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Abstract

We present a new, specific primality test for numbers of the form N = 4p™ — 1,
where p is an odd prime and n > 1. The test is a generalization of the Lucas-
Lehmer test for Mersenne numbers and relies on a sequence defined by Dickson
polynomials. We prove that, under a certain condition, N is prime if and only if
the n-th term of a specific sequence is congruent to zero modulo N. This provides
a deterministic primality test for this family of numbers.

1 Introduction and Main Result

The Lucas-Lehmer test provides an efficient primality test for Mersenne numbers (28 —1).
This work extends the principle of that test to a different family of numbers. We define a
sequence based on Dickson polynomials and use it to establish a necessary and sufficient
condition for the primality of N = 4p™ — 1.

Definition 1.1 (Dickson Polynomials). The k-th Dickson polynomial of the first kind,
denoted Dy(z,a), is defined by the recurrence relation

Dyio(x,a) = xDpyq(z,a) — aDy(z, a)
with initial conditions Dy(z,a) = 2 and D;(x,a) = x.
A key property of these polynomials is that for z = u + a/u, we have Dy(z,a) =

ub + (afu)k.
We define a sequence {S;} as follows:

S(] = 6, SZ = Dp(Sz'—la 1) for 7 2 1. (1)
Our main result is the following theorem.

Theorem 1.2 (Main Theorem). Let p be an odd prime and n > 1. Let N = 4p™ — 1. If
the sequence {S;} is defined as above and S,—1 # 0 (mod N), then

N is prime <= S, =0 (mod N).



2 Properties of the Sequence

To prove the main theorem, we first establish a closed-form expression for the terms of
the sequence {S;}.

Lemma 2.1. The terms of the sequence {S;} are given by
Si=(V2+1)¥ + (V2 -1)¥,
Proof. We proceed by induction on 7. For i = 0, we have
(V2+1)2+ (V212 =(24+2V24+ 1)+ (2-2V2+1) =3+2V24+3-2V/2=6=S,.

So the base case holds. ,

Now, assume the formula holds for S;_;. Let u = (v/2 + D% Then v = (V2 +
DY = (/2 - 1)%"". By the inductive hypothesis, S;_; = u 4+ u™".

Using the property of Dickson polynomials with a = 1, we have:

Si = Dp(Si—1,1) = Dy(u + u 1) =u’+u™".

Substituting the expression for u:

S; = <(\/§+ 1)21”“1)]0 i+ ((ﬁ - 1)21’2"1)7’
=(V2+ 1) + (V217
This completes the induction. O
Lemma 2.2. For N = 4p™ — 1, where p is an odd prime, the Jacobi symbol (%) =—1.

Proof. Since p is an odd prime, p is congruent to 1,3,5, or 7 (mod 8). Its powers p"
will also be odd. Let p™ = 2k + 1 for some integer k¥ > 1. Then N =42k +1) —1 =
8k +4 —1 = 8k + 3. By the properties of the Jacobi symbol, for any integer m = 3

(mod 8), we have (2) = —1. Therefore, (&) = —1. O

Remark 2.3. Lemma 2.2 implies that 2 is a quadratic non-residue modulo any prime
factor of N. This justifies performing arithmetic in the finite field extension Zy(v/2),
which is isomorphic to Fy2 if N is prime.

3 Proof of the Main Theorem

Let « = v2+ 1. Then a! = /2 — 1. The sequence term S, can be written as
S, =a®" +a %",

3.1 Proof of Necessity (=)

Assume N = 4p™ — 1 is a prime number. We must show that S, =0 (mod N).
We work in the finite field Zy(v/2) =2 Fy2. We use the Frobenius automorphism,
which states that ¥ = z for x € Zy and (a + bv/2)Y = aV + bV (v/2)Y (mod N). By



Fermat’s Little Theorem, a”¥ = a (mod N) and b = b (mod N). By Euler’s criterion
and Lemma 2.2:

(V2)N = 2N/2 = oW-D/2/5 = <%) V2=-1-V/2=—-v2 (mod N).

Applying this to a = 1 4+ v/2:
N =1+V2)N=1"+ V2V =1-Vv2 (mod N).

Note that 1 — /2 = —(\/5 — 1) = —a~!. So we have the key relation oY = —a™!
(mod N).

Now, we use this to evaluate oV 1

N =a-aV=a-(—a)=-1 (mod N).

Since N + 1 = (4p" — 1) + 1 = 4p™, we have:

(o

a® = -1 (mod N).

This can be rewritten as a*" +1 =0 (mod N). Since « is invertible, we can divide by
2p™.
P
o +a " =0 (mod N).

By Lemma 2.1, the left side is exactly S,,. Therefore, S,, =0 (mod N).

3.2 Proof of Sufficiency (<)

Assume S, =0 (mod N) and S,,_; Z 0 (mod N). We must show that N is prime.

Let ¢ be any prime divisor of N. All congruences modulo N must also hold modulo
q. The condition S,, = 0 (mod ¢) means a?*" + a~?" =0 (mod ¢). Multiplying by a*"
yields a®" +1 =0 (mod ¢), which implies:

(o

o = -1 (mod q). (2)

Squaring this gives:
a®" =1 (mod q). (3)

Let k = ord,(a) be the order of o in the multiplicative group of the field Z,(v/2).
From (3), k£ must divide 8p". From (2), k cannot divide 4p™. This implies that the highest
power of 2 dividing k is exactly 2% = 8.

Now consider the condition S,—1 # 0 (mod N), which implies S,,-1 # 0 (mod q).
This means o +a 2" £ 0 (mod ¢), which implies a*" " # —1 (mod ¢). This tells
us that k does not divide 8p"~1. If it did, then since we know vy(k) = 3, k would divide
8p"~! but not 4p™~!, which would mean a*" "' = —1 (mod ¢). This is a contradiction.

So, the order k divides 8p™ but does not divide 8p"~!. This means that the highest
power of p dividing £ must be p". Combining our findings, the order of a modulo ¢ is
exactly k = 8p™.

By Lagrange’s theorem, the order of an element must divide the order of the group.
The group is (Z,(+/2))*, which has order ¢> — 1. Therefore, we must have 8p™ | (¢*> — 1).

Now, suppose for the sake of contradiction that N is composite. Then N must have
a prime factor ¢ such that ¢ < v/N. This leads to ¢> < N = 4p" — 1.

3



From 8p™ | (¢*> — 1), we can write ¢* — 1 = m - 8" for some positive integer m > 1.
This gives ¢ = 8mp™ + 1.
Combining the two inequalities for ¢*:

Smp" +1 <4p" —1

8mp" < 4p" — 2
pr—-2 1 1

ME g T3
Since p > 3 and n > 1, the term 1/(4p™) is positive. The inequality implies m < 1/2.
However, m must be a positive integer. This is a contradiction.
The assumption that N has a prime factor ¢ < v/N must be false. This means N has
no prime factors other than itself, and therefore N must be prime. This completes the
proof of the theorem. O

4 Conclusion

The theorem provides a deterministic primality test for the entire family of numbers
N = 4p"™ — 1. This result is an elegant instance of the general theory of Lucas-Lehmer
type tests, which have been developed for numbers of the form A - B™ + 1. The specific
choice of the base sequence (Sy = 6) provides the necessary properties for the argument to
hold for this particular number form. This demonstrates how a general number-theoretic
framework can be applied to produce a simple and definitive test for a specific case.



