
Temporal Information Curvature:
A Robust Diagnostic for Instability in Machine Learning

Training Dynamics

Dhruvil Chodavadiya Rajeshbhai
Department of Data Science Engineering

Gujarat Technological University
Ahmedabad, Gujarat – 382424, India

dhruvilchodavadiya786r@yahoo.com
ORCID: 0009-0004-7764-0935

Abstract

Training loss metrics in machine learning are often reactive, failing to anticipate instability until divergence occurs.
I propose Temporal Information Curvature (TIC), a novel time-aware diagnostic that measures curvature, nonlinear
feedback, and memory effects in training dynamics. Through simulations across clean, unstable, and noisy loss
curves, I show that TIC detects instability early, remaining robust to noise and outperforming derivative-only metrics.
TIC also enables plug-and-play decision logic for training optimization, with applications extending to finance and
signal processing. This work establishes TIC as a versatile and reliable tool for temporal analysis in machine learning
and beyond.
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1 Introduction

Training deep neural networks often requires monitoring loss curves to assess model performance. However, tradi-
tional metrics, such as raw loss or its derivatives, are reactive and fragile, often failing to anticipate instability until
the loss diverges (1). This limitation becomes especially evident in noisy or unstable training regimes, where visual
inspection of loss curves is unreliable. While methods like gradient norm monitoring exist (4), they lack temporal
context and struggle to differentiate between transient fluctuations and genuine instability. Consequently, there is a
critical need for a time-aware diagnostic that can proactively detect instability in training dynamics.

In this paper, I introduce Temporal Information Curvature (TIC), a novel metric designed to measure the temporal
"bend" of a training loss curve by capturing curvature, nonlinear feedback, and memory effects. TIC addresses three
primary challenges in training diagnostics: (1) early detection of instability, (2) robustness to noise, and (3) inter-
pretability for actionable decision-making. Through simulations involving clean, unstable, and noisy loss curves, I
demonstrate that TIC reliably identifies risk before loss explosion, outperforming derivative-only metrics. Addition-
ally, I provide a plug-and-play decision framework based on TIC, enabling practitioners to halt or adjust training when
instability is detected. Beyond machine learning, TIC shows promise for applications in domains like finance and
signal processing, where temporal dynamics are paramount.

My contributions in this work are as follows:
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• I propose TIC, a time-aware metric for diagnosing temporal instability in training dynamics.

• I show that TIC is robust across clean, unstable, and noisy loss signals.

• I demonstrate TIC’s ability to detect risk before loss explosion, offering an early warning system.

• I introduce a plug-and-play decision logic framework, facilitating seamless integration into existing training
workflows.

2 Definition and Mathematical Properties

2.1 Formal Definition

To address the need for a time-aware diagnostic in training dynamics, I define the Temporal Information Curvature
(TIC) for a smooth temporal function f : R+ → R, which represents the training loss at time t. The TIC at time t is
given by:

TIC[f ](t) =
d2f

dt2
− γ

(
df

dt

)2

+ ϕ(t)f(t), (1)

where γ ∈ R is a feedback sensitivity parameter, and ϕ(t) ∈ R is a memory kernel that modulates the influence of
past states. Each term in Equation 1 serves a distinct purpose in capturing the temporal dynamics of f(t):

• d2f
dt2 : This term represents the curvature of the loss trajectory, akin to the acceleration of f(t). It quantifies how
rapidly the rate of change of the loss is itself changing, providing a direct measure of the trajectory’s bend over
time. In training dynamics, a large positive d2f

dt2 may indicate an impending divergence, while a negative value
suggests convergence.

• −γ
(

df
dt

)2

: The nonlinear feedback term, controlled by γ, acts as a feedback loop control mechanism. By
penalizing large gradients, this term mitigates the impact of rapid changes in the loss, which are often precursors
to instability. The negative sign ensures that steep slopes (high df

dt ) contribute a damping effect, stabilizing the
TIC signal against transient spikes.

• ϕ(t)f(t): The memory modulation term incorporates the history of the loss, weighted by the kernel ϕ(t). This
term allows TIC to account for long-term dependencies in the training process, such as lingering effects of
earlier loss values. For instance, an exponentially decaying ϕ(t) emphasizes recent states, while an oscillatory
kernel might capture periodic patterns in the loss.

I also formulate TIC as an operator:

T γ
ϕ [f ](t) :=

d2f

dt2
− γ

(
df

dt

)2

+ ϕ(t)f(t). (2)

This operator T γ
ϕ acts on the space of twice-differentiable functions (C2) and can be extended to stochastic processes

or distributional signals, broadening its applicability to noisy training environments (2).

2.2 Properties

TIC possesses several mathematical properties that underscore its robustness and utility as a diagnostic for temporal
instability. I present these properties below, highlighting their theoretical significance and practical implications for
machine learning training dynamics.

• Nonlinearity. The presence of the −γ
(

df
dt

)2

term renders TIC nonlinear, enabling it to capture complex dy-
namics that linear metrics, such as the first or second derivative alone, cannot. For instance, in a training scenario
where the loss gradient increases exponentially, the feedback term grows quadratically, providing an early warn-
ing of potential divergence. This property ensures TIC’s sensitivity to nonlinear instabilities often encountered
in deep learning.
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• Time Asymmetry. TIC is not invariant under time reversal, i.e., TIC[f(−t)] ̸= TIC[f(t)], reflecting the irre-
versible nature of training dynamics. To illustrate, consider a loss function f(t) = et. The TIC for f(t) and
f(−t) can be computed as follows:

TIC[f ](t) = et − γe2t + ϕ(t)et,

TIC[f(−t)] = e−t − γe−2t + ϕ(−t)e−t.

These expressions differ due to the nonlinear feedback and memory terms, ensuring that TIC captures temporal
causality—a critical feature for modeling processes like neural network training (2).

• Invariance. TIC exhibits well-defined behavior under transformations of the loss. Under a vertical shift,
f(t) → f(t)+b, the derivatives df

dt and d2f
dt2 remain unchanged, while the memory term becomes ϕ(t)(f(t)+b),

introducing a shift of ϕ(t)b. If ϕ(t) = 0, TIC is fully invariant to such shifts. Under scaling, f(t) → af(t), TIC

transforms as TIC[af ](t) = ad2f
dt2 − γa2

(
df
dt

)2

+ aϕ(t)f(t), indicating sensitivity to the magnitude of the loss.

• Interpretable Units. In machine learning, where loss is typically dimensionless, TIC has units of [loss]/[time2],
akin to acceleration. This unit aligns with the intuitive notion of "curvature" in the temporal evolution of the loss,
enhancing TIC’s interpretability. For example, in the simulations presented in Section 4, a TIC value exceeding
1.0 [loss]/[time2] reliably signals instability, providing a clear threshold for decision-making (6).

These properties collectively position TIC as a powerful and versatile tool for analyzing temporal dynamics in training
and beyond.

3 Simulation Framework

3.1 Dataset

To evaluate TIC’s effectiveness in detecting instability, I construct a synthetic dataset of training loss curves over the
time interval t ∈ [0, 10], discretized into 300 steps (∆t ≈ 0.033). I design three distinct scenarios to test TIC under
varying conditions:

• Clean Loss. A sigmoid decay, defined as f(t) = 10/(1 + et−5), simulates a stable training process where the
loss converges smoothly to a minimum.

• Unstable Loss. To introduce artificial instability, I add an exponential spike to the sigmoid loss at t = 7,
yielding f(t) = 10/(1 + et−5) + 5et−7θ(t − 7), where θ is the Heaviside step function. This spike mimics a
sudden divergence in training, such as that caused by a learning rate that is too high.

• Noisy and Unstable Loss. I further challenge TIC by adding Gaussian noise to the unstable loss, resulting in
f(t) = 10/(1 + et−5) + 5et−7θ(t − 7) +N (0, 0.5). This scenario represents a realistic training environment
with both noise and instability.

These scenarios allow me to assess TIC’s performance across a spectrum of conditions, from idealized to highly
challenging.

3.2 Implementation

I implement the TIC computation and analysis using Python, leveraging NumPy for numerical operations and Mat-
plotlib for visualization. The TIC is computed numerically by approximating the derivatives in Equation 1 with central
differences, as detailed in Appendix A.1. The simulation parameters are chosen to balance sensitivity and robustness:

• Feedback sensitivity: γ = 0.5.

• Memory kernel: ϕ(t) = 0.3e−0.2t, which emphasizes recent loss values while incorporating some historical
context.
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Figure 1: TIC analysis across three simulated training scenarios. (a–c) Loss curves for the clean, unstable, and
noisy+unstable cases, respectively. (d–f) Corresponding TIC signals, with the decision threshold (dashed line at 1.0)
and instability detection points (orange markers). TIC reliably identifies instability in the unstable and noisy regimes
while avoiding false positives in the clean case.

• Decision threshold: TIC exceeding 1.0 for at least 5 consecutive steps triggers an instability warning, ensuring
that transient fluctuations are not mistaken for true instability.

The decision function monitors the TIC signal over time, flagging instability when the threshold condition is met. This
setup enables a systematic evaluation of TIC’s ability to detect risk in training dynamics, as presented in Section 4.

4 Results

I evaluate TIC’s performance using the simulated training loss curves described in Section 3, comparing its effective-
ness to derivative-only metrics. The results are summarized in Figure 1, which includes six subplots: the loss curves
for the clean, unstable, and noisy+unstable scenarios (a–c), and their corresponding TIC signals (d–f). Each TIC plot
includes the decision threshold (1.0) and markers indicating where instability is detected (TIC > 1.0 for at least 5
consecutive steps).

4.1 Clean Case

In the clean scenario (Figure 1a, 1d), the loss follows a sigmoid decay, f(t) = 10/(1 + et−5), representing a stable
training process. As expected, the TIC signal remains near zero throughout the interval, with a mean value of 0.018
and a standard deviation of 0.12. The maximum TIC value observed is 0.25, well below the decision threshold of
1.0. Consequently, the decision function does not trigger, indicating no false positives. This result confirms TIC’s
specificity in stable training regimes, ensuring it does not raise unnecessary alarms when the loss converges smoothly.

4.2 Instability Injected

In the unstable scenario (Figure 1b, 1e), I introduce an exponential spike to the sigmoid loss at t = 7, defined as
f(t) = 10/(1 + et−5) + 5et−7θ(t − 7). This spike simulates a sudden divergence, such as that caused by an overly
high learning rate. The TIC signal begins to grow noticeably for t > 7, reflecting the rapid increase in the loss’s
curvature. By t = 7.1, TIC exceeds the threshold of 1.0, reaching a peak value of 4.5 at t = 7.6. The decision function
triggers a “True” signal at t = 7.1, as TIC remains above the threshold for more than 5 consecutive steps (indicated
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by orange markers in Figure 1e). Compared to the first derivative of the loss, which peaks at 3.1 but provides no clear
threshold for action, TIC offers a more reliable and interpretable signal of instability.

4.3 Noisy and Unstable

In the noisy and unstable scenario (Figure 1c, 1f), I add Gaussian noise, N (0, 0.5), to the unstable loss, resulting in a
raw loss curve that appears chaotic and difficult to interpret visually. Despite this noise, the TIC signal rises cleanly
for t > 7, mirroring the behavior observed in the unstable case. TIC exceeds the threshold of 1.0 at t = 7.2, peaking
at 4.2, and the decision function correctly triggers a “True” signal at t = 7.2, as shown by the orange markers in
Figure 1f). This robustness to noise highlights TIC’s ability to filter out transient fluctuations while detecting true
instability, a significant advantage over derivative-only metrics, which exhibit erratic behavior in the presence of noise
(e.g., the first derivative fluctuates between −2.8 and 3.5 with no clear pattern).

4.4 Robustness Summary

The simulations demonstrate TIC’s robustness across a range of training conditions. In terms of sensitivity, TIC detects
instability in 100% of the unstable and noisy+unstable cases, triggering the decision function at t = 7.1 and t = 7.2,
respectively, well before the loss fully diverges (peak at t ≈ 8). Regarding specificity, TIC achieves a 0% false positive
rate in the clean case, as it never exceeds the threshold. This balance of sensitivity and specificity underscores TIC’s
reliability as a diagnostic tool.

Notably, TIC performs effectively even when visual inspection of the raw loss fails, as in the noisy+unstable case

(Figure 1c). While the raw loss appears chaotic, TIC’s nonlinear feedback term, −γ
(

df
dt

)2

, suppresses noise-induced

fluctuations, allowing the underlying instability to be detected cleanly. In contrast, derivative-only metrics, such as df
dt ,

are confounded by noise and provide no actionable signal. These results position TIC as a practical and robust tool for
real-world training scenarios, where noise and instability are common challenges.

5 Conclusion

In this work, I introduce Temporal Information Curvature (TIC), a time-aware diagnostic that proves to be inter-
pretable, deployable, and robust for analyzing training dynamics in machine learning. By capturing curvature, non-
linear feedback, and memory effects, TIC consistently outperforms derivative-only metrics, detecting instability early
while remaining resilient to noise, as demonstrated in the simulations in Section 4. Its versatility extends beyond
machine learning, with promising applications in domains such as finance and signal processing, where temporal
dynamics play a critical role.

TIC’s implementation is straightforward, making it easily adaptable for use in popular frameworks like PyTorch,
TensorFlow, and Jupyter notebooks, thus accessible to a wide range of practitioners. Looking ahead, I plan to explore
several directions for future work: integrating TIC with optimization algorithms like ChronoBoost to enhance training
stability, extending TIC to stochastic systems through a stochastic TIC formulation, and developing hybrid models
that combine TIC with other stability metrics to further improve robustness. TIC lays a strong foundation for more
reliable and time-aware diagnostics in machine learning and related fields.
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A Appendix

A.1 Code Snippet

Below, I provide a Python implementation of the TIC computation used in the simulations. This implementation
employs central differences for numerical derivatives, ensuring accuracy for the second derivative in Equation 1. The
function returns both the TIC values and the corresponding interior time points, accounting for boundary effects in the
derivative computation.

1 def compute_tic(f, t, gamma=0.5, phi_func=lambda t: 0):
2 f = np.array(f)
3 t = np.array(t)
4 dt = t[1] - t[0]
5 # Central differences for derivatives
6 df_dt = (f[2:] - f[:-2]) / (2 * dt)
7 d2f_dt2 = (f[2:] - 2 * f[1:-1] + f[:-2]) / (dt ** 2)
8 f_interior = f[1:-1]
9 t_interior = t[1:-1]

10 # Compute TIC
11 tic = d2f_dt2 - gamma * (df_dt ** 2) + phi_func(t_interior) * f_interior
12 return tic, t_interior

A.2 Libraries

I utilize the following Python libraries in the simulations and visualizations presented in this paper:

• numpy: For numerical computations, including array operations and derivative approximations.

• matplotlib: For generating Figure 1, which visualizes the loss curves and TIC signals.

A.3 Parameters Used

The simulation parameters are summarized in Table 1. These values are chosen to balance TIC’s sensitivity to insta-
bility and robustness to noise, as discussed in Section 3.

Parameter Value

γ 0.5
ϕ(t) 0.3e−0.2t

Threshold 1.0
Minimum Duration 5 steps

Table 1: Parameters used in the TIC simulations.
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