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Abstract

We introduce a structural decomposition framework for perfect numbers, based on
additive and multiplicative symmetries among their proper divisors. Under this model,
we derive a system of proportional identities that all known even perfect numbers sat-
isfy. By analyzing the integer conditions required for recursive consistency in the divisor
sequences, we prove that such a structure necessarily implies the presence of the even
divisor 2, thereby excluding the possibility of an odd perfect number conforming to this
model. Although primarily developed for perfect numbers, the additive portion of the
framework may also encompass semiperfect numbers, which share similar but relaxed
divisor-sum properties. Our results support the long-standing conjecture that no odd
perfect numbers exist and suggest a broader structure for divisor-based classification
of integers.

1. Historical Overview of Perfect Numbers

The study of perfect numbers has captivated mathematicians for over two millennia. A
perfect number is a positive integer equal to the sum of its proper divisors, excluding itself.

1.1 Ancient Foundations: Euclid and Nicomachus The notion of perfect numbers
dates back to ancient Greece. In Elements, Book IX, Euclid provided a construction for even
perfect numbers[1]:

n = 2p−1(2p − 1),

where 2p−1 must be a prime, now known as a Mersenne prime. Later, Nicomachus of Gerasa
(1st century CE) discussed perfect numbers such as 6, 28, 496, and 8128, embedding them
in numerological contexts[2].
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1.2 Renaissance and Enlightenment Era: Mersenne and Euler In the 17th cen-
tury, Marin Mersenne compiled a list of potential primes of the form 2p − 1, known as
Mersenne primes. Leonhard Euler, in the 18th century, proved that all even perfect numbers
must be of Euclid’s form, showing that[3][4]:

If n is even and perfect, then n = 2p−1(2p − 1), where 2p − 1 is prime.

1.3 Modern Number Theory: Search for Odd Perfect Numbers Despite extensive
effort, no odd perfect number has been found. Several important results include:

• Touchard (1953): An odd perfect number must be of the form 12k + 1 or 36k + 9[5].

• Nielsen (2007): Any odd perfect number must have at least 75 prime factors[6].

• Ochem and Rao (2012): Raised this lower bound to 101 distinct prime factors[7].

1.4 Computational Era: GIMPS and Large Perfect Numbers Modern searches
are powered by distributed computing through the GIMPS (Great Internet Mersenne Prime
Search) project. As of 2024, 51 even perfect numbers have been discovered, each associated
with a known Mersenne prime. No odd perfect number has yet been identified[8].

2. Structural Model and Integer Constraints of

Perfect Numbers

Definition 2.1. A natural number N ∈ N is called perfect if the sum of its proper divisors
equals the number itself [9]:

σ(N)−N = N or equivalently, σ(N) = 2N,

where σ(N) denotes the sum-of-divisors function.

Lemma 2.1 (Additive Decomposition). Let N be a perfect number. Then its proper divisors
can be partitioned into two strictly increasing sequences:

1 < a1 < a2 < · · · < ak < b1 < b2 < · · · < bk < N,

such that the sum of all these divisors equals N:

1 + a1 + a2 + · · ·+ ak + b1 + b2 + · · ·+ bk = N. (2.1)

Theorem 2.1 (Multiplicative Symmetry). Under the decomposition above, the following
identity must also hold:

akb1 = ak−1b2 = · · · = a1bk = N. (2.2)

Figure 1 shows the equation (2.2)
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Figure 1: Divisors for N

Lemma 2.2 (Recursive Proportional Relations). To ensure compatibility between equations
(2.1) and (2.2), we require that:

1 + a1 + · · ·+ ak + b1 + · · ·+ bk−1 = αbk (2.3)

1 + a1 + · · ·+ ak + b1 + · · ·+ bk−2 = βbk−1 (2.4)

1 + a1 + · · ·+ ak + b1 + · · ·+ bk−3 = γbk−2 (2.5)

...

where α, β, γ, . . . ∈ N are proportional constants.

Proof. For equation (2.3), if we take the left-hand side of equation (2.1) and exclude the term
bk, then making the remaining sum a multiple of bk, as in (2.3), ensures that the identity
a1 · bk = N in equation (2.2) holds. That is,

α · bk + bk = N ⇒ (α + 1)bk = N, (2.6)

which confirms that N is a multiple of bk.
Similarly, for equation (2.4), if we exclude bk−1 from the left-hand side of (2.3), and make

the remaining terms a multiple of bk−1, the identity a2 · bk−1 = N in (2.2) can be satisfied.
That is,

β · bk−1 + bk−1 = αbk ⇒ (β + 1)bk−1 = αbk = α
N

α + 1
. (2.7)

For equation (2.5), excluding bk−2 from the left-hand side of (2.4), and expressing the
remaining terms as a multiple of bk−2, leads to the identity a3 · bk−2 = N . Thus,

γ · bk−2 + bk−2 = βbk−1 ⇒ (γ + 1)bk−2 = βbk−1 = αβ
N

α + 1

1

β + 1
. (2.8)

This logic can be continued recursively, producing a consistent system of proportional
relations that ensure all identities in equation (2.2) are satisfied.

Remark 2.1. These identities ensure that removing each bj from the additive decomposition
yields an integer multiple of bj, thereby aligning with the multiplicative identity in (2.2).
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Theorem 2.2 (Integer Consistency and Evenness). If N satisfies the structural system in
(2.6)–(2.8), then the elements ai are defined recursively as:

a1 = α + 1

a2 =
(β + 1)(α + 1)

α

a3 =
(γ + 1)(β + 1)(α + 1)

αβ
...

These expressions are integers only when α = β = γ = · · · = 1. Therefore, a1 = 2, implying:

2 | N.

Hence, any such perfect number must be even.

Proof. By comparing equation (2.6) with equation (2.2), a1bk = N , we obtain:

a1 = α + 1

By comparing equation (2.7) with equation (2.2), a2bk−1 = N , we obtain:

a2 =
(β + 1)(α + 1)

α

By comparing equation (2.8) with equation (2.2), a3bk−2 = N , we obtain:

a3 =
(γ + 1)(β + 1)(α + 1)

αβ

Since a2 must be an integer, the expression α+1
α

must also be an integer. This condition
holds if and only if α = 1.

Similarly, for a3 to be an integer, β+1
β

must be an integer, which implies β = 1.
The same reasoning applies to the remaining terms as well.

Remark 2.2. In order to further clarify the conclusion that α = β = γ = · · · = 1, we
now provide an illustrative example with additional explanation. Consider the following
structural system:

1 + a1 + a2 + b1 + b2 = N (1)

a2 · b1 = a1 · b2 = N (2)

1 + a1 + a2 + b1 = α · b2 (3)

1 + a1 + a2 = β · b1 (4)

Under this system, we derive:
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a1 = 1 + α (5)

a2 =
(1 + α)(1 + β)

α
(6)

Now substituting (5) and (6) into equation (4), we obtain:

1 + 1 + α +
(1 + α)(1 + β)

α
= β · b1 (7)

Or equivalently,

b1 =
2 + α

β
+

(1 + α)(1 + β)

α · β
(8)

From equation (8), observe that the term

(1 + α)(1 + β)

α · β

is not an integer unless α = β = 1. Otherwise, b1 fails to be an integer.
Since b1 must be an integer to satisfy equations (1) and (3), and it is directly involved in

the computation of b2 andN , any non-integer value of b1 propagates inconsistency throughout
the structure.

Therefore, the only values of α and β that allow all variables a1, a2, b1, b2, and N to
remain integers are:

α = β = 1

This confirms that the integer structure of the model is strictly preserved only under this
unique assignment.

3. Nonexistence of Odd Perfect Numbers Under This

Model

Theorem 3.1 (Exclusion of Odd Perfect Numbers). If a perfect number N satisfies the
structural decomposition defined by equations (2.1)–(2.5), then N must be even. Thus, no
odd perfect number can satisfy this structure.

Proof. From Theorem 2.2 , the only valid integer solutions occur when all proportional
constants are 1. This leads to a1 = 2. Since a1 | N , and a1 = 2, it follows that 2 | N .
Therefore, N must be even.

Assuming the structure is a necessary property of all perfect numbers, the existence of an
odd perfect number would contradict this derived evenness, leading to a contradiction.

Remark 3.1. This result provides a structural explanation for why no odd perfect num-
bers have been found, and if the decomposition model holds universally, it establishes the
nonexistence of odd perfect numbers.
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Remark 3.2. The decomposition model presented here, while developed for perfect numbers,
may also be adaptable to semiperfect numbers, as it is based on additive divisor struc-
tures. However, the strict multiplicative symmetry conditions used to eliminate odd perfect
numbers may not hold for such generalized cases.

4. Conclusion

In this work, we proposed a structural decomposition model for perfect numbers, built on
the additive arrangement and multiplicative symmetry of their proper divisors. The model
defines two subsets of divisors, {ai} and {bj}, linked through both a complete additive sum
and recursive multiplicative identities. Specifically, identities such as ak · b1 = ak−1 · b2 =
· · · = a1 · bk = N enforce a symmetry that strongly constrains the form of N .

Through symbolic derivation and analysis, we demonstrated that the resulting recursive
formulae yield integer values for the ai only when all proportionality constants α, β, γ, . . . are
equal to 1. This leads to a1 = 2, and thus 2 | N , proving that any number satisfying the full
structure must be even. Consequently, no odd number can satisfy the perfect number struc-
ture as defined herein, supporting the long-standing conjecture that odd perfect numbers do
not exist.

Remark 3.3. Although this model was originally formulated for perfect numbers, its additive
structure—particularly the identity

1 + a1 + a2 + · · ·+ ak + b1 + b2 + · · ·+ bk = N

—may naturally apply to semiperfect numbers as well. These are numbers for which a subset
of proper divisors sums exactly to N , without requiring full multiplicative symmetry[10].
Future work could explore whether relaxed forms of our recursive conditions can be adapted
to characterize semiperfect or abundant numbers in a similar framework.

This structural approach provides not only insight into the parity of perfect numbers
but also opens a pathway toward a more unified classification of integers based on divisor
configurations.
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