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This document presents an application of the extrinsic method through a
generic and pedagogical example that can be applied to the co-variant formu-
lation of the Lorentz law. The unsaid hope of this approach is the discovery
of some unexplored or weakly explored links between two theories because the
formalism of this law is a natural bridge between the electromagnetism and the
gravitation. The analysis is able to propose (i) a new formalism for the (2, 0)
version of the electromagnetic �elds and (ii) a speculative confrontation with the
theory of spinors resulting in a theoretical prediction, precisely: the existence of
electromagnetic �elds mimicking anti-symmetric variations of the metric tensor;
and conversely;©The visages of the Lorentz-Einstein law - Speculative analysis
with the extrinsic method.
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1 Introduction

1.1 Context and motivation

The study of interactions between electromagnetic and gravitational �elds is
an old preoccupation of scienti�c communities. This was also the one of A.
Einstein all along his life. The quest is going on but, up today, no one was able
to connect both types of �elds correctly within a four-dimensional approach
taking the quantum theories into consideration.

1.2 The history of the Lorentz law

The co-variant version of the Lorentz law is sometimes called the Lorentz-
Einstein law (short: LEL). The co-variant part of its formalism is the so-called
gravitational term. This term is a tensor product (i) acting on the 4-speed of
some particle and (ii) being deformed by the symmetric cube Γ(2) containing
the Christo�el's symbols of the second kind [02; p. 49], [07; �90, p. 256, (90.7)]:

m. |d
(4)u

ds
> + ⊗|Γ(2)(

(4)u, (4)p) >︸ ︷︷ ︸
gravitational term

=
q

c2
. [F (↑, ↓)]. |(4)u >

The classical version of Lorentz's law is written in a three-dimensional formal-
ism. It is an attempt to describe the motion of point-particles immersed in an
electromagnetic �eld [07; �17, pp. 46-49, (17.5)]. This classical version has a
four-dimensional formulation [07; �23, pp. 60-62, (23.4)]. The concept of co-
variant di�erentiation plays already an important role in Einstein's master work
[01]. A presentation of this kind of di�erentiation can be read in [07; �85]. Both,
the development of this concept and its application to the description of point-
particles moving under the in�uence of electromagnetic and gravitational �elds,
explain the co-variant formalism of the Lorentz's law [07; �90, pp. 254-257]. A

...
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1.3 What you will �nd in this exploration

deep analyze of this formalism has been extensively developed and presented in
[08]. A remaining problem accompanying the co-variant version of the Lorentz's
law is the notion of point-particle itself because it is not directly compatible with
the philosophy promoted by the quanti�ed approach of the reality.

1.3 What you will �nd in this exploration

A previous document [b] has roughly introduced a method allowing the decom-
position of deformed tensor products.

In section 2, this document explains the method with all necessary details and
constraints through a speci�c family of deformed tensor products. Among the
technical details, attention is focused: (i) on the necessary coherence that should
exist between the successive derivations; (ii) on the existence of a non-trivial de-
composition mimicking the simplest one; (iii) on the not-evident choice of the
non-degenerated bi-linear form [B] and (iv) on a natural link between the con-
cept of co-variant derivation and the decomposition of a subset of deformed
tensor products in which the pedagogical at hand can eventually be included.

In section 3, the document (i) proves that the co-variant formulation of the
Lorentz law belongs to the family which has been studied in previous section,
(ii) proposes a new formalism for the (2, 0) version of the electromagnetic �elds,
(iii) sketches the di�culties associated with the choice of a suitable bi-linear
form [B] and (iv) dares to develop a speculation predicting the existence of elec-
tromagnetic �elds mimicking anti-symmetric variations of the metric tensor [G]:
the so-called chameleons �elds when and if one can identify the bi-linear form
with the metric tensor ([B] = [G]).

2 The extrinsic method

2.1 The extrinsic method: principles

The extrinsic method has the same purpose than the intrinsic one: the discovery
of at least one non-trivial decomposition for a given deformed tensor product.
The di�erence between both methods lies in the fact that the former involves
mathematical tools which are absent in the initial formulation of so-called (E)
question.

Any intrinsic method is condemned to work with only three ingredients: the
deforming cube, the projectile and the target (they are the intrinsic tools) with
the hope to discover a non-trivial decomposition which is a pair ([Matrix = main
part], vector = residual part).

Since any tensor product which has been deformed by an anti-symmetric cube
is a deformed Lie product, these methods can be involved in researches looking
for the decomposition of deformed Lie products. This possibility has been used
in any three-dimensional space; see [a] and [b]. The development of an intrinsic
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2 THE EXTRINSIC METHOD

method in a four-dimensional environment is not achieved; see an incomplete
introduction in [c]. This is the reason why one must invest all e�orts in the de-
velopment of the extrinsic method. This method, as its name evokes it, involves
mathematical tools which are not implicitly present in the initial formulation of
the (E) question; precisely: a non-degenerated bi-linear form and the concept
of scalar product built with this form.

2.2 Useful de�nitions and remarks

De�nition 2.1. Presumed decomposition

Whilst it has been proved that any deformed tensor product accepts at least
one trivial decomposition, the so-called simplest decomposition without residual
part, it is not certain that at least one non-trivial decomposition exists. Hence,
the existence of this non-trivial decomposition is presumed and one will write
it:

| ⊗A (q1, q2) >= [P ] . |q2 > + |z >

In the coordinates language, this relation writes:

Aϵαβ . q
α
1 . qβ2 = pϵβ . q

β
2 + zϵ

De�nition 2.2. The scalar associated with the projectile

Per de�nition, it is:

S(q1) =< q1, | ⊗A (q1, q2) > −{[P ] . |q2 > + |z >} >[B]

In the coordinates language, this scalar writes:

S(q1) = bχϵ . q
χ
1 . {Aϵαβ . qα1 . qβ2 − (pϵβ . q

β
2 + zϵ)}

The scalar associated with the projectile is the scalar product between the pro-
jectile and the default of realization of the presumed decomposition of the de-
formed tensor product at hand. This scalar vanishes when the presumed de-
composition is realized.

De�nition 2.3. The scalar associated with the target

Per de�nition, it is:

S(q2) =< q2, | ⊗A (q1, q2) > −{[P ] . |q2 > + |z >} >[B]

In the coordinates language, this scalar writes:

S(q2) = bχϵ . q
χ
2 . {Aϵαβ . qα1 . qβ2 − (pϵβ . q

β
2 + zϵ)}

The scalar associated with the target is the scalar product between the target
and the default of realization of the presumed decomposition of the deformed
tensor product at hand. This scalar vanishes when the presumed decomposition
is realized.

...
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2.2 Useful de�nitions and remarks

De�nition 2.4. The polynomial associated with a small variation of the pro-
jectile

Per de�nition, it is:

P1(q1 + dq1)

=

P1(q1)+ < Gradq1P1(q1), dq1 >Id +
1

2
. < dq1, [Hessq1, 0P1(q1)] . |dq1 >>Id

+0(3)

De�nition 2.5. The polynomial associated with a small variation of the target

Per de�nition, it is:

P2(q2 + ds .u2)

=

P2(q2)+ < Gradq2P2(q2), ds .u2 >Id +
1

2
. < ds .u2, [Hessq2, 0P2(q2)] . |ds .u2 >>Id

+0(3)

De�nition 2.6. Pythagorean table

As generic example, let observe the matrix:

T2(o)(Gradu, z) =


∂u0z

0 ∂u1z
0 ∂u2z

0 ∂u3z
0

∂u0z
1 ∂u1z

1 ∂u2z
1 ∂u3z

1

∂u0z
2 ∂u1z

2 ∂u2z
2 ∂u3z

2

∂u0z
3 ∂u1z

3 ∂u2z
3 ∂u3z

3


Remark 2.1. Before starting explaining the extrinsic method

One should �rst note that:

� The vanishing of a scalar associated with an argument involved in a given
deformed tensor product is not a guaranty for the realization of a decom-
position. Indeed:

∀ i = 1, 2 : | ⊗A (q1, q2) >= [P ] . |q2 > + |z >⇒ S(qi) = 0

But conversely:

∀ i = 1, 2 : S(qi) = 0 ⇏ | ⊗A (q1, q2) >= [P ] . |q2 > + |z >

� The polynomial associated with a small variation of an argument involved
in a given deformed tensor product is not automatically coinciding with the
scalar associated with the deformed tensor product in which this variation
appears.

...
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2 THE EXTRINSIC METHOD

2.3 Let start with a pedagogical example

Let now consider for the pedagogy a generic deformed tensor product and
its presumed decomposition - here, k is an invariant scalar:

| ⊗A (u1, k .u2) >= [Q] . |k .u2 > + |Z >

The scalar associated with the projectile of this deformed tensor product
is:

S(u1) =< u1, | ⊗A (u1, k .u2) > −{[Q] . |k .u2 > + |Z >} >[B]

And the scalar associated with the target of this deformed tensor product
is:

S(k .u2) =< k .u2, | ⊗A (u1, k .u2) > −{[Q] . |k .u2 > + |Z >} >[B]

Whilst the polynomials of the respective variations are (recall):

P1(u1 + du1)

=

P1(u1)+ < Gradu1P1(u1), du1 >Id +
1

2
. < du1, [Hess(u1, 0)P1(u1)] . |du1 >>Id

+0(3)

And:

P2(k . (u2 + du2))

=

P2(k .u2)

+ < Gradk .u2P2(k .u2), k .u2 >Id

+
1

2
. < k .u2, [Hess(k .u2, 0)P2(k .u2)] . |k .u2 >>Id

+0(3)

2.4 The essence of the extrinsic method

The extrinsic method lies on the belief of situations for which it is possible to
write that, up to terms of degree three:

S(u1) = P1(u1 + du1) − P1(u1) − 0(3)

And:

S(k .u2) = P2(k .u2 + k . du2) − P2(k .u2) − 0(3)

...
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2.5 Consequences for the variations of the projectile

2.5 Consequences for the variations of the projectile

Concerning the projectile, these situations are such that:

< du1, | ⊗A (du1, k .u2) > −{[Q] . |k .u2 > + |Z >} >[B]

=

< Gradu1P1(u1), du1 >Id +
1

2
. < du1, [Hess(u1, 0)P1(u1)] . |du1 >>Id

They imply:

|Gradu1P1(u1) >= −[B] . {[Q] . |k .u2 > + |Z >}

And:

k . bχϵ . A
ϵ
αβ . u

β
2 =

1

2
.
∂2P1(u1)

∂uχ1∂u
α
1

A condensed writing of this second relation is strongly depending on the prop-
erties of P1, [B] and A; therefore, it will be left under that formalism. But if in
particular the cube A is anti-symmetric, then one may write:

k . [B] .AΦ(u2) =
1

2
. [Hess(u1, 0)P1(u1)]

One can also remark the existence of a subset of situations related to the van-
ishing of k:

k = 0 ⇒ [Hess(u1, 0)P1(u1)] = [0]

... and also:

Gradu1P1(u1) = [B] . |Z >= constant (not depending onu1)

2.6 Consequences for the variations of the target

Concerning the target, these situations are such that:

< k .u2, | ⊗A (u1, k .u2) > −{[Q] . |k .u2 > + |Z >} >[B]

=

< Gradk .u2P2(k .u2), k .u2 >Id +
1

2
. < k .u2, [Hess(k .u2, 0)P2(k .u2)] . |k .u2 >>Id

They imply:
|Gradk .u2P2(k .u2) >= −[B] . |Z >

And:
1

2
. [Hess(k .u2, 0)P2(k .u2)] = [B] . {AΦ(u1) − [Q]}

Here, one starts getting interesting results if (i) the polynomial P2 is known, (ii)
the bi-linear form [B] is not degenerated and (iii) k ̸= 0; more precisely:

[Q] = AΦ(u1) − 1

2
. [B]−1 . [Hess(k .u2, 0)P2(k .u2)]

And:
|Z >= −[B]−1 . |Gradk .u2P2(k .u2) >

But this procedure would be incomplete if one would not add the veiled con-
straints accompanying it.

...
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2 THE EXTRINSIC METHOD

2.7 The veiled constraints

The veiled constraints concern the link between a gradient and the Hessian that
can be obtained with it; concretely, let denote the presumed decomposition with:

|D >= [Q] . |k .u2 > + |Z >

1. Concerning the polynomial P1 depending on the projectile; let consider
the components of the gradient:

∂P1(u1)

∂uα1
= −bαϵ . D

ϵ

Let calculate their partial derivations by respect for the components of
the projectile:

∂2P1(u1)

∂uχ1∂u
α
1

= −∂bαϵ
∂uχ1

. Dϵ − bαϵ .
∂Dϵ

∂uχ1

Let confront this relation with the entries of the Hessian arising from the
extrinsic method and get the �rst veiled constraint:

2 . k . bχϵ . A
ϵ
αβ . u

β
2 +

∂bαϵ
∂uχ1

. Dϵ + bαϵ .
∂Dϵ

∂uχ1
= 0

This constraint is a set of di�erential equations depending on the compo-
nents of the presumed decomposition and one might formally solve them.
Nevertheless, even if one would e�ectively �nd the components of the pre-
sumed decomposition in following that way, an incertitude would remain
on the possible pairs ([Q], Z).

2. Concerning the polynomial P2 depending on the target; let consider the
components of the gradient:

∂P2(k .u2)

∂( . uα2 )
= −bαϵ . Z

ϵ

Following the same vein as previously, let calculate their partial derivations
by respect for the components of the target:

∂2P2(k .u2)

∂(k . uχ2 )∂(k . u
α
2 )

= − ∂bαϵ
∂(k . uχ2 )

. Zϵ − bαϵ .
∂Zϵ

∂(k . uχ2 )

Let confront this relation with the entries of the Hessian arising from the
extrinsic method and get the second veiled constraint:

2 . bαϵ . (A
ϵ
βχ . u

β
1 − Qϵχ) +

∂bαϵ
∂(k . uχ2 )

. Zϵ + bαϵ .
∂Zϵ

∂(k . uχ2 )
= 0

...
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2.8 Formalism of a presumed non-trivial decomposition obtained with the

extrinsic method

Example 2.1. When the bi-linear form represented by the matrix [B] does
not depend on (k.u2).

In that case, the veiled constraint on the target is:

bαϵ . {2 . (Aϵβχ . u
β
1 − Qϵχ) +

∂Zϵ

∂(k . uχ2 )
} = 0

Let multiply by (k.duχ2):

k . {bαϵ . {2 . (Aϵβχ . u
β
1 − Qϵχ) +

∂Zϵ

∂(k . uχ2 )
}} . duχ2 = 0

... and then sum over χ to get:

[B] . {2 . k . {AΦ(u1) − [Q]} . |du2 > + |dZ >} = |0 >

The condition is trivially true whatever the bi-linear form [B] is when:

2 . k . {AΦ(u1) − [Q]} . |du2 > + |dZ >= |0 >

2.8 Formalism of a presumed non-trivial decomposition ob-

tained with the extrinsic method

When the extrinsic method can be applied in a coherent manner, one can write
the presumed decomposition as:

| ⊗A (u1, k .u2) >

=

AΦ(u1) . |k .u2 >

− [B]−1 . {1
2
. [Hess(k .u2, 0)P2(k .u2)] . |k .u2 > + |Gradk .u2P2(k .u2) >}

This formulation:

1. is only useful when the polynomial P2 and the non-degenerated bi-linear
form [B] are known. If the former is not known, one might prefer another
formulation involving the pair ([B], Z) and its variations; see below for
more technical details.

2. di�ers obviously from the simplest decomposition without residual part.
Indeed, in absence of constraints, any deformed tensor product can be
decomposed in a simple way without residual part as:

| ⊗A (u1, k .u2) >= AΦ(u1) . |k .u2 >

Therefore, the extrinsic method gives rise to a di�erence:

− [B]−1 . {1
2
. [Hess(k .u2, 0)P2(k .u2)] . |k .u2 > + |Gradk .u2P2(k .u2) >}

...
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2 THE EXTRINSIC METHOD

The essence of the extrinsic method lies in the belief that external cir-
cumstances (for examples physical circumstances) command how some
mathematical operations must be realized. The whole theory of the (E)
question - and this document in particular- applies this principle to tensor
products which have been deformed by some cube. This choice should be
understood as a pedagogical example.

Within this context, one may ask - at least at a formal level- if there
exists a link between, on one side the deformation induced by the cube A
and, on the other side, the polynomials P1 and P2. For a given deformed
tensor product of the type which is studied here, the previous result indi-
cates that one gets a non-trivial decomposition in involving the pair (P2,
[B]). Conversely, this result does not say if the nature acts in the same
way than the extrinsic method does.

2.9 Characteristics of a non-trivial decomposition equivalent to

the simplest decomposition without residual part

This subsection is motivated by an underlying question: "Does a non-trivial
decomposition e�ectively exist? If yes: when?" And this question is itself justi-
�ed by the fact that there is apparently nothing more natural than the simplest
decomposition.

De�nition 2.7. Non-trivial decomposition equivalent to the simplest decompo-
sition without residual part.

A non-trivial decomposition equivalent to the simplest decomposition with-
out residual part is characterized by the vanishing of the di�erence between
both types of decomposition.

Remark 2.2. Su�cient condition characterizing a non-trivial decomposition
equivalent to the simplest decomposition without residual part.

For a non-trivial decomposition to be equivalent to the the simplest decom-
position without residual part, it is su�cient to verify the relation:

1

2
. [Hess(k .u2, 0)P2(k .u2)] . |k .u2 > + |Gradk .u2P2(k .u2) >= |0 >

This condition describes a set of polynomials with speci�c characteristics.

Proposition 2.1. The condition insuring that a non-trivial decomposition re-
sembles the simplest decomposition without residual part can be reformulated
with the help of ([B], Z).

Proof. Here, one is studying the decomposition of:

| ⊗A (u1, k .u2) >

... and the di�erence is:

− [B]−1 . {1
2
. [Hess(k .u2, 0)P2(k .u2)] . |k .u2 > + |Gradk .u2P2(k .u2) >}

...
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2.9 Characteristics of a non-trivial decomposition equivalent to the simplest

decomposition without residual part

The Hessian at hand, like any Hessian, can be understood as a superposition
of gradients. Therefore, the Hessian can be represented by a special type of
Pythagorean table:

[Hess(k .u2, 0)P2(k .u2)]

=

T2(o)(Gradk .u2 ,Gradk .u2P2(k .u2))

=

−T2(o)(Gradk .u2 , [B] . |Z >)

And the condition writes now:

1

2
. [B]−1 . T2(o)(Gradk .u2 , [B] . |Z >) . |k .u2 > + |Z >= |0 >

Diverse situations must now be envisaged to go further.

Remark 2.3. When [B] does not depend on (k.u2).

When, per hypothesis:

∀β :
∂[B]

∂(k . uβ2 )
= 0

Then, the condition has a particular formalism:

1

2
. [B]−1 . T2(o)(Gradk .u2 , [B] . |Z >) . |k .u2 > + |Z >= |0 >

↓
k

2
. bαχ . ∂

(k . uβ2 )
(bχψ . Z

ψ) . uβ2 + Zα = 0

↓
k

2
. bαχ . bχψ . ∂(k . uβ2 )

Zψ . uβ2 + Zα = 0

↓
k

2
. δαψ . ∂(k . uβ2 )

Zψ . uβ2 + Zα = 0

↓
k

2
. ∂

(k . uβ2 )
Zα . uβ2 + Zα = 0

↓
1

2
. T2(o)(Grad(k .u2), Z) . |k .u2 > + |Z >= |0 >

Whatever the solutions of this relation are, the latter is extremely problematic
because it signs a lack of precision which is perfectly symbolized by the fact

...
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2 THE EXTRINSIC METHOD

that it can be rewritten in an in�nite numbers of ways ... in re-injecting the
expression of Z into the gradient. Let introduce:

U = k .u2

The condition insuring the coincidence between a non-trivial decomposition and
the simplest one when [B] doesn't depend on U is equivalent to:

1

2
. T2(o)(GradU, Z) . |U > + |Z >= |0 >

Proposition 2.2. The condition insuring the coincidence between a non-trivial
decomposition and the simplest one when [B] doesn't depend on U can be refor-
mulated as a set of relations depending on the Hessian of each component of the
residual part.

Proof. Since:

Zα = −1

2
.
∑
γ

∂UγZ
α . Uγ

The following calculations can be made:

−1

2
.
∑
β

∂Uβ{
∑
γ

∂UγZ
α . Uγ} . Uβ + 2.Zα = 0

↓

−1

2
.
∑
β

∑
γ

∂2
UβUγZ

α . Uγ . Uβ − 1

2
. {
∑
β

∑
γ

∂UγZ
α . δγβ} . U

β + 2.Zβ = 0

↓

−1

2
.
∑
β

∑
γ

∂2
UβUγz

α . Uγ . Uβ − 1

2
.
∑
β

∂UβZ
α . Uβ + 2 . Zα = 0

↓

Zα − 1

6
.
∑
β

∑
γ

∂2
UβUγZ

α . Uγ . Uβ = 0

↓

Zα =
1

6
. < U| . {[Hess(U, 0)Z

α] . |U >}

...
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2.9 Characteristics of a non-trivial decomposition equivalent to the simplest

decomposition without residual part

Proposition 2.3. A �rst set of solutions for these conditions are quadratic
forms depending on the components of U.

Proof. Let suppose that each component of the residual part is a polynomial of
degree two with coe�cient not depending on U:

Zα(U) = gαβγ . U
β . Uγ =

∑
β

gαββ . (U
β)2 +

∑
β <γ

∑
γ

(gαβγ + gαγβ) . U
β . Uγ

A �rst partial derivation by respect for Uγ is:

∂Zα(U)

∂Uγ
= 2 . gαγγ . U

γ + (gαβγ + gαγβ) . U
β

And a second partial derivation by respect for Uβ is:

∂2Zα(U)

∂Uβ∂Uγ
= (gαβγ + gαγβ)

With this result one gets:∑
β

∑
γ

∂2Zα(U)

∂Uβ∂Uγ
. Uβ . Uγ =

∑
β

∑
γ

(gαβγ + gαγβ) . U
β . Uγ = 2 . Zα(U)

Therefore, the conditions characterizing the residual part of a non-trivial de-
composition mimicking the simplest one have the following generic solutions:

Zα(U) = 3 . gαβγ . U
β . Uγ , gαβγ = constant

They are quadratic forms (one for each component of the residual part) with
constant coe�cients depending on the components of U.

Lemma 2.1. When the bi-linear form represented by the square matrix [B]
doesn't depend on U = k.u2 (k is invariant), the deformed tensor product at
hand has eventually a non-trivial decomposition but the latter is �nally equal to
the simplest one when there exists a cube G of which the knots don't depend on
the components of U such that:

Z = 3 . ⊗G (U, U)

One may remark here the similarity between the formalism of these residual
parts and the formalism of the so-called gravitational term characterizing the
co-variance of the Lorentz law; see below. In these circumstances:

| ⊗A (u1, U) >= AΦ(u1) . |U >

Although the main part of the decomposition is theoretically:

[Q] = AΦ(u1) +
1

2
. T2(o)(GradU, Z)

Furthermore, the veiled constraint which has been obtained in example 2.1 for
the same circumstances is automatically veri�ed.

...
©Thierry PERIAT, The visages of the Lorentz-Einstein Law - Speculative analysis with the extrinsic method, 12
June 2025.

13



2 THE EXTRINSIC METHOD

Remark 2.4. Formalism of an e�ective non-trivial decomposition obtained with
the help of the extrinsic method.

When the non-trivial decomposition cannot be identi�ed with the simplest
one, the extrinsic method suggests to write:

| ⊗A (u1, U) >

=

{AΦ(u1) +
1

2
. [B]−1 . T2(o)(GradU, [B] . |Z >)}︸ ︷︷ ︸

= [Q]

. |U > + |Z >

=

|D >

... and there is no reason to think that the non trivial part of the decomposition
D vanishes. In opposition, one should write in general:

1

2
. [B]−1 . T2(o)(GradU, [B] . |Z >) + |Z >= |θ >

This relation can be transposed in the language of components:

1

2
. bαχ . ∂Uβ (bχψ . Z

ψ) . Uβ + Zα = θα

↓

1

2
. bαχ . {∂Uβbχψ . Zψ + bχψ . ∂UβZ

ψ} . Uβ + Zα = θα

↓

1

2
. bαχ . ∂Uβbχψ . Z

ψ . Uβ +
1

2
. bαχ . bχψ︸ ︷︷ ︸

= δαψ

. ∂UβZ
ψ . Uβ + Zα = θα

↓

1

2
. bαχ . ∂Uβbχψ . Z

ψ . Uβ +
1

2
. ∂UβZ

α . Uβ + Zα︸ ︷︷ ︸
= θα0

= θα

The formalism clearly exhibits two parts: (i) a �rst one, denoted θα0, is the
component of the non-trivial part of D when the bi-linear form [B] does not
depend on the components of U and (ii) a second one is the contribution to
the component of the non-trivial part of D related to a modi�cation of [B] by
respect for the components of U.

...
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2.10 A natural link between a non-trivial decomposition and a co-variant

derivation

2.10 A natural link between a non-trivial decomposition and a

co-variant derivation

In a canonical basis Ω, let consider the vector u1 ≡ (u0, u1, ...) and a connection
C; 1. The components of the co-variant derivation of this contra-variant vector
in this connection are per de�nition:

∇αu
β
1 = ∂αu

β
1 + Cβ

ρα . u
ρ
1

Let now suppose that this contra-variant vector is the gradient of some function
f(q) by respect for the components of the vector q; per convention, this fact can
be written as:

∀β : uβ1 = ∂βf(q) =
∂f(q)

∂qβ
⇐⇒ u1 = ∂qf(q) = Gradqf(q)

Let now inject these speci�c components into the components of the co-variant
derivation of this vector:

∇α∂βf(q) = ∂α∂βf(q) + Cβ
ρα . ∂ρf(q)

At this stage, let introduce a non-degenerated bi-linear form [B]:

bχα .∇α∂βf(q) = bχα . ∂α∂βfq) + bχα . Cβ
ρα . ∂ρf(q)

Nothing forbids the de�nition of a new cube A such that:

bχα . Cβ
ρα = −Aχρβ

One can also write:

Aχρβ . ∂ρf(q) = Aχρβ . u
ρ
1 = AΦχβ(u1) = AΦχβ(∂qf(q))

The relations can be condensed into:

−[B]−1 . [∇αu
β
1 ] = AΦ(Gradqf(q)) − [B]−1 . [Hess(q, 0)f(q)]

The r.h.s is the main part of a non-trivial decomposition which would have been
obtained ... for the deformed tensor product:

| ⊗A (u1, q) >= −[B]−1 . T2(o)(∇q, u1) . |q > + |Z >

... with the help of the extrinsic method when:

P2(q) = f(q), u1 = Gradqf(q) = GradqP2(q)

At this stage, one may remark that:

1The letter C has here nothing to do with the notation C representing the complex numbers.

...
©Thierry PERIAT, The visages of the Lorentz-Einstein Law - Speculative analysis with the extrinsic method, 12
June 2025.

15



3 THE LORENTZ EINSTEIN LAW AND THE EXTRINSIC METHOD

� The pedagogical example which has been introduced in subsection 2.3 is
(recall):

k . | ⊗A (u1, u2) >= k . [Q] . |u2 > + |Z >

The previous result can be applied to it when:

q = k .u2 = U; u1 = GradUP2(U)

In particular, if it happens that:

u1 = U

Then, the main part of a decomposition is e�ectively related to the concept
of co-variance if one can write:

U = GradUf(U)

This condition imposes strange constraints to the vector U because it
must be the gradient of some function f depending on its components by
respect for these components. For example, in a one-dimensional space,
this constraint is equivalent to:

U =
∂f(U)

∂U
⇒ f(U) =

1

2
. U2 + constant

If U represents a speed, this relation is a kind of reminiscence for the
kinetic energy per unit of mass of some particle of which the mass (m =
1) does not depend on its speed (the classical case).

� Future developments are possible when f is a continuous function in q:

−[∇αUβ] = [B] .AΦ(U
∗) − [Hess(q, 0)f(q)]

−[∇αTβ]
t = AΦ(U

∗)t . [B]t − [Hess(q, 0)f(q)]
t

[Hess(q, 0)f(q)]
t = [Hess(q, 0)f(q)]

[∇αUβ]
t − [∇αUβ] = [B] .AΦ(U

∗) − AΦ(U
∗)t . [B]t

This kind of relation appears again a little bit later in subsection 3.6.

3 The Lorentz Einstein Law and the extrinsic method

3.1 Why the extrinsic method can be applied to the Lorentz

Einstein Law

Up to now, the discussion concerns elements in V4={E(D=4,R),⊗Γ(2)} and
attention will be focused on the analysis of the Lorentz-Einstein law for non-
mass-less particles (m ̸= 0) :

|du
ds

> + | ⊗Γ(2) (u, u) >=
q

m . c2
. [F (↑, ↓)] . |u >

...
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3.2 The Lorentz-Einstein law as non-trivial decomposition of the

gravitational term

Proposition 3.1. The Lorentz-Einstein law is equivalent to a decomposition of
the gravitational term and this decomposition is in the family of the generic and
pedagogical deformed tensor product (recall):

| ⊗A (u1, k .u2) >= [Q] . |k .u2 > + |Z >

Proof. When the mass of the particle at hand is not null (m ̸= 0), the Lorentz-
Einstein law can be rewritten as:

| ⊗Γ(2) (u, u) >=
q

m . c2
. [F (↑, ↓)] . |u > − |du

ds
>

In multiplying this expression by an invariant k, it is also:

| ⊗Γ(2) (u, k .u) >=
q

m . c2
. [F (↑, ↓)] . |k .u > − k . |du

ds
>

Hence, provided one introduces the following identi�cations:

Γ(2) = A, u = u1 = u2, [Q] =
q

m . c2
. [F (↑, ↓)], Z = −k .

du

ds

... one can a�rm that the study of k times the co-variant version of the Lorentz
law is equivalent to the study of the generic example introduced in subsection
2.3.

Therefore, the results of previous subsections can now be involved to de-
compose a vector which is k times the gravitational term. Let comment the
de�nitions:

� The cube A contains all Christo�el's symbols of the second kind [02].

� The parameter "s" is referring to a curvilinear abscissa.

� u1 = u2 = u is the four-dimensional speed (u0, u1, u2, u3) of some event
in V4.

Q is a matrix representing the electromagnetic �eld.

� Z represents minus k times an acceleration. Therefore, within a discussion
related to the decomposition of the gravitational term, the vanishing of
the residual part Z corresponds to an invariant four-speed.

3.2 The Lorentz-Einstein law as non-trivial decomposition of

the gravitational term

Considering the subsection 2.8, one may think that the Lorentz-Einstein law is
a representation for a decomposition of the gravitational term which has been
obtained when a non-degenerated bi-linear form [B] and a polynomial P2(k .u)
are known. The extrinsic method yields in general:

[Q] = AΦ(u1) +
1

2
. [B]−1 . T2(o)(Grad(k .u2), [B] . |Z >)

...
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3 THE LORENTZ EINSTEIN LAW AND THE EXTRINSIC METHOD

|Z >= −[B]−1 . |Grad(k .u2)P2(k .u2) >

Here, these relations have now a precise visage:

[Q]

=

Γ(2)Φ(u) − 1

2
. [B]−1 . [Hess(k .u, 0)P2(k .u)]

=

q

m . c2
. [F (↑, ↓)]

=

q

m . c2
. [G]−1 . [F (2, 0)]

And:

|Z >= −[B]−1 . |Gradk .uP2(k .u) >= −k .
du

ds

They o�er a new visage for the (2, 0) representation of the electromagnetic �eld:

q

m . c2
. [F (2, 0)] = [G] . Γ(2)Φ(u) − 1

2
. [G] . [B]−1 . [Hess(k .u, 0)P2(k .u)]

3.3 The Lorentz-Einstein law and the �rst veiled constraint

At this stage attention has not yet been given to the �rst veiled constraint and
this should be done; recall that:

2 . k . bχϵ . A
ϵ
αβ . u

β
2 +

∂bαϵ
∂uχ1

. Dϵ + bαϵ .
∂Dϵ

∂uχ1
= 0

Here, more precisely:

2 . k . bχϵ .Γ(2)
ϵ
αβ . u

β +
∂bαϵ
∂uχ

. Dϵ + bαϵ .
∂Dϵ

∂uχ
= 0

With [02]:

Γ(2)ϵαβ = Γ(2)ϵβα

And:

D

=

[Q] . |k .u > + |Z >

=

k . { q

m . c2
. [F (↑, ↓)] . |u > − |du

ds
>}

...
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3.4 The Lorentz-Einstein law and the second veiled constraint

3.4 The Lorentz-Einstein law and the second veiled constraint

At this stage attention has not yet been given to the second veiled constraint
and this should be done; recall that:

2 . bαϵ . (A
ϵ
βχ . u

β
1 − Qϵχ) +

∂bαϵ
∂(k . uχ2 )

. Zϵ + bαϵ .
∂Zϵ

∂(k . uχ2 )
= 0

Here:

2 . bαϵ . (Γ(2)
ϵ
βχ . u

β − Qϵχ) − k .
∂bαϵ

∂(k . uχ)
.
duϵ

ds
− k . bαϵ .

∂ du
ϵ

ds

∂(k . uχ)
= 0

3.5 The problematic choice of a non-degenerated bi-linear form

for the Lorentz-Einstein law

There is only a small number of indications concerning the choice of [B]:

1. The �rst one is resulting from the well-accepted fact that the Lorentz
transformations [Λ] modify the electromagnetic �elds:

[F ′(0, 2)](x′) = [Λ] . [F (0, 2)](x) . [Λ]t

It is also known that the Lorentz transformations preserve the metric:

[Λ̂] . [G] . [Λ] = [G]

Here, the extrinsic method suggests the formalism:

q

m . c2
. [F (2, 0)] = [G] . Γ(2)Φ(u) − 1

2
. [G] . [B]−1 . [Hess(k .u, 0)P2(k .u)]

In another frame, one should have similarly:

q

m . c2
. [F (2, 0)]′ = [G]′ . Γ(2)′Φ(u

′)− 1

2
. [G]′ . [B′]−1 . [Hess(k′ .u′, 0)P

′
2(k

′ .u′)]

These facts should help �nding [B].

2. The second indication helping choosing [B] comes from Cartan's work on
metrics related to Hessian matrices [12].

3.6 The simplest decomposition without residual part of the

gravitational term and the bi-vectors "à la Cartan"

Warning: as long as the matrix [B] has not been precisely discovered, what
follows is pure speculation or a simple exercise.

Proposition 3.2. Provided two conditions are realized:

� The non-degenerated bi-linear form [B] coincides with the metric [G]:

[B] = [G]

...
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3 THE LORENTZ EINSTEIN LAW AND THE EXTRINSIC METHOD

� The polynomial P2 is smooth and continuous for each speed u:

[Hess(k .u, 0)P2(k .u)] = [Hess(k .u, 0)P2(k .u)]
t

... the treatment of the Lorentz-Einstein law with the extrinsic method gives a
speci�c formalism for the electromagnetic �eld:

q

c2
. [Fαβ] =

1

2
. {[G] . Γ(2)Φ(p) − Γ(2)Φ

t(p) . [G]t}

... and there exist mathematical con�gurations for which the formalism resulting
from the treatment of the Lorentz-Einstein law with the extrinsic method is an
in�nitesimal variation of the metric tensor [03; �172, pp. 145-146]:

δ[G] =
1

2
. {[G] . Γ(2)Φ(p) − Γ(2)Φ(p) . [G]}

Remark 3.1. Preliminaries

A comparison between the expected formalism and the formalism obtained
with the extrinsic method yields:

δ[G] = 2q . [Fαβ] + {Γ(2)Φt(p) . [G]t − Γ(2)Φ(p) . [G]}

Therefore, the proposition can only be validated when:

� Either the simplest decomposition without residual part and the metric
are symmetric:

Γ(2)Φ(p) = Γ(2)Φ
t(p), [G] = [G]t

� Or the simplest decomposition without residual part and the metric are
anti-symmetric:

Γ(2)Φ(p) = −Γ(2)Φ
t(p), [G] = −[G]t

Proof. Within the theory of spinors [03], each element (5)X in E(5,R) can be
represented in M(4,R) [03 ; �93, pp. 81-82]:

Xα : (x0α, x
1
α, x

2
α, x

′1
α , x

′2
α ) ∈ E(5, R) : [C(Xα)] =


x0α x1α x2α 0
x′1α −x0α 0 x2α
x′2α 0 −x0α −x1α
0 x′2α −x′1α x0α


And each pair (X1, X2) of elements in E(5,R) has a representation [03 ; �95, p.
83]:

[C(X1, X2)] =
1

2
. {[C(X1)] . [C(X2)] − [C(X2)] . [C(X1)]}

The approach proposed in [03] can be applied without reduction of the general-
ity to elements in E(4,R); for that purpose, it is enough to write x0 = 0.

...
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3.6 The simplest decomposition without residual part of the gravitational

term and the bi-vectors "à la Cartan"

In that context, one can easily verify that:

[C(X1)] . [C(X2)]

=
(x11 . x

′1
2 + x21 . x

′2
2 ) 0 0 (x11 . x

2
2 − x21 . x

1
2)

0 (x′11 . x12 + x21 . x
′2
2 ) (x′11 . x22 − x21 . x

′1
2 ) 0

0 (x′21 . x12 − x11 . x
′2
2 ) (x11 . x

′1
2 + x′21 . x22) 0

(x′21 . x′12 − x′11 . x′22 ) 0 0 (x′11 . x12 + x′21 . x22)


And, in inverting the subscripts 1 and 2, that:

[C(X2)] . [C(X1)]

=
(x12 . x

′1
1 + x22 . x

′2
1 ) 0 0 (x12 . x

2
1 − x22 . x

1
1)

0 (x′12 . x11 + x22 . x
′2
1 ) (x′12 . x21 − x22 . x

′1
1 ) 0

0 (x′22 . x11 − x12 . x
′2
1 ) (x12 . x

′1
1 + x′22 . x21) 0

(x′22 . x′11 − x′12 . x′21 ) 0 0 (x′12 . x11 + x′22 . x21)


If one wants to prove the proposition in following the approach developed in
[03; �172, pp. 145-146], one must discover realistic circumstances for which the
simplest decomposition without residual part is a bi-vector:

[C(X1)] . [C(X2)] = Γ(2)Φ(p)

In details:
(x11 . x

′1
2 + x21 . x

′2
2 ) 0 0 (x11 . x

2
2 − x21 . x

1
2)

0 (x′11 . x12 + x21 . x
′2
2 ) (x′11 . x22 − x21 . x

′1
2 ) 0

0 (x′21 . x12 − x11 . x
′2
2 ) (x11 . x

′1
2 + x′21 . x22) 0

(x′21 . x′12 − x′11 . x′22 ) 0 0 (x′11 . x12 + x′21 . x22)


=

Γ0
µ0 . p

µ Γ0
µ1 . p

µ Γ0
µ2 . p

µ Γ0
µ3 . p

µ

Γ1
µ0 . p

µ Γ1
µ1 . p

µ Γ1
µ2 . p

µ Γ1
µ3 . p

µ

Γ2
µ0 . p

µ Γ2
µ1 . p

µ Γ2
µ2 . p

µ Γ2
µ3 . p

µ

Γ3
µ0 . p

µ Γ3
µ1 . p

µ Γ3
µ2 . p

µ Γ3
µ3 . p

µ


If this equality would be true, then one would automatically remark that:

Γ0
µ1 . p

µ = Γ0
µ2 . p

µ = Γ1
µ3 . p

µ = Γ2
µ3 . p

µ

=

Γ3
µ2 . p

µ = Γ3
µ1 . p

µ = Γ2
µ0 . p

µ = Γ1
µ0 . p

µ = 0

Let adopt the conventional writings:

a = x11 . x
′1
2 + x21 . x

′2
2

b = x′11 . x12 + x′21 . x22

c = x11 . x
′1
2 + x′21 . x22

d = x′11 . x12 + x21 . x
′2
2

These conventions allow:

...
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3 THE LORENTZ EINSTEIN LAW AND THE EXTRINSIC METHOD

� ... A rewriting of the non-vanishing entries in the simplest decomposition:

Γ0
µ0 . p

µ = −Γ3
µ3 . p

µ =
1

2
. (a − b)

Γ1
µ1 . p

µ = −Γ2
µ2 . p

µ =
1

2
. (d − c)

Γ0
µ3 . p

µ = (x12 . x
2
1 − x22 . x

1
1)

Γ1
µ2 . p

µ = (x′12 . x21 − x22 . x
′1
1 )

Γ2
µ1 . p

µ = (x′22 . x11 − x12 . x
′2
1 )

Γ3
µ0 . p

µ = (x′22 . x′11 − x′12 . x′21 )

� and, as consequence, a condensed formulation of the matrix [C(X1)] . [C(X2)]:

[C(X1)] , . [C(X2)]

=
1
2 . (a − b) 0 0 (x1

2 . x
2
1 − x2

2 . x
1
1)

0 1
2 . (d − c) (x′1

2 . x2
1 − x2

2 . x
′1
1 ) 0

0 (x′2
2 . x1

1 − x1
2 . x

′2
1 )

1
2 . (c − d) 0

(x′2
2 . x′1

1 − x′1
2 . x′2

1 ) 0 0 1
2 . (b − a)


Remark 3.2. A useful identity

a . b

=

(x11 . x
′1
2 + x21 . x

′2
2 ) . (x

′1
1 . x12 + x′21 . x22)

=

x11 . x
′1
2 . x′11 . x12 + x11 . x

′1
2 . x′21 . x22 + x21 . x

′2
2 . x′11 . x12 + x21 . x

′2
2 . x′21 . x22

On the same vein:
c . d

=

(x11 . x
′1
2 + x′21 . x22) . (x

′1
1 . x12 + x21 . x

′2
2 )

=

x11 . x
′1
2 . x′11 . x12 + x11 . x

′1
2 . x21 . x

′2
2 + x′21 . x22 . x

′1
1 . x12 + x′21 . x22 . x

2
1 . x

′2
2

The previous results are now yielding:

a . b − c . d

=

x11 . x
′1
2 . x′21 . x22 − x11 . x

′1
2 . x21 . x

′2
2 + x21 . x

′2
2 . x′11 . x12 − x′21 . x22 . x

′1
1 . x12

=

...
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3.6 The simplest decomposition without residual part of the gravitational

term and the bi-vectors "à la Cartan"

x11 . x
′1
2 . (x′21 . x22 − x21 . x

′2
2 ) + (x21 . x

′2
2 − x′21 . x22) . x

′1
1 . x12

=

(x11 . x
′1
2 − x′11 . x12) . (x

′2
1 . x22 − x21 . x

′2
2 )

Let state that:

Γ0
µ3 .Γ

3
ν0 . p

µ . pν

=

(x12 . x
2
1 − x22 . x

1
1) . (x

′2
2 . x′11 − x′12 . x′21 )

=

x12 . x
2
1 . x

′2
2 . x′11 − x12 . x

2
1 . x

′1
2 . x′21 − x22 . x

1
1 . x

′2
2 . x′11 + x22 . x

1
1 . x

′1
2 . x′21

And that:

Γ1
µ2 .Γ

2
ν1 . p

µ . pν

=

(x′12 . x21 − x22 . x
′1
1 ) . (x

′2
2 . x11 − x12 . x

′2
1 )

=

x′12 . x21 . x
′2
2 . x11 − x′12 . x21 . x

1
2 . x

′2
1 − x22 . x

′1
1 . x′22 . x11 + x22 . x

′1
1 . x12 . x

′2
1

At the end of the day:

(Γ0
µ3 .Γ

3
ν0 − Γ1

µ2 .Γ
2
ν1) . p

µ . pν

=

x12 . x
2
1 . x

′2
2 . x′11 − x′12 . x21 . x

′2
2 . x11 + x22 . x

1
1 . x

′1
2 . x′21 − x22 . x

′1
1 . x12 . x

′2
1

=

x12 . x
′1
1 . (x21 . x

′2
2 − x22 . x

′2
1 ) − x11 . x

′1
2 . (x21 . x

′2
2 − x22 . x

′2
1 )

=

(x11 . x
′1
2 − x′11 . x12) . (x

′2
1 . x22 − x21 . x

′2
2 )

=

a . b − c . d

This is a remarkable result.

Remark 3.3. Admissible matrices

Very important indications concerning the formalism of the matrix representa-
tion for a bi-vector can be read in [03 ; �125, pp. 109-110]. They allow the
de�nition of two families:

...
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3 THE LORENTZ EINSTEIN LAW AND THE EXTRINSIC METHOD

1. First family:
Γ0
µ3 . p

µ = (x12 . x
2
1 − x22 . x

1
1) = 0

Γ1
µ2 . p

µ = (x′12 . x21 − x22 . x
′1
1 ) = 0

Γ2
µ1 . p

µ = (x′22 . x11 − x12 . x
′2
1 ) = 0

Γ3
µ0 . p

µ = (x′22 . x′11 − x′12 . x′21 ) = 0

When neither X1 nor X2 have vanishing components:

x22
x21

=
x′12
x′11

=
x′22
x′21

=
x12
x11

= k, ∀ k ̸= 0

It is equivalent to write:
X2 = k .X2

In that case:

a = b = c = d = k . (x11 . x
′1
1 + x21 . x

′2
1 )

And:
[C(X1)] . [C(X2)] = [0]

Elements in the �rst family are identi�ed with the null matrix. This
situation coincides with any invariant geometry.

2. Second family

Γ0
µ0 . p

µ = −Γ3
µ3 . p

µ =
1

2
. (a − b) = 0

Γ1
µ1 . p

µ = −Γ2
µ2 . p

µ =
1

2
. (d − c) = 0

Remark 3.4. A �st characteristic of the second family

Because of [10 ; p. 89, (17.5), D]:

∀α ∈ I4 = {0, 1, 2, 3} : Γαµα . p
µ =

∂log
√

|g|
∂xµ

. pµ = 0

A sum on µ when one accepts the classical de�nition p = m.u for the
kinetic momentum yields:

m.
dlog

√
|g|

ds
= 0

This characteristic is trivially true in two sets of circumstances:

� The particle at hand is mass-less: m = 0.

�
∀m, s : log

√
|g| = constant

...
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3.6 The simplest decomposition without residual part of the gravitational

term and the bi-vectors "à la Cartan"

Remark 3.5. A second characteristic of the second family

All matrices in the second family have only a small number of entries and
they all lie in a line orthogonal to the diagonal:

Γ0 = Γ0
µ3 . p

µ ; Γ1 = Γ1
µ2 . p

µ ; Γ2 = Γ2
µ1 . p

µ ; Γ3 = Γ3
µ0 . p

µ

Γ(2)Φ(p) =


0 0 0 Γ0

0 0 Γ1 0
0 Γ2 0 0
Γ3 0 0 0


These entries appear in the useful identity which has been discovered in
remark 2.2.:

Γ0 .Γ3 − Γ1 .Γ2 = (Γ0
µ3 .Γ

3
ν0 − Γ1

µ2 .Γ
2
ν1) . p

µ . pν = a . b − c . d

But here, a = b and c = d (look at the top of this remark); hence:

Γ0 .Γ3 − Γ1 .Γ2 = a2 − c2

(a) Sub-family 2.1 : The simplest decomposition without residual part
is entirely symmetric.
Since :

Γ0 = Γ3 ; Γ1 = Γ2

The useful identity writes:

(Γ0)2 − (Γ1)2 = a2 − c2

One can de�ne four con�gurations:

i. The con�guration (+, +) :

Γ0 = a ; Γ1 = c

Γ(2)Φ(p) =


0 0 0 a
0 0 c 0
0 c 0 0
a 0 0 0


ii. The con�guration (-, +) :

Γ0 = −a ; Γ1 = c

Γ(2)Φ(p) =


0 0 0 −a
0 0 c 0
0 c 0 0
−a 0 0 0


...
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iii. The con�guration (+, -) :

Γ0 = a ; Γ1 = −c

Γ(2)Φ(p) =


0 0 0 a
0 0 −c 0
0 −c 0 0
a 0 0 0


iv. The con�guration (-, -) :

Γ0 = −a ; Γ1 = −c

Γ(2)Φ(p) =


0 0 0 −a
0 0 −c 0
0 −c 0 0
−a 0 0 0


(b) Sub-family 2.2 : The simplest decomposition without residual part

is entirely anti-symmetric.
Since :

Γ0 = −Γ3 ; Γ1 = −Γ2

Here, the useful identity writes:

(Γ1)2 − (Γ0)2 = a2 − c2

One can de�ne four con�gurations:

i. The con�guration (+, +) :

Γ1 = a ; Γ0 = c

Γ(2)Φ(p) =


0 0 0 c
0 0 a 0
0 −a 0 0
−c 0 0 0


ii. The con�guration (-, +) :

Γ1 = −a ; Γ0 = c

Γ(2)Φ(p) =


0 0 0 c
0 0 −a 0
0 a 0 0
−c 0 0 0


iii. The con�guration (+, -) :

Γ1 = a ; Γ0 = −c

Γ(2)Φ(p) =


0 0 0 −c
0 0 a 0
0 −a 0 0
c 0 0 0
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iv. The con�guration (-, -) :

Γ1 = −a ; Γ0 = −c

Γ(2)Φ(p) =


0 0 0 −c
0 0 −a 0
0 a 0 0
c 0 0 0


Remark 3.6. A third characteristic of the second family

Some elements in the second family are Dirac's matrices [09 ; �2.13, pp.29-
32].

3.7 The chameleons �elds

De�nition 3.1. What is a chameleon �eld?

Per convention, a chameleon �eld is an electromagnetic �eld:

1. resulting from the treatment of the Lorentz-Einstein law with the extrinsic
method,

2. when the simplest decomposition without residual term of the gravita-
tional term is a bi-vector "à la Cartan",

3. allowing the relation:
δ[G] = [F (2, 0)]

The justi�cation of this semantic is clear: a chameleon �eld is an electromagnetic
�eld resembling an anti-symmetric variation of the metric.

Remark 3.7. When simplest decomposition without residual term of the gravi-
tational term and the underlying metric are symmetric matrices

Here, one works with:

∀ [G] = [G]t =


g00 g01 g02 g03
g01 g11 g12 g13
g02 g12 g22 g23
g03 g13 g23 g33


... and matrices in the sub-family 2.1 which will be denoted:

Γ(2)Φ(p) =


0 0 0 χ
0 0 Υ 0
0 Υ 0 0
χ 0 0 0


In this context:

[G] . Γ(2)Φ(p)

...
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=
g00 g01 g02 g03
g01 g11 g12 g13
g02 g12 g22 g23
g03 g13 g23 g33

 .


0 0 0 χ
0 0 Υ 0
0 Υ 0 0
χ 0 0 0


=

χ . g03 Υ . g02 Υ . g01 χ . g00
χ . g13 Υ . g12 Υ . g11 χ . g01
χ . g23 Υ . g22 Υ . g12 χ . g02
χ . g33 Υ . g23 Υ . g13 χ . g03


And:

Γ(2)Φ(p) . [G]

=
0 0 0 χ
0 0 Υ 0
0 Υ 0 0
χ 0 0 0

 .


g00 g01 g02 g03
g01 g11 g12 g13
g02 g12 g22 g23
g03 g13 g23 g33


=

χ . g03 χ . g13 χ . g23 χ . g33
Υ . g02 Υ . g12 Υ . g22 Υ . g23
Υ . g01 Υ . g11 Υ . g12 Υ . g13
χ . g00 χ . g01 χ . g02 χ . g03


Hence:

[G] . Γ(2)Φ(p) − Γ(2)Φ(p) . [G]

=
0 Υ . g02 − χ . g13 Υ . g01 − χ . g23 χ . (g00 − g33)

χ . g13 − Υ . g02 0 Υ . (g11 − g22) χ . g01 − Υ . g23
χ . g23 − Υ . g01 Υ . (g22 − g11) 0 χ . g02 − Υ . g13
χ . (g33 − g00) Υ . g23 − χ . g01 Υ . g13 − χ . g02 0


Let recall that [07]:

[Fαβ] =


0 Ex Ey Ez

−Ex 0 −Hz Hy

−Ey Hz 0 −Hx

−Ez −Hy Hx 0

 ; [Fαβ] =


0 −Ex −Ey −Ez
Ex 0 −Hz Hy

Ey Hz 0 −Hx

Ez −Hy Hx 0


Hence, as expected, the matrix which has been calculated can formally be iden-
ti�ed with a matrix mimicking an electromagnetic �eld (equivalently: can for-
mally be identi�ed with a chameleon �eld) in writing:

q . Ex =
1

2
. {Υ . g02 − χ . g13}

q . Ey =
1

2
. {Υ . g01 − χ . g23}

...
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q . Ez =
1

2
. {χ . (g00 − g33)}

q .Hx =
1

2
. {Υ . g13 − χ . g02}

q .Hy =
1

2
. {χ . g01 − Υ . g23}

q .Hz =
1

2
. {Υ . (g22 − g11)}

And this chameleon �eld is equivalent to an in�nitesimal anti-symmetric varia-
tion of the metric such that:

δg00 = δg11 = δg22 = δg33 = 0

δg01 =
1

2
. {Υ . g02 − χ . g13} = −δg10

δg02 =
1

2
. {Υ . g01 − χ . g23} = −δg20

δg03 =
1

2
. {χ . (g00 − g33)} = −δg30

δg32 =
1

2
. {Υ . g13 − χ . g02} = −δg23

δg13 =
1

2
. {χ . g01 − Υ . g23} = −δg31

δg21 =
1

2
. {Υ . (g22 − g11)} = −δg12

Example 3.1. Variations of an initial Minkowski's geometry

Working with a metric with signature (+ - - -), one gets:

∀Υ

δη00 = δη11 = δη22 = δη33 = 0

δη01 = 0 = −δη10 = q . Ex

δη02 = 0 = −δη20 = q . Ey

δη03 = χ = −δη30 = q . Ez

δη32 = 0 = −δη23 = q .Hx

δη13 = 0 = −δη31 = q .Hy

δη21 = 0 = −δη12 = q .Hz

And:

δ[η] = q .


0 0 Ez
0 0 0 0
0 0 0 0

−Ez 0 0 0

 =


0 0 0 χ
0 0 0 0
0 0 0 0
−χ 0 0 0

 =


0 0 0 ±Γ0

0 0 0 0
0 0 0 0

∓Γ0 0 0 0
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If these calculations correspond to some reality, then:

[η] → [η] + δ[η] = [G] =


1 0 0 ±Γ0

0 −1 0 0
0 0 −1 0

∓Γ0 0 0 −1


As usual in mathematical physics, one must ask: "What do these equations
really mean?"

Considering the de�nition of Γ0, one might say - in a �rst try- that if a particle
with a mass m enters into an empty region of the universe with a Minkowski's
geometry, then (i) that particle automatically deforms this initial geometry; (ii)
if Γ0 describes this deformation, the theory of spinors allows to think that it
mimics the z-component of an electromagnetic �eld. Does it mean that the
instruments would measure an electromagnetic �eld? Not sure. Are the ge-
ometrical deformations induced by the presence of the particle correctly and
entirely described through the quantity Γ0? No guaranty.

4 Conclusion

Once more time, the mathematics opens theoretical doors which don't necessar-
ily correspond to some reality. But it would be a shame to not break the habits
that con�ne our minds in sterile territories. Who tries nothing cannot succeed.
This work does not pretend to be exhaustive. It leaves many topics unexplored:
"What does the matrix [B] really represent? Do the chameleons �elds exist in
the nature? Do they correspond to a certain type of elementary particles? Why
do some Γ(2)Φ(u) matrices coincide with Dirac's matrices?"...
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