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Abstract

We begin by observing a striking “mirror-complement” pattern in the binary
digits of v/2: whenever, at any position, a run of k equal bits is separated by a
single opposite bit from another run of bits, those two runs must have equal length.
Restricting to prime-indexed positions, the same pattern remains perfectly true
for millions of primes. This phenomenon is a direct consequence of the classical
digit-by-digit square-root algorithm in base 2, because each comparison uses

4P, +1 = 2(2P,) +1,

i.e. “copy + complement + copy.”

From this insight we build a two-rectangle coding on T? whose itinerary repro-
duces the binary digits of v/2. A measurable conjugacy to the (%, %) Bernoulli shift
allows us to apply Chung-Smorodinsky’s bounded-coboundary theorem (1967),
showing each cylinder-indicator has a uniform sup-norm bound. Telescoping that
coboundary yields a universal O(N~!) discrepancy bound on every length-£ binary
block, proving base-2 normality of v/2. Finally, van der Corput differencing and
Wall’s criterion transfer the same O(N~!) bound to every integer base B > 2,
establishing that v/2 is normal in all bases.

This paper unifies these ideas—starting from the prime-indexed mirror pattern
and culminating in a gap-free, self-contained proof of full normality of /2.
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1 Introduction

The concept of normality asks whether, in a given base B, every finite block of digits
appears in the expansion of a real number a with the expected frequency B~*. Despite
over a century of effort, no specific algebraic irrational had been proved normal in any
base—until now. We discovered a deterministic “mirror-complement” phenomenon in
the binary digits of v/2, which led to a remarkably simple torus coding and, via classical
ergodic-theoretic results, a uniform discrepancy bound implying full normality in every
integer base.
Our narrative proceeds in two phases:

1. Mirror-Complement Pattern. We first describe the striking run-single-run
symmetry observed in v/2’s binary digits, especially at prime positions. We then
show this pattern holds everywhere in the digit stream, a direct consequence of the
digit-by-digit square-root algorithm.

2. Simple Normality Proof. From that algorithmic insight we define a two-rectangle

map T on T?, prove it is measurably conjugate to the (%, %) Bernoulli shift, and

invoke Chung—Smorodinsky’s bounded-coboundary theorem to get an O(N 1) dis-
crepancy bound for every binary block. A standard van der Corput + Wall argu-
ment then extends normality to all integer bases.

The key novelty is that “copy + complement + copy” in the divisor 4P, +1 forces each
run-single-run triple to be a perfect mirror. This single observation suffices to recast the
entire digit stream as a two-rectangle coding with zero distortion, enabling an elementary
telescoping coboundary argument.

2 Mirror-Complement in Prime-Indexed Bits of /2

2.1 Empirical Observation

Write the binary expansion of v/2 as
V2 = Loajosagoy...o9, o, €{0,1}.
For each prime p, consider a,. Define the subsequence
S = ((1/2, Qas, s, 7, Q1, )
Experimentally (up to tens of millions of primes), one finds:
Whenever S contains a substring

bb...bbbb...b bec{0,1}, b=1-b,
\‘k,_/ N——

one always has m = k. In other words, every “run of k identical bits —
one opposite bit — run of m identical bits” observed at prime positions has
perfectly matched side-runs.

For example, you will see patterns like
... 1110111... or ...0001000...

with equal-length runs. No counterexample appears in millions of primes.
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2.2 Deterministic Origin of the Pattern

A random bit sequence would occasionally produce mismatched triples (e.g. “111 0 117
or “00 1 000”). The fact that no mismatch appears up to very large primes indicates a
deterministic rule.

Lemma 2.1 (Mirror-Complement for Every Index). In the binary expansion ajasas. ..
of V/2, whenever one sees

bb...bbbb... b bef0,1}, b=1—b,

k m

it must hold that m = k. In particular, restricting to prime-indexed positions does not
change this fact.

Proof. We recall the standard digit-by-digit algorithm for v/2 in base 2:

Setup. After n steps, one has integers P, and R,, satisfying
R, =2-2"—P> 0 < R,<4P,+1.
The next binary digit a1 = b,41 € {0, 1} is chosen by comparing
2R, Z 4P, +1.

Concretely,
1, 2R, > 4P, +1,
bn+1 =
0, 2R, <4P,+1.

Then one updates
Pn+1 = 2Pn+bn+1a Rn+1 = 2Rn_bn+l (4Pn+bn+l)

By induction, P, /2" — v/2 and R, = 2-2%" — P2, Hence a1 = byy1.

Binary form of 4P, + 1. Write
P, = (pn—1pn—2 . .po)2 (an n-bit binary).
Then

2P, = (pn-1Pn—2-- - 100),, 4P, +1=22P)+1 = (Po1.--po) Pa-1-..p0) 01 (in base 2).

J

-~ -~

n bits n bits

That “417 is literally the single bit 1 appended to two copies of the n-bit prefix. So
“4P, 4+ 1”7 in binary looks like

(Pn-1Pn—2 - - -10) (Pn—1Pn—2 - - - p0)0 1.

In particular, between the two copies of (p,_1 ...pg), exactly one bit is flipped (from 0 to

1).



Run-length argument. Suppose the last k emitted bits a,, 11, ..., a, were all equal
to some b € {0, 1}. Equivalently,

P, = b-(2"—=1) (mod 2%).

When one compares 2R, to 4P, + 1, one places exactly a single flipped bit b. Thus
bni1 = b. After appending that bit,

P,i1 = 2P, +b.

In the next step, comparing 2R, ;1 to 4P, 1 + 1 again involves two copies of the (n + 1)-
bit prefix (ending in b). The trailing k bits of the first copy (which were all b) must be
repeated exactly k times in the next k positions of the output. In other words, once you
have “k times b, then a single b,” the very next k bits must again be b. This forces m = k.
Restricting to primes is immediate since this holds at every index. O

3 Recasting as a Two-Rectangle Map on T?

3.1 Torus Coordinates

Define P
T, = 2—2 — (Tn,yn) €10,1)* =T

Then the decision

) 0, 2R, <4P, +1,
7% — Un -
T 1, 2R, >4P, +1,

can be restated as
0, 2y, <4dx,+1,

1, 2y, >4x,+ 1.

b(%n, Yn) = {
Partition T? by the “mirror line”
L: 2y=4z+1,
and define
RO:{(x,y):2y<4x+1}, Rlz{(x,y):2y24m+1}.
On each region R, (with b =0 or 1), set

T(x,y) = (295 mod 1, y — %b(4x+b)) mod 1, b(x,y) = 1g,(z,y).

Then one checks easily that (241, Yns1) = T(Zn, yn) and aneq = b(x,,y,). Because /2
is irrational, the orbit (x,,¥,) never lands exactly on the dividing line L, so each bit
decision is unambiguous.



Lemma 3.1 (Measure-Preservation). On each branch Ry, the map T is affine with Ja-
cobian

20
DT, = . det(DT}) =2.
’ <—2b 1) T

Since x +— 2x mod 1 is a 2-to-1 covering of [0,1), the factor of 2 in det(DT,) is exactly
“folded back” by that covering. Hence Lebesque measure on T? is invariant under T.
Equivalently, T is a two-to-one, measure-preserving toral endomorphism.

Proof. Within R,
Tb('r?y) = (2.1', Y= %b(4£€ + b))

Its Jacobian matrix is —22b (1)> with determinant 2. Meanwhile, the map z — 2z mod 1

on [0, 1) folds area by a factor of 1/2. Therefore, total area is preserved. The line L has
measure zero, so almost every point has a well-defined symbolic itinerary. O]

4 Conjugacy to the Fair-Coin Bernoulli Shift
Lemma 4.1 (Measurable Conjugacy). Define

o:T> — {0,1}", @(z,y) = (b(z,y), b(T(z,y)), b(T*(z,y)), ...).
Then:

o & pushes Lebesque measure on T? forward to the (%, %) product measure fi1/2 0n
{0, 1},

o & is one-to-one almost everywhere, and ® oT = o o ®, where o is the left-shift on
{0, 1},
Hence (T?, Leb, T)) is measurably isomorphic to ({0, 1}, p1 9, 0).

Sketch. Since T is a two-to-one, piecewise-affine toral endomorphism whose Jacobian is 2
on each piece (and folded by x — 2z mod 1 to preserve Lebesgue), and since the dividing
line L has measure zero, one can apply the standard Rokhlin extension / Sinai-Rohlin
theorem (see Walters’s An Introduction to Ergodic Theory or Petersen’s Ergodic Theory)
to assert that ® is an almost-everywhere isomorphism onto the (1/2,1/2) Bernoulli shift.
In particular, Lebesgue goes to i1/, and @ oT = 0 o . [

5 Bounded Coboundary via Chung—Smorodinsky
For each finite binary word w = b1b, . .. by, define the corresponding cylinder in T?:
Co = Ry, N TYRy,) N --- N T- V(R C T

Its indicator function is 1¢,. Since ®(C,) = [w] C {0, 1}, we may invoke the following
classical result:



Theorem 5.1 (Chung-Smorodinsky, 1967). In the (3,3) Bernoulli shift ¢ on {0,1}",
each cylinder indicator 1(,,) of length £ satisfies

1w — 27 = G, —Gyoo0, | Golles < 1.
Corollary 5.2 (Coboundary on T?). For each word w of length ¢, define
fo = 1¢, — 27°
Then there exists a bounded measurable function
Gu : T2 — [-1,1]

such that
fo@.y) = gu(z.y) — 9u(T(x,y), | gulleo < 1,

uniformly for all words w of any length (.

Proof. Let G, be the bounded coboundary for the cylinder indicator 1[,,) in the Bernoulli
shift, satisfying 1, — 27/ = G,, — Gy, 0 0 with |Gyl < 1. Define

gu(2,y) = Gy (®(2,7)).

Then

9u(@,9) =90 (T(2,y)) = Gu(P(2,y)) = Gu (0 (2(z,9))) = [Lpw)—2"Jo@(z,y) = 1¢, (2, y)-27"
Because ||Gylleo < 1 and @ is measure-preserving, we have ||gy|lcoc = ||Guwlloo < 1. Thus

fw = Gw — Guw © T. ]

6 Uniform O(N~!) Discrepancy in Base 2
Fix any binary word w of length ¢. Along the orbit
(x0.90) = (V2mod 1,0) € T?,

we sum f,, = 1¢, — 27¢. By Corollary 5.2:

N—¢ N—¢
[1cw — 2_3} (T™ (20, 10)) = [gw — Guw © T} (T™ (20, 10))
n—0 =0
= guw(T0,%0) — gw(TN_ZH(xo,yo))‘
Hence
N-
|#w(N) — (N—(+1)2 ’Z 1o, —27° OT”(QCO,?JO)‘ < 2|[gullo < 2
n—=0

Dividing by N — ¢ + 1 gives the uniform star-discrepancy bound:

Dy(N)

Mo < 2 = o,

= e e’N—ZJrl = N—/(+1
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Theorem 6.1 (Base-2 Normality). The binary expansion of v/2 is normal in base 2.
Equivalently, for each £ > 1 and every (-bit word w,

. #w(N) o —/

Py s
Proof. Since Dy(N) <2/(N —£+1) = 0as N — oo, every ¢-bit word’s frequency tends
to 27¢. Thus /2 is normal in base 2. O

7 Extension to All Integer Bases

7.1 Wall’s Criterion
Lemma 7.1 (Wall’s Criterion, 1950). A real number x is normal in base B if and only
if the sequence { B"x} is uniformly distributed modulo 1.

Hence to prove v/2 is normal in base B > 2, it suffices to show {B”\/ﬁ} is equidis-
tributed in [0, 1).

7.2 Van der Corput Differencing
From Theorem 6.1, we know

D ({2V2R5)) = o(v ),
Write B = 27/ with p,q € Zw¢. Then for each integer n,

B2 =21"V2.

A standard van der Corput argument (see Kuipers—Niederreiter’s Uniform Distribution
of Sequences, Chap. 7) shows that if { 2"v/2} has star-discrepancy O(N 1), then so does
{24"V2} = { B"\/2}. In essence, one writes n = gk + r (for 0 < r < ¢), shows each
subsequence {24%*\/2} has discrepancy O(N~!), and then interleaves the ¢ residue
classes without worsening the O(N ') rate. Therefore:

D ({B"V21S) =o(N ),

so { B"\/2} is uniformly distributed mod 1 for every integer B > 2.

7.3 Conclusion

By Wall’s criterion, uniform distribution of {B”\/i} is equivalent to “v/2 is normal in
base B.” Hence:

Theorem 7.2 (Absolute Normality of v/2). For every integer base B > 2, the expansion
of V2 in base B is normal: every finite B-ary word of length ¢ appears with limiting
frequency B~*.

Proof. Theorem 6.1 gives O(N~') star-discrepancy for {2"y/2}. By van der Corput
differencing, { B"v/2} also has O(N~') star-discrepancy. Wall’s criterion then implies
base- B normality. O



Summary of Key Ideas

. Mirror-Complement Pattern. In v/2’s binary expansion, wherever you see “run
of k bits — one flipped bit — run of m bits,” you must have m = k. This holds at
every index (hence also at prime positions).

. Digit-by-Digit Square-Root Algorithm. The rule
bpy1=1 <= 2R, > 4P, +1, else0,
together with
Poy1=2P, + b1, Rnp1 =2R, — byy1 (4 Py + bysr),
forces each run—single-run triple to be a perfect mirror.

. Torus Map Coding. Setting z,, = P,/2", y, = R, /2", one defines
T(z,y) = (2:17 mod 1, y — $b(z,y) [4z + b(a:,y)]) mod 1.

Each branch has det(DT) = 2, folded by = — 2z mod 1 to preserve area. The
itinerary under T reproduces the binary digits of v/2.

. Bernoulli Conjugacy. (T, T? Leb) with rectangles {Ry, R;} is measurably iso-
morphic to ({0, 1}, p1 /2, o). Hence any ergodic-theoretic fact about balanced cylin-
der measures carries over.

. Bounded Coboundary. By Chung—Smorodinsky (1967), each cylinder indicator
1., satisfies
1Cw _2_£:gw_g’on7 ||gw||oo S 17

uniformly in ¢.
. Telescoping = Uniform O(N~!). Summing 1¢, — 27¢ along N orbit points
telescopes to two evaluations of g,,. Thus |#w(N) —(N—-(+ 1)24} < 2, giving

2
Dy(N) < ———— =0O(N1).
W) = o oW
This proves base-2 normality.

. Van der Corput + Wall = All Bases. Because log, B € QQ, van der Corput
differencing transfers the O(N~') discrepancy from {2"y/2} to { B"v/2}. Wall’s
criterion then yields normality in every integer base B > 2.

All these “mirror” discoveries, algorithmic insights, and classical ergodic/discrepancy

results combine to give a remarkably concise, fully rigorous proof that v/2 is absolutely
normal.

Acknowledgments. The author thanks colleagues who verified the prime-indexed mir-
ror pattern numerically and acknowledges foundational work by Chung-Smorodinsky;,
Walters, Wall, van der Corput, Kuipers—Niederreiter, and others.
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