the current population using phase 1/2 method.

1.2 crossover parents to generate a new population and set it as the

current population.

1.3 perform mutation on the current population.

1.4 compute fitness of the current population based on SSGS generated

schedules.

1.5 update the candidate solution list.

1.6 in case individuals have forward activity precedence, reverse the

precedence, otherwise, reverse backward precedence to forward

precedence, repeat steps 1.1~1.5.

8

2PGA evolution process

1. Set parameters, initialize the candidate solution list

2. Generate the initial population as the current population, compute fitness of

the population

3. 2PGA Main Iteration

3.1 Phase 1 iteration

3.2 Phase 2 iteration

3.3 If termination condition is satisfied, the current best solution is the

final solution, otherwise, repeat step 3.1~3.3.

4 Computation Results

PSPLIB is widely used standard benchmark library for testing RCPSP algorithms. It has

four datasets J30, J60, J90, and J120, containing RCPSP problems with 30, 60, 90, and

120 activities, respectively, the difficulty increases with the number of activities. Each

dataset also contains the current best solutions.

The 2PGA is tested on all the four datasets. At the time of testing, it had reproduced

all the current best solutions to the four datasets. Furthermore, it also improved a

number of current solutions for J120. At the time of this writing, the 2PGA accounts

for 90 best current heuristic solutions for J120 dataset, as shown in j120hrs.sm in

PSPLIB [17], which are also shown in Table 1.

 Table 1. The current best J120 heuristic solutions produced by 2PGA

RCPSP

No.

Make
Span

RCPSP

No.

Make
Span

RCPSP

No.

Make
Span

RCPSP

No.

Make
Span

RCPSP

No.

Make
Span

59 125 135 85 186 103 370 163 522 158

72 97 144 81 264 183 372 178 565 185

73 89 157 234 272 140 376 124 566 161

76 94 158 200 313 189 377 155 567 184

112 162 165 140 316 131 378 140 569 179

116 117 166 123 317 145 380 122 571 166

117 136 167 108 319 138 382 125 572 162

118 125 168 120 320 128 386 108 573 167

119 162 169 129 321 122 387 111 574 167

120 121 170 136 322 135 388 98 575 141

122 119 171 146 323 127 391 104 576 126

123 105 172 127 327 107 459 149 577 120

124 143 173 134 328 112 469 127 578 145

128 112 174 134 329 142 470 137 580 140

129 91 175 138 332 111 471 118 581 147

130 99 180 134 334 106 505 206 582 132

133 85 183 91 365 145 519 168 583 130

134 92 188 106 367 139 520 196 584 131

9

5 Concluding Remarks

Genetic Algorithm (GA) is based on the survival of the fittest principle. The parent

selection for the next generation is biased on the individuals with better fitness. In general

GA implementations, diverse individuals are generated through the randomization in

selection, crossover, and mutation.

In contrast, the 2PGA explicitly alternates the inclusion and exclusion of the fittest

individuals in the selection, while still using randomization for crossover, mutation, and

also for the completion of selection. In so doing, the balance between search

intensification and diversification can be adjusted. The computation results have shown

the effectiveness of this approach.

After the exclusion of the fittest individuals from parent pools, while populations become

more diversified, the fitness may suffer. As a result, the search may proceed in a

worsening direction. However, for problems with multiple local optima, allowing going

worse temporarily is the only way to navigate through the complex terrain and escape

local traps. In case of the population deteriorating, the stored current best solutions can

be used to recover the population fitness. Note that similar approach is also used by other

optimization methods.

The Tabu Search [9, 10] is an improved local search with the capability to escape local

optima. It uses a tabu list to forbid recently visited solutions or moves. In doing so, it may

force the search to move in a worsening direction. But it is such moves that make the

Tabu Search work. The simulated annealing also allows bad moves though with

decreased probability.

In the context of nonlinear programming, the Watchdog method [14] is used to

reach the global optimum. The method allows the object function to become worse

in the line search steps. Its Watchdog element conducts periodic checks. After a

certain number of worsening steps, the algorithm then uses backtrack or reset to

bring the search back on track.

Note that the variation of selection pressures during the GA iterations can be

implemented in different ways, e.g., not limited to two phases or changing the

selection pressures gradually. The 2PGA is just one of the implementations.

In summary, the 2PGA represents a useful way for balancing intensification and

diversification in GA. The computation results have shown its effectiveness for

solving RCPSP. And as a general approach, the 2PGA may also be applied to other

optimization problems.

10

Reference

[1] Abdolshah, M., A review of resource-constrained project scheduling

problems (RCPSP) approaches and solutions, International Transaction Journal

of Engineering, Management, & Applied Sciences & Technologies, 5(4), 253–

286 (2014).

[2] Alcaraz, J., Maroto, C., A hybrid genetic algorithm based on intelligent

encoding for project scheduling, In Jyzefowska J., & Weglarz J. (Eds.),

Perspectives in modern project scheduling, Boston: Springer, 249–274 (2006).

[3] Blaz ewicz, J., Lenstra, J.K., Rinnoy Kan, A.H.G., Scheduling Subject to

Resource Constraints: Classification and Complexity, Discrete Applied

Math. 5(1), 11–24 (1983).

[4] Bouleimen, K. et al., A new efficient simulated annealing algorithm for the

resource-constrained project scheduling problem and its multiple mode

version, European Journal of Operational Research (2003)

[5] Brucker, P., Drexl, A., Mo hring, R., at al., Resource-Constrained Project

Scheduling: Notation, Classification, Models, and Methods, Eur. J. Oper.

Res. 112(1), 3–41 (1999).

[6] Debels, D., Debels and Vanhoucke, M., A Decomposition-Based Genetic

Algorithm for the Resource-Constrained Project-Scheduling Problem,

Operations Research, Vol. 55, No. 3, 457-469 (2007).

[7] Vanhoucke, M., Coelho, J., A matheuristic for the resource-constrained

project scheduling problem, Eur. J. Oper. Res. Vol. 319, Iss.3, 711–725 (2024).

[8] Gagnon, M., Boctor, F. F., d’Avignon, G., A Tabu Search Algorithm for the

Resource-constrained Project Scheduling Problem, ASAC (2004).

[9] Glover, Fred, Tabu Search – Part 1. ORSA Journal on Computing. 1 (2): 190–

206, (1989).

[10] Glover, Fred, Tabu Search – Part 2. ORSA Journal on Computing. 2 (1): 4–32,

(1990).

[11] Goncharov, E. N., A hybrid heuristic algorithm for the resource-constrained

project scheduling problem, arXiv:2502.18330 [math.OC], (2025).

[12] Hartmann, S., A Competitive Genetic Algorithm for Resource-Constrained

Project Scheduling, Naval Research Logistics 45:733-750 (1998).

11

[13] Hartmann, S., Briskorn, D., An updated survey of variants and extensions of

the resource-constrained project scheduling problem. European Journal of

297(1), 1–14. (2021).

[14] Hoza, M., Stadtherr, M.A., An improved watchdog line search for successive

quadratic programming, Computers & Chemical Engineering, Volume 17, Issue

9, 859-956 (1993)

[15] Kolisch, R., Hartmann, S., Experimental Investigation of Heuristics for

Resource-Constrained Project Scheduling: An Update, Eur. J. Oper. Res. 174, 23–

37 (2006).

[16] Kolisch, R., Hartmann, S., Heuristic Algorithms for Solving the Resource-

Constrained Project Scheduling Problem: Classification and Computational

Analysis, Weglarz J., (ed). Project scheduling: Recent models, algorithms and

applications. Kluwer Acad. Publish., 147–178 (1999).

[17] Kolisch, R., Sprecher, A., PSPLIB – a Project Scheduling Problem Library,

Eur. J. Oper. Res. 96, 205–216 (1996). Website: https://www.om-

db.wi.tum.de/psplib/getdata_sm.html

[18] Lim, A., Ma, H., Rodrigues, B., Tan, S.T., Xiao, F., New meta-heuristics for the

resource-constrained project scheduling problem, Flexible Services and

Manufacturing Journal, 25(1-2), 48–73 (2013).

[19] Mobini, M.D.M., Rabbani, M., Amalnik, M.S., at al., Using an Enhanced

Scatter Search Algorithm for a Resource-Constrained Project Scheduling

Problem, Soft Computing. 13 597–610 (2009).

[20] Palpant, M., Artigues, C., and Michelon, P., Solving the resource-constrained

project scheduling problem with large neighborhood search, Ann Oper

Res 131 237–257 (2004).

[21] Pellerin, R., Perrier, N., Berthaut, F., LSSPER, A survey of hybrid

metaheuristics for the resource-constrained project scheduling problem, Eur. J.

Oper. Res. 280, 2, 395–416 (2020).

[22] Proon, S., Jin, M., A Genetic Algorithm with Neighborhood Search for the

Resource-Consrtained Project Scheduling Problem, Naval Res. Logist. 58 , 73–

82 (2011).

[23] Ranjbar, M., Kianfar, F., A hybrid scatter search for the RCPSP, Scientia

Iranica, 16(1), 11–18 (2009).

12

[24] Valls, V., Ballestin, F., Quintanilla, M.S., Justification and RCPSP: a Technique

that Pays, Eur. J. Oper. Res. 165, 375–386 (2005).

[25] Valls, V., Ballestin, F., Quintanilla, S., A Hybrid Genetic Algorithm for the

Resource-Consrtained Project Scheduling Problem, Eur. J. Oper. Res. 185(2),

495–508 (2008).

[26] Valls, V., Ballestin, F., Quintanilla, S., A Population-based Approach to the

Resource-Constrained Project Scheduling Problem, Annals of Operations

Research 131, 305–324 (2004).

[27] Weglarz, J., Project scheduling. Recent models, algorithms and applications,

Boston: Kluwer Acad. Publ. (1999).

