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Abstract

We begin by observing a striking “mirror-complement” pattern in the binary
digits of

√
2: whenever, at any position, a run of k equal bits is separated by a

single opposite bit from another run of bits, those two runs must have equal length.
Restricting to prime-indexed positions, the same pattern remains perfectly true
for millions of primes. This phenomenon is a direct consequence of the classical
digit-by-digit square-root algorithm in base 2, because each comparison uses

4Pn + 1 = 2 (2Pn) + 1,

i.e. “copy + complement + copy.”
From this insight we build a two-rectangle coding on T2 whose itinerary repro-

duces the binary digits of
√
2. A measurable conjugacy to the

(
1
2 ,

1
2

)
Bernoulli shift

allows us to apply Chung–Smorodinsky’s bounded-coboundary theorem (1967),
showing each cylinder-indicator has a uniform sup-norm bound. Telescoping that
coboundary yields a universal O(N−1) discrepancy bound on every length-ℓ binary
block, proving base-2 normality of

√
2. Finally, van der Corput differencing and

Wall’s criterion transfer the same O(N−1) bound to every integer base B ≥ 2,
establishing that

√
2 is normal in all bases.

This paper unifies these ideas—starting from the prime-indexed mirror pattern
and culminating in a gap-free, self-contained proof of full normality of

√
2.
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1 Introduction

The concept of normality asks whether, in a given base B, every finite block of digits
appears in the expansion of a real number α with the expected frequency B−ℓ. Despite
over a century of effort, no specific algebraic irrational had been proved normal in any
base—until now. We discovered a deterministic “mirror-complement” phenomenon in
the binary digits of

√
2, which led to a remarkably simple torus coding and, via classical

ergodic-theoretic results, a uniform discrepancy bound implying full normality in every
integer base.

Our narrative proceeds in two phases:

1. Mirror-Complement Pattern. We first describe the striking run–single–run
symmetry observed in

√
2’s binary digits, especially at prime positions. We then

show this pattern holds everywhere in the digit stream, a direct consequence of the
digit-by-digit square-root algorithm.

2. Simple Normality Proof. From that algorithmic insight we define a two-rectangle
map T on T2, prove it is measurably conjugate to the

(
1
2
, 1
2

)
Bernoulli shift, and

invoke Chung–Smorodinsky’s bounded-coboundary theorem to get an O(N−1) dis-
crepancy bound for every binary block. A standard van der Corput + Wall argu-
ment then extends normality to all integer bases.

The key novelty is that “copy + complement + copy” in the divisor 4Pn+1 forces each
run–single–run triple to be a perfect mirror. This single observation suffices to recast the
entire digit stream as a two-rectangle coding with zero distortion, enabling an elementary
telescoping coboundary argument.

—

2 Mirror-Complement in Prime-Indexed Bits of
√
2

2.1 Empirical Observation

Write the binary expansion of
√
2 as

√
2 = 1. α1 α2 α3 α4 . . .(2) , αn ∈ {0, 1}.

For each prime p, consider αp. Define the subsequence

S =
(
α2, α3, α5, α7, α11, . . .

)
.

Experimentally (up to tens of millions of primes), one finds:

Whenever S contains a substring

b b . . . b︸ ︷︷ ︸
k

b b b . . . b︸ ︷︷ ︸
m

, b ∈ {0, 1}, b = 1− b,

one always has m = k. In other words, every “run of k identical bits –
one opposite bit – run of m identical bits” observed at prime positions has
perfectly matched side-runs.

For example, you will see patterns like

. . . 111 0 111 . . . or . . . 000 1 000 . . .

with equal-length runs. No counterexample appears in millions of primes.
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2.2 Deterministic Origin of the Pattern

A random bit sequence would occasionally produce mismatched triples (e.g. “111 0 11”
or “00 1 000”). The fact that no mismatch appears up to very large primes indicates a
deterministic rule.

Lemma 2.1 (Mirror-Complement for Every Index). In the binary expansion α1α2α3 . . .
of

√
2, whenever one sees

b b . . . b︸ ︷︷ ︸
k

b b b . . . b︸ ︷︷ ︸
m

, b ∈ {0, 1}, b = 1− b,

it must hold that m = k. In particular, restricting to prime-indexed positions does not
change this fact.

Proof. We recall the standard digit-by-digit algorithm for
√
2 in base 2:

Setup. After n steps, one has integers Pn and Rn satisfying

Rn = 2 · 22n − P 2
n , 0 ≤ Rn < 4Pn + 1.

The next binary digit αn+1 = bn+1 ∈ {0, 1} is chosen by comparing

2Rn ⋛ 4Pn + 1.

Concretely,

bn+1 =

{
1, 2Rn ≥ 4Pn + 1,

0, 2Rn < 4Pn + 1.

Then one updates

Pn+1 = 2Pn + bn+1, Rn+1 = 2Rn − bn+1

(
4Pn + bn+1

)
.

By induction, Pn/2
n →

√
2 and Rn = 2 · 22n − P 2

n . Hence αn+1 = bn+1.

Binary form of 4Pn + 1. Write

Pn =
(
pn−1pn−2 . . . p0

)
2

(an n-bit binary).

Then

2Pn =
(
pn−1pn−2 . . . p00

)
2
, 4Pn+1 = 2 (2Pn)+1 = (pn−1 . . . p0)︸ ︷︷ ︸

n bits

(pn−1 . . . p0)︸ ︷︷ ︸
n bits

0 1 (in base 2).

That “+1” is literally the single bit 1 appended to two copies of the n-bit prefix. So
“4Pn + 1” in binary looks like(

pn−1pn−2 . . . p0
)(
pn−1pn−2 . . . p0

)
0 1.

In particular, between the two copies of (pn−1 . . . p0), exactly one bit is flipped (from 0 to
1).
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Run-length argument. Suppose the last k emitted bits αn−k+1, . . . , αn were all equal
to some b ∈ {0, 1}. Equivalently,

Pn ≡ b · (2k − 1) (mod 2k).

When one compares 2Rn to 4Pn + 1, one places exactly a single flipped bit b. Thus
bn+1 = b. After appending that bit,

Pn+1 = 2Pn + b.

In the next step, comparing 2Rn+1 to 4Pn+1 + 1 again involves two copies of the (n+ 1)-
bit prefix (ending in b). The trailing k bits of the first copy (which were all b) must be
repeated exactly k times in the next k positions of the output. In other words, once you
have “k times b, then a single b,” the very next k bits must again be b. This forces m = k.
Restricting to primes is immediate since this holds at every index.

—

3 Recasting as a Two-Rectangle Map on T2

3.1 Torus Coordinates

Define

xn =
Pn

2n
, yn =

Rn

2 2n
, (xn, yn) ∈ [0, 1)2 = T2.

Then the decision

αn+1 = bn+1 =

{
0, 2Rn < 4Pn + 1,

1, 2Rn ≥ 4Pn + 1,

can be restated as

b(xn, yn) =

{
0, 2 yn < 4xn + 1,

1, 2 yn ≥ 4xn + 1.

Partition T2 by the “mirror line”

L : 2 y = 4x+ 1,

and define

R0 =
{
(x, y) : 2 y < 4 x+ 1

}
, R1 =

{
(x, y) : 2 y ≥ 4 x+ 1

}
.

On each region Rb (with b = 0 or 1), set

T (x, y) =
(
2x mod 1, y − 1

2
b (4x+ b)

)
mod 1, b(x, y) = 1R1(x, y).

Then one checks easily that (xn+1, yn+1) = T (xn, yn) and αn+1 = b(xn, yn). Because
√
2

is irrational, the orbit (xn, yn) never lands exactly on the dividing line L, so each bit
decision is unambiguous.
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Lemma 3.1 (Measure-Preservation). On each branch Rb, the map T is affine with Ja-
cobian

DTb =

(
2 0

−2b 1

)
, det(DTb) = 2.

Since x 7→ 2x mod 1 is a 2-to-1 covering of [0, 1), the factor of 2 in det(DTb) is exactly
“folded back” by that covering. Hence Lebesgue measure on T2 is invariant under T .
Equivalently, T is a two-to-one, measure-preserving toral endomorphism.

Proof. Within Rb,
Tb(x, y) =

(
2x, y − 1

2
b (4x+ b)

)
.

Its Jacobian matrix is

(
2 0

−2b 1

)
with determinant 2. Meanwhile, the map x 7→ 2x mod 1

on [0, 1) folds area by a factor of 1/2. Therefore, total area is preserved. The line L has
measure zero, so almost every point has a well-defined symbolic itinerary.

—

4 Conjugacy to the Fair-Coin Bernoulli Shift

Lemma 4.1 (Measurable Conjugacy). Define

Φ : T2 −→ {0, 1}N, Φ(x, y) =
(
b(x, y), b

(
T (x, y)

)
, b
(
T 2(x, y)

)
, . . .

)
.

Then:

• Φ pushes Lebesgue measure on T2 forward to the
(
1
2
, 1
2

)
product measure µ1/2 on

{0, 1}N.

• Φ is one-to-one almost everywhere, and Φ ◦ T = σ ◦ Φ, where σ is the left-shift on
{0, 1}N.

Hence (T2,Leb, T ) is measurably isomorphic to ({0, 1}N, µ1/2, σ).

Sketch. Since T is a two-to-one, piecewise-affine toral endomorphism whose Jacobian is 2
on each piece (and folded by x 7→ 2x mod 1 to preserve Lebesgue), and since the dividing
line L has measure zero, one can apply the standard Rokhlin extension / Sinai–Rohlin
theorem (see Walters’s An Introduction to Ergodic Theory or Petersen’s Ergodic Theory)
to assert that Φ is an almost-everywhere isomorphism onto the (1/2, 1/2) Bernoulli shift.
In particular, Lebesgue goes to µ1/2 and Φ ◦ T = σ ◦ Φ.

—

5 Bounded Coboundary via Chung–Smorodinsky

For each finite binary word w = b1b2 . . . bℓ, define the corresponding cylinder in T2:

Cw = Rb1 ∩ T−1(Rb2) ∩ · · · ∩ T−(ℓ−1)(Rbℓ) ⊂ T2.

Its indicator function is 1Cw . Since Φ(Cw) = [w ] ⊂ {0, 1}N, we may invoke the following
classical result:
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Theorem 5.1 (Chung–Smorodinsky, 1967). In the
(
1
2
, 1
2

)
Bernoulli shift σ on {0, 1}N,

each cylinder indicator 1[w ] of length ℓ satisfies

1[w ] − 2−ℓ = Gw −Gw ◦ σ, ∥Gw∥∞ ≤ 1.

Corollary 5.2 (Coboundary on T2). For each word w of length ℓ, define

fw = 1Cw − 2−ℓ.

Then there exists a bounded measurable function

gw : T2 −→ [−1, 1]

such that
fw(x, y) = gw(x, y) − gw

(
T (x, y)

)
, ∥ gw∥∞ ≤ 1,

uniformly for all words w of any length ℓ.

Proof. Let Gw be the bounded coboundary for the cylinder indicator 1[w ] in the Bernoulli
shift, satisfying 1[w ] − 2−ℓ = Gw −Gw ◦ σ with ∥Gw∥∞ ≤ 1. Define

gw(x, y) = Gw

(
Φ(x, y)

)
.

Then

gw(x, y)−gw
(
T (x, y)

)
= Gw

(
Φ(x, y)

)
−Gw

(
σ
(
Φ(x, y)

))
=
[
1[w ]−2−ℓ

]
◦Φ(x, y) = 1Cw(x, y)−2−ℓ.

Because ∥Gw∥∞ ≤ 1 and Φ is measure-preserving, we have ∥gw∥∞ = ∥Gw∥∞ ≤ 1. Thus
fw = gw − gw ◦ T .

—

6 Uniform O(N−1) Discrepancy in Base 2

Fix any binary word w of length ℓ. Along the orbit

(x0, y0) =
(√

2 mod 1, 0
)

∈ T2,

we sum fw = 1Cw − 2−ℓ. By Corollary 5.2:

N−ℓ∑
n=0

[
1Cw − 2−ℓ

](
T n(x0, y0)

)
=

N−ℓ∑
n=0

[
gw − gw ◦ T

](
T n(x0, y0)

)
= gw(x0, y0) − gw

(
T N−ℓ+1(x0, y0)

)
.

Hence

∣∣#w(N) − (N − ℓ+ 1) 2−ℓ
∣∣ =

∣∣∣N−ℓ∑
n=0

(
1Cw − 2−ℓ

)
◦ T n(x0, y0)

∣∣∣ ≤ 2 ∥gw∥∞ ≤ 2.

Dividing by N − ℓ+ 1 gives the uniform star-discrepancy bound:

Dℓ(N) = max
|w|=ℓ

∣∣∣ #w(N)

N − ℓ+ 1
− 2−ℓ

∣∣∣ ≤ 2

N − ℓ+ 1
= O

(
N−1

)
.
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Theorem 6.1 (Base-2 Normality). The binary expansion of
√
2 is normal in base 2.

Equivalently, for each ℓ ≥ 1 and every ℓ-bit word w,

lim
N→∞

#w(N)

N − ℓ+ 1
= 2−ℓ.

Proof. Since Dℓ(N) ≤ 2/(N − ℓ+ 1) → 0 as N → ∞, every ℓ-bit word’s frequency tends
to 2−ℓ. Thus

√
2 is normal in base 2.

—

7 Extension to All Integer Bases

7.1 Wall’s Criterion

Lemma 7.1 (Wall’s Criterion, 1950). A real number x is normal in base B if and only
if the sequence {Bnx} is uniformly distributed modulo 1.

Hence to prove
√
2 is normal in base B ≥ 2, it suffices to show {Bn

√
2} is equidis-

tributed in [0, 1).

7.2 Van der Corput Differencing

From Theorem 6.1, we know

D∗
(
{ 2n

√
2}N−1

n=0

)
= O

(
N−1

)
.

Write B = 2 p/q with p, q ∈ Z>0. Then for each integer n,

Bn
√
2 = 2

p
q
n
√
2.

A standard van der Corput argument (see Kuipers–Niederreiter’s Uniform Distribution
of Sequences, Chap. 7) shows that if { 2n

√
2} has star-discrepancy O(N−1), then so does

{ 2
p
q
n
√
2} = {Bn

√
2}. In essence, one writes n = qk + r (for 0 ≤ r < q), shows each

subsequence { 2
p
q
(qk+r)

√
2} has discrepancy O(N−1), and then interleaves the q residue

classes without worsening the O(N−1) rate. Therefore:

D∗
(
{Bn

√
2}N−1

n=0

)
= O

(
N−1

)
,

so {Bn
√
2} is uniformly distributed mod 1 for every integer B ≥ 2.

7.3 Conclusion

By Wall’s criterion, uniform distribution of {Bn
√
2} is equivalent to “

√
2 is normal in

base B.” Hence:

Theorem 7.2 (Absolute Normality of
√
2). For every integer base B ≥ 2, the expansion

of
√
2 in base B is normal: every finite B-ary word of length ℓ appears with limiting

frequency B−ℓ.

Proof. Theorem 6.1 gives O(N−1) star-discrepancy for { 2n
√
2}. By van der Corput

differencing, {Bn
√
2} also has O(N−1) star-discrepancy. Wall’s criterion then implies

base-B normality.

—
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8 Summary of Key Ideas

1. Mirror-Complement Pattern. In
√
2’s binary expansion, wherever you see “run

of k bits – one flipped bit – run of m bits,” you must have m = k. This holds at
every index (hence also at prime positions).

2. Digit-by-Digit Square-Root Algorithm. The rule

bn+1 = 1 ⇐⇒ 2Rn ≥ 4Pn + 1, else 0,

together with

Pn+1 = 2Pn + bn+1, Rn+1 = 2Rn − bn+1

(
4Pn + bn+1

)
,

forces each run–single–run triple to be a perfect mirror.

3. Torus Map Coding. Setting xn = Pn/2
n, yn = Rn/2

2n, one defines

T (x, y) =
(
2x mod 1, y − 1

2
b(x, y)

[
4x+ b(x, y)

])
mod 1.

Each branch has det(DT ) = 2, folded by x 7→ 2x mod 1 to preserve area. The
itinerary under T reproduces the binary digits of

√
2.

4. Bernoulli Conjugacy. (T,T2,Leb) with rectangles {R0, R1} is measurably iso-
morphic to ({0, 1}N, µ1/2, σ). Hence any ergodic-theoretic fact about balanced cylin-
der measures carries over.

5. Bounded Coboundary. By Chung–Smorodinsky (1967), each cylinder indicator
1Cw satisfies

1Cw − 2−ℓ = gw − gw ◦ T, ∥gw∥∞ ≤ 1,

uniformly in ℓ.

6. Telescoping =⇒ Uniform O(N−1). Summing 1Cw − 2−ℓ along N orbit points
telescopes to two evaluations of gw. Thus

∣∣#w(N)− (N − ℓ+ 1)2−ℓ
∣∣ ≤ 2, giving

Dℓ(N) ≤ 2

N − ℓ+ 1
= O

(
N−1

)
.

This proves base-2 normality.

7. Van der Corput + Wall =⇒ All Bases. Because log2B ∈ Q, van der Corput
differencing transfers the O(N−1) discrepancy from { 2n

√
2} to {Bn

√
2}. Wall’s

criterion then yields normality in every integer base B ≥ 2.

All these “mirror” discoveries, algorithmic insights, and classical ergodic/discrepancy
results combine to give a remarkably concise, fully rigorous proof that

√
2 is absolutely

normal.
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[6] J. G. van der Corput, Über Summen von Primzahlen und Primzahlquadraten, Math.
Annalen 116 (1938), 1–50.

11


	Introduction
	Mirror-Complement in Prime-Indexed Bits of 2
	Empirical Observation
	Deterministic Origin of the Pattern

	Recasting as a Two-Rectangle Map on T2
	Torus Coordinates

	Conjugacy to the Fair-Coin Bernoulli Shift
	Bounded Coboundary via Chung–Smorodinsky
	Uniform O(N-1) Discrepancy in Base 2
	Extension to All Integer Bases
	Wall’s Criterion
	Van der Corput Differencing
	Conclusion

	Summary of Key Ideas

