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Abstract

In this booklet, | present my proofs of open conjectures on the theory of
numbers. It concerns the following conjectures:

- The Riemann Hypothesis.

- Beal's conjecture.

- The conjecture c<rad”{1.63}(abc).

- The explicit abc conjecture of Alan Baker.
- Two proofs of the abc conjecture.

- The conjecture c<rad”2(abc).
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of numbers. It concerns the following conjectures:

- The Riemann Hypothesis.
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Résumé (Mes Démonstrations de Conjectures de la Théorie des Nombres,
mai 2025)

Dans ce fascicule, je présente mes démonstrations des conjectures ouvertes de la
théorie des nombres. Elles concernent les conjectures suivantes:

- ’hypotheése de Riemann.

- La conjecture de Beal.

- La conjecture ¢ < rad'%(abc).

- L’explicite conjecture abc d’Alan Baker.

- La conjecture abc (deux démonstrations).

- La conjecture ¢ < rad?(abc).
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CHAPTER 1

THE RIEMANN HYPOTHESIS IS TRUE: THE
END OF THE MYSTERY

Abstract. — In 1859, Georg Friedrich Bernhard Riemann had announced the
following conjecture, called Riemann Hypothesis : The nontrivial roots (zeros)
s = o + it of the zeta function, defined by:

+oo 1

((s) = Z 5 for R(s)>1
n=1
1 . . . .
have real part o = —. In this note, I give the proof that ¢ = — using an equivalent
statement of the Riemann Hypothesis: the Dirichlet n function.
The paper is under reviewing.

This paper is dedicated to the memory of my Father who taught me
arithmetic,
To my wife Wahida, my daughter Sinda and my son Mohamed
Mazen

'T feel that these aren’t the right techniques to solve the Riemann
hypothesis itself, it’s going to need some big idea from somewhere else’

James Maynard (07/15/2024)[1]

1.1. Introduction

In 1859, G.F.B. Riemann had announced the following conjecture [2] known Rie-
mann Hypothesis:
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Conjecture 1. — Let ((s) be the complex function of the complex variable
s = o + it defined by the analytic continuation of the function:
+o0 1
Gi(s) = Z ) for R(s) =0 >1
n=1

over the whole complex plane, with the exception of s = 1. Then the nontrivial
zeros of ((s) =0 are written as :

1+'t
§=—+1
2

J

In this paper, our idea is to start from an equivalent statement of the Riemann
Hypothesis, namely the one concerning the Dirichlet n function. The latter is related
to Riemann’s ¢ function where we do not need to manipulate any expression of ((s)
in the critical band 0 < R(s) < 1. In our calculations, we will use the definition of

1
the limit of real sequences. We arrive to give the proof that o = 5

1.1.1. The function zeta(s)

We denote s = o + it the complex variable of C. For R(s) = ¢ > 1, let (; be the
function defined by :

400 1
Gi(s) = Z ) for R(s)=0>1
n=1
We know that with the previous definition, the function (; is an analytical function
of s. Denote by ((s) the function obtained by the analytic continuation of (;(s)
to the whole complex plane, minus the point s = 1, then we recall the following
theorem [3]:

Theorem 2. — The function ((s) satisfies the following :

1. ¢(s) has no zero for R(s) > 1;

2. the only pole of ((s) is at s = 1; it has residue 1 and is simple;

3. C(s) has trivial zeros at s = —2,—4,...;

4. the nontrivial zeros lie inside the region 0 < R(s) < 1 (called the critical
strip) and are symmetric about both the vertical line R(s) = 3 and the real

azris J(s) = 0.

1
The vertical line R(s) = 5 is called the critical line.



1.2. PRELIMINARIES OF THE PROOF OF THE ZEROS OF n(s) ARE ON R(s) =1/2 5

For our proof, we will use the function presented by G.H. Hardy [4] namely
Dirichlet eta function [3]:

Z — = 217)¢(s)
The function eta is convergent for all s € C with R(s) > 0 [3].

We have also the theorem (see page 16, [4]):

Theorem 3. — For allt € R, ((1+1it) # 0.

So, we take the critical strip as the region defined as 0 < R(s) < 1.

1.1.2. A Equivalent statement to the Riemann Hypothesis

Among the equivalent statements to the Riemann Hypothesis is that of the Dirichlet
eta function which is stated as follows [3]:

Equivalence 4. — The Riemann Hypothesis is equivalent to the statement
that all zeros of the Dirichlet eta function :
400 (_l)nfl .
1) B =Y = (1= 27)C(), o> 1
n=1
that fall in the critical strip 0 < R(s) < 1 lie on the critical line R(s) = %

The series is convergent, and represents (1 — 2'7%)((s) for R(s) = o > 0 ([4],
pages 20-21). We can rewrite:

n 1

(2) f —2175)¢(s), R(s)=0>0

n(s) is a complex number, it can be written as :

(3) n(s) = p.e’ = p* = n(s)n(s)

and n(s) =0 <= p=0.

1.2. Preliminaries of the proof of the zeros of 7(s) are on R(s) = 1/2

Proof. — We denote s = o + it with 0 < o < 1. We consider one zero of n(s) that
falls in critical strip and we denote it s = [ + 47, then we obtain 0 < § < 1 and
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n(s) = 0 <= (1 —2'7%)((s) = 0. We verify easily the two propositions:

‘s is one zero of n(s) that falls in the critical strip, is also one zero of ‘

(4) ‘C(s) in the critical strip‘

Conversely, if s is a zero of ((s) in the critical strip, let {(s) = 0 = n(s) =
(1—217%)((s) = 0, then s is also one zero of 7(s) in the critical strip. We can write:

’s is one zero of ((s) that falls in the critical strip, is also one zero of‘

(5) ‘77(3) in the critical strip‘
Let us write the function n:
+o0 (71)71—1 +o0 +oo
77(8) — Z — (_1)nflestogn — Z(_l)nflef(oJrit)Logn —
n=1 n? n=1 n=1

“+oo
— Z (_1)n—le—oLogn‘e—itLogn
n=1

+oo
= Z(—1)"_16_‘7L°g”(cos(tLogn) —isin(tLogn))
n=1

The function 7 is convergent for all s € C with R(s) > 0, but not absolutely
convergent. We definite the sequence of functions ((1,)nen=(s)) as:

M) =3 (_?jl = Zn:(—l)’“‘lcos(iiogm iy (cpprinltLogh)
k

k=1 k=1 =1 ke
with s = o + it and ¢t # 0.

Let s = 8+ iy with 0 < 8 < 1 be one zero of the function eta, then :

+oo —1
_1)»
3 ( )S _0
n=1 n
or:
o (1!
Ve' >0 3ng, YN > nog, Z — < ¢

n=1 n

It follows that we can write lim,—+conn(s) = 0 = n(s). We obtain:

, ” _,cos(yLogk)
LMy 00 Z(—l)k l(kﬁ =0
k=1
, - _1sin(yLogk)
llmn*H,oo Z(—l)k IT =0

k=1
Using the definition of the limit of a sequence, we can write:
(6) Yer > 03n,, YN > n,, | R(n(s)n) |< e1 = RE(n(s)n) < €1°
(7) Yey > 03n;, VN > ny, | S((s)n) |< €2 = S%(n(s)n) < €2°
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Then:

N 2 N k+kK /
cos®(~yLogk) (=1)**% cos(yLogk).cos(yLogk') 4
8)0 —— +2
(8)0 < ];:1 128 + . k,:%k: " kBB < €]

7+2 kﬁk’ﬁ <€2

(9)0 < ZN sin®(yLogk) al (=1)%*¥ sin(yLogk).sin(yLogk')
k28 >
k=1

kK =1;k£k!

Taking € = € = €3 and N > max(n,,n;), we get by making the sum member to
member of the last two inequalities:

N N
1  cos(yLog(k /K’
(10) 0<Y mp+2 > (D COSWmOg,(B/ ) < e
k=1 ke k' =1 kAR

In detail, we rewrite the above equation ([L0f) as:

(1) 0< Z o Loy (_klﬁ)k ( bl (—1)’“'008(%;,%(":/”))) <2e
k=1 k'

=2,k'>k

We denote:

P (- =y rcos(yLo !
@ sea= Y O ( S ka,gﬂ(k/k)))
k=1 k'=2,k'>k

We can write the above equation as :

(13) 0< pi <26

or p(s) =0.

1.3. Case 0 < R(s) < 1/2

Suppose there exists s = o + it one zero of 7(s) or n(s) = 0 = p%(s) = 0 with
0<o< % —> s lies inside the critical band. We write the equation 1)

N N
1 rcos(tLog(k /K
b L 3 (i)
k=1 ke b/ =Lk Ak
or:
1 X1 N pi COS(tLog(k/E") 5 1 N
(14) _§Zﬁ = Z (=1) ko k'o SE = Z k20

k=1 kK =1;k£k! 23
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N
But 20 < 1, it follows that limy_ 100 Z 720 — 400 and then, we obtain :
k=1
400 /
rcos(tLog(k/k'))
(15) > (=pkE = -
k,k'=1;k£k! ko k'

1.4. Case R(s) =1/2

1
We suppose that ¢ = 3 Let’s start by recalling Hardy’s theorem (1914) ([3], page
24):

Theorem 5. — There are infinitely many zeros of ((s) on the critical line.

From the propositions (4f5)), it follows the proposition :

Proposition 6. — There are infinitely many zeros of n(s) on the critical
line.
Let s; = % + it; one of the zeros of the function n(s) on the critical line, so

n(sj) = 0. The equation is written for s;:

N N
1 rcos(tjLog(k/k")) 9
0<> =42 > (-p)HF—< < 2
=l ko k! =1;kK VEVE
or:
181 N rcos(t;Log(k/K)) 1 X801
16) -3 t< Y (-l <131
25k k,k/=1;k#K! VEVE 2ok
S
If N — +o0, the series Z T is divergent and becomes infinite. then:
k=1

+0oo +oo ) /
Z % S 262 -9 Z (_l)k:-i-k/ COS(tJLOg(k/:/k ))
k=1 k,k'=1;k#k' \/E\/E

Hence, we obtain the following result:

i (_1)k+k/cos(thog(k/k’))
ke =1k Ak VEVE

(17) LMy —s 400




1.5. CASE 1/2 < R(s) < 1 9

if not, we will have a contradiction with the fact that :

N
1 1
limn_— 400 Z(—l)k_lﬁ = 0 <= 1)(s) is convergent for s; = 5T it}
k=1

1.5. Case 1/2 < R(s) < 1

Let s = o+it be the zero of 7)(s) in 0 < R(s) < 3, object of the section From the
proposition , ¢(s) = 0. According to point 4 of theorem [2| the complex number
s=1l-o+it=0'+it' witho' =1—0,t¢ =tand 1 <o’ <1 verifies ((s') = 0, so
s’ is also a zero of the function ((s) in the band 3 < R(s) < 1, it follows from the
proposition (5) that n(s’) = 0 => p(s') = 0. By applying (10]), we get:

N N
1 gt cos(t' Log(k/E")) 9
= =Tk
11 N pat cos(t' Log(k/E")) 5 1 N
(18) 2 kzl f20! < ok Z (=1) Lo’ /o’ ~c = D) Z k20"
= K =1;k£kR k=1

As0< o< 3=>2>20"=2(1—0) > 1, then the series DM w20 is convergent
to a positive constant not null C'(¢”). As 1/k? < 1/k%" for all k > 0, then :
™ X1 ™
0<¢2)=">=> =< —-=0C() =0(20) =((20)
6 = i

From the equation (|18)), it follows that :

+o0 / / / /
s cos(t Log(k/K')) C(o') ¢(20)
1 Z 1)kt cos( g _ _ B
( 9) . k/:rk#k/( ) ko'/ k/o’/ 2 2 > oo

1.5.0.1. Case t =0

We suppose that t = 0 = ¢’ = 0. We known the following proposition:

[ Proposition 7. — For all s = o real with0 < o < 1, n(s) > 0 and {(s) < 0. ]

We deduce the contradiction with the hypothesis s’ = ¢’ is a zero of n(s) and:

(20) The equation is false for the case ' =t = 0. ‘
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1.5.0.2. Caset' =t #0

We suppose that ¢ # 0. Let s’ = o’ 4+ it' =1 — 0 + it a zero of n(s), we have:

400 / / / !
B ktr cos(t' Log(k/k")) __C’(J) __4(20) B
(2]‘) N k,:;k#k,( 1) ka/k/o'/ - 2 - 2 >

the left member of the equation above is finite and depends of ¢’ and t/, but
the right member is a function only of ¢’ equal to —((20")/2.

We recall the following theorem (see page 140, [4]):

Theorem 8. —

1 (T 1
(22)  limrieer /1 (o7 +i7) Pdr = ((207) (07> 3)

Let to so that tg > 1. As the integral of the left member of the above equation is
convergent, the equation (108]) can be written as:

. 1T .
limr—s o0 /t C(0” + i7)Pdr = ((207)
0

and ((20”) is independent of any to then in particular for to = ¢’. As ¢” is any
0” > 1/2, 1 choose ¢” = ¢’ and ty = t, it follows that {(2¢’) does not depend of
t' so that s’ = ¢/ +it’ is a root of 7. Hence, the contradiction with equation (L9).
Then the equation is false.

(23) ‘It follows that the equation is false for the case t' # 0. ‘

It follows that the equation is false and 7(s") does not vanish for o’ €]1/2,1].

From (20123)), we conclude that the function 7n(s) has no zeros for all ' = ¢’ + it/
with ¢’ €]1/2,1[, it follows that the case of the section (1.3) above concerning

the case 0 < R(s) < B is false too. Then, the function 7n(s) has all its zeros on

1
the critical line ¢ = —. From the equivalent statement (343)), it follows that the

Riemann hypothesis is verified. O

We therefore announce the important theorem as follows:

Theorem 9. — The Riemann Hypothesis is true:
All nontrivial zeros of the function ((s) with s = o + it lie on the vertical line
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CHAPTER 2

A COMPLETE PROOF OF BEAL’S CONJECTURE

Abstract. — In 1997, Andrew Beal announced the following conjecture: Let
A, B,C,m,n, and | be positive integers with m,n,l > 2. If A™ + B® = C! then
A, B, and C have a common factor. We begin to construct the polynomial P(z) =
(x — A™)(z — B")(z 4 C") = 2% — px + ¢ with p, ¢ integers depending on A™, B™ and
C'. We resolve 23 — px + ¢ = 0 and we obtain the three roots 1, z2, z3 as functions
of p and a parameter . Since A™, B", —C" are the only roots of z® — pz 4 q = 0, we
discuss the conditions that x1, x2, x3 are integers and have or do have not a common
factor. Three numerical examples are given.
The paper is under reviewing.

To the memory of my Father who taught me arithmetic, To my wife
Wahida, my daughter Sinda and my son Mohamed Mazen

2.1. Introduction

In 1997, Andrew Beal [1] announced the following conjecture :

Conjecture 10. — Let A, B,C, m,n, and [ be positive integers with m,n,l >
2. If:
(24) A™ 4+ B" = ("

then A, B, and C have a common factor.

The purpose of this paper is to give a complete proof of Beal’s conjecture. Our idea
is to construct a polynomial P(z) of order three having as roots A™, B and —C"
with the condition (24). We obtain P(z) = 23 — px + ¢ where p, ¢ are depending
of A™ B™ and C!. Then we express A™, B", —C! the roots of P(z) = 0 in function
of p and a parameter # that depends of the A, B,C. The calculations give that
AP = 4?2?00325. As A?™ is an integer, it follows that 00522 must be written as %
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where a, b are two positive coprime integers. Beside the trivial cases, there are two
main hypothesis to study:

- the first hypothesis is: 3 |a and b | 4p,

- the second hypothesis is: 3 |p and b|4p.

We discuss the conditions of divisibility of p, a,b so that the expression of A*™
is an integer. Depending of each individual case, we obtain that A, B,C have or
do have not a common factor. Our proof of the conjecture contains many cases
to study. there are many cases where we use elementary number theory and some
cases need more research to obtain finally the solution.

The paper is organized as follows. In section 1, it is an introduction of the
paper. The trivial case, where A” = B", is studied in section 2. The preliminaries
needed for the proof are given in section 3 where we consider the polynomial
P(z) = (x — A™)(x — B")(z + C') = 2> — px 4+ q. The section 4 is the preamble
of the proof of the main theorem. Section 5 treats the cases of the first hypothesis
3| aand b | 4p. We study the cases of the second hypothesis 3 | p and b | 4p in sec-
tion 6. Finally, we present three numerical examples and the conclusion in section 7.

In 1997, Andrew Beal [1] announced the following conjecture :

Conjecture 11. — Let A, B,C, m,n, and [ be positive integers with m,n,l >
2. If:
(25) A™ 4+ B" = ("

then A, B, and C have a common factor.

2.2. Trivial Case

We consider the trivial case when A™ = B™. The equation becomes:
(26) 24™ = (!

then 2 | C!' = 2 | C = C = 29.C} with ¢ > 1, 21 C; and 24™ = 240} = A™ =
20710t Asl > 2,¢>1,then2| A" = 2 | A = A = 2"A; with » > 1 and
2t A;. The equation ,becomes:

(27) 2 x 2MAT = 24l

As 24 A; and 21 Cy, we obtain the first condition :

(28) there exists two positive integersr, g withr.q > 1 so that
Then from ([27]):

(29) =0l
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2.2.1. Case 1 A1 =1—=C1 =1

Using the condition above, we obtain 2.(2")™ = (29)! and the Beal conjecture
is verified.

2.2.2. Case 2 A1 >1=C1>1

From the fundamental theorem of the arithmetic, we can write:

(30) A =af" .. .a]", ai<ay<---<ar= AT =a"" .. .a]M
(31) C’lzc?l...cgJ, cl<02<-"<CJ:>C{:cl1ﬂ1...cljB‘]

where a; (respectively c;) are distinct positive prime numbers and «; (respectively
B;) are integers > 0.

From (29) and using the uniqueness of the factorization of A} and C’{, we obtain

necessary:
I=J

(32) a; = Cq, i:1,2,...,I
maoy; = lﬁz

Asonea; | A" = a; | B™ = a; | B and in this case, the Beal conjecture is verified.

We suppose in the following that A™ > B".

2.3. Preliminaries

Let m,n,l € N* > 2 and A, B,C € N* such:
(33) A™ 4 B" = C!
We call:
P(z) = (v — A™)(z — B")(z + C!) = 23 — 22(A™ + B" — (V)
(34) +z[AmB" — CY(A™ + B")] + C'A™B"
Using the equation (33)), P(z) can be written as:

(35) P(x) = 23 + z[AmB" — (A™ + B")?] + A™B"(A™ + B")

We introduce the notations:
p=(A™+ B")? - AMB" = A?™ L AmpB" 4 B
qg=A"B"(A™ + B")
As A™ # B", we have p > (A™ — B")? > 0. Equation becomes:
P(z) =2 —pzr+q
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Using the equation , P(z) = 0 has three different real roots : A™, B™ and —C".

Now, let us resolve the equation:
(36) Px)=a®—pr+q=0
To resolve let:
r=u-+v
Then P(x) = 0 gives:
(37) P(z) = P(u+v) = (utv)3—p(utv)+q = 0 = v +v3+(u+v)(3uv—p)+q =0
To determine v and v, we obtain the conditions:

u3+v3:—q

uw =p/3>0
Then u? and v3 are solutions of the second order equation:
(38) X?+gX +p*/271=0
Its discriminant A is written as :

27> —4p> A
A= —appjor =" P _

27 27
Let:
A = 27¢% — 4p3 = 27(A™B"(A™ + B"™))? — 4[(A™ + B")? — A™B"}3
(39) = 27AM B (A" 4 B")? —4[(A™ + B")? — A" B"]
Denoting :

a=A"B" >0
B=(A™+ B")?
we can write as:
(40) A=2708—4(8 —a)?
As a # 0, we can also rewrite as :

A=a (27§—4<§—1)3>

i
(0%

We call ¢t the parameter :
t =

A becomes :

A =327t —4(t —1)3)
Let us calling :
y=y(t) =27t —4(t —1)3
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Since o > 0, the sign of A is also the sign of y(t). Let us study the sign of y. We
obtain y/(t):

y'(t) =y =31 +2t)(5—2t)
Yy =0=t; = —1/2 and t2 = 5/2, then the table of variations of y is given below:

172

1+2t - I_OI + ‘ +
5-2t + T + T -
y'(t)

FIGURE 1. The table of variations

The table of the variations of the function y shows that y < 0 for ¢ > 4. In our case,
we are interested for ¢ > 0. For ¢t = 4 we obtain y(4) = 0 and for ¢ €]0,4]= y > 0.
Aswehavet:g>4asAm7éB":

(A™ —B"?2>0= = (A" + B")? > 4a = 4A™B"

Then y < 0 = A < 0 = A < 0. Then, the equation 1) does not have real
solutions u3 and v3. Let us find the solutions v and v with = u + v is a positive
or a negative real and u.v = p/3.

2.3.1. Expressions of the roots
Proof. — The solutions of are:
—q+ivV—A

X, =
2

— —g—i/=A

Xp=Xi= ————

We may resolve:

Writing X in the form:
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with:
2 3v3
vV -=A

and sinf = ~—— >0
2p

cosl = _4 <0
2p

Then 0 [27] €] + g, +[, let:

T T 0 =« 1 0 V3
41 — —< =< === - < —
(41) 2<9<—1—7T:>6<3<3:>2<0053<2
and:
1 0 3
(42) 1 < 00525 < 1
hence the expression of Xs:
(43) Xy = pe™ ¥
Let:
(44) u=re
—1+4+14v3 2m
(45) and j = —;Z\f = ¢'%
4m 1+iV3 -
46 ;2 = v 3 =—— =9
(46) jT=e 5 j
4 is a complex cubic root of the unity <= j2 = 1. Then, the solutions v and v are:
(47) up = re’¥t = \3/,562%
(48) uy = re'’? = é/ﬁjei% = {”/ﬁeiﬂfﬂ
(49) uz = reits — e/ﬁerig _ \;),/ﬁei%*eJri% _ %eie?w
and similarly:
(50) v =re W = %e_i%
(51) vy = re” V2 = e/ﬁjze_ig = S/Eei%ﬁe_i% = é/ﬁei47r3_9
(52) vg = re W3 = {”/ﬁje‘ig = efpe"%s_e
We may now choose up and vy so that uy + v, will be real. In this case, we have
necessary :
(53) vl =Up
(54) Vo = Uy

(55) U3 = U3
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We obtain as real solutions of the equation :

0
(56) ] =uUl+ v = 2\3/50055 >0
(57) Ty = Uy + vy = 2 YpeosEE = —y/p (cosg i \/gsmg) <0
(58) T3 = uz +v3 = QWCOSH% = Jp (—cosg + ﬁsing) >0

We compare the expressions of x1 and 3, we obtain:

?
2\3/]3005% />\ Jp (—cosg + ﬁsin%)
?
(59) 3cos§ />\\/§sing

0 0 6
As 3 €]+ %,—l—%[, then sing and cosg are > 0. Taking the square of the two

members of the last equation, we get:
1 0
(60) 1< 6082§
- . 0 T l
which is true since 3 €]+ g —|—§[ then z; > 3. As A™, B™ and —C" are the only

real solutions of , we consider, as A™ is supposed great than B, the expressions:

0
A" =21 =u1 +v1 = 2\%cos§

0+ 4w

(61) B" = x3 = u3 + v3 = 2/pcos 3

= Jp (—cosg + \/gsmz)

0+ 2w
3

0 0
—Cl' =9 =us + vy = 2/pcos =—p (cos3 + \/gsin?))

2.4. Preamble of the Proof of the Main Theorem

Theorem 12. — Let A, B,C, m,n, andl be positive integers with m,n,l > 2.
1f:
(62) A™ 4+ B* = ('

then A, B, and C have a common factor.

0 0
Proof. — A™ = 2\3/50085 is an integer = A?™ = 4/ p20052§ is also an integer. But

(63) =t
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Then:
0 0 4 0
(64) AP = 43 p20032§ = 4%.00325 = p.g.0032§
0
As A?™ is an integer and p is an integer, then 0032§ must be written under the

form:

(65) COS2Q _1 or COSQQ S

3 b 3 b

with b € N*; for the last condition a € N* and a, b coprime.
Notations: In the following of the paper, the scalars a, b, ..., z, o, 3, ..., A, B, C, ...

and A, ®, ... represent positive integers except the parameters 6, p, or others cited
in the text, are reals.

0 1
2.4.1. Case 0052§ = -

b
We obtain:
4 0 4dp
66 A2m: iy 27:7
(66) P393 = 3%
1 0 3 1 1 3
As - <t o< o< =2b<4<3b=2b=1,2,3
s4<cos3<4:>4<b<4:>< < 3b= ,2,3
24.1.1. b=1
b=1=4 < 3 which is impossible.
2.4.1.2. b=2
om 41 2.p ;. ,
b=2= A :p.g.iz?:fﬂp:p:?)pwrchp7é1because?)<<p,we
obtain:
A (A2 =2 g o)y sy = 2%
= 37 -p p P =41

with 2{p1, a+1=204

(67) Am:2’8p1
. 0

(68) B"C! = {/p? (3 — 400323> =p =2%?

From the equation , it follows that 2 | A™ = A = 2i4;, i > 1 and 2 { A;.
Then, we have 8 = i.m = im. The equation implies that 2 | (B"C!) = 2| B"
or 2| CL
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2.4.1.2.1. Case 2 | B": — -If2|B" = 2| B = B = 2/B; with 2/ By. The
expression of B"C! becomes:

B?Cl — 22im—1—jnp%

-If 2im —1—jn > 1,2 | C' = 2 | C according to C! = 2™ AT + 2" BT and the
conjecture is verified.
- If 2ém — 1 — jn < 0 == 2{ C!, then the contradiction with C! = 2™ A 4 2/" B7.

2.4.1.2.2. Case 2| C': — If2 | C!: with the same method used above, we obtain
the identical results.

2.4.1.3. b=3

41 4
b:3:>A2m:p.§.§:gp:>9|p:>p:9p'withp’7é1, as 9 < p then
A?" = 49/, If p’ is prime, it is impossible. We suppose that p’ is not a prime, as
m > 3, it follows that 2 | p/, then 2 | A™. But B"C' = 5p/ and 2 | (B"C"). Using

the same method for the case b = 2, we obtain the identical results.

2.4.2. Case a > 1, COSQQ _a
3 b
We have:
4 4.p.
(69) COSQ% = %; A%m = p.g.cos2g = 3}‘7;
where a, b verify one of the two conditions:
(70) ‘{S\a and b[4p}‘or‘{3\p and b‘4p}‘

and using the equation , we obtain a third condition:

(71) b<4a <3b

0
For these conditions, A*™ = 4/ p20052§ = 4§.cos2§ is an integer.

Let us study the conditions given by the equation in the following two sections.

2.5. Hypothesis : {3|a and b|4p}

We obtain :

(72) 3|la=3d eN* /a=3d
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2.5.1. Caseb=2and 3 |a

A?™ ig written as:

4p 0 4pa 4pa 2.pa
(73) 3°°37 3 32 3
Using the equation , A?™ becomes :
2.p.3a
(74) AP = p3 - 2.p.d
00 a  3d
but cos 3=,= 9 > 1 which is impossible, then b # 2.
2.5.2. Case b=4 and 3 |a
A?™ is written :
4.p 0 4pa 4pa pa p.3a’
75 A2m = 27_77:7777: :'/
(75) 373737 343 b
0 a 2
76 and cos’= = 5= @ f:>a <1
3
which is impossible. Then the case b = 4 is impossible.
2.5.3. Case b=pand 3 |a
We have :
0 3a’
(77) 00523 = % = ?a
and:
4 6 4p 3d
(78) AP = ?p coszg = gp?a = 4a' = (A™)?
(79) Ja” / al _ an?
(80) and B"C'=p— A> =b—4d =b— 4a”
The calculation of A™B™ gives :
3 . 20
A™B" = p.\gsin?) —2d
3 .20
(81) or A™B"+2d =p. \gszng

3 . 20
The left member of is an integer and p also, then 2\3[sin3 is written under

the form :

V3 20 Ky
2 o Vlgnl =
(82) 3 73 T,

where k1, ko are two coprime integers and ks | p = p = b = ka.ks, ks € N*.
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2.5.3.1. We suppose that k3 # 1
We obtain :
(83) AT(A™ + 2B") = ky.ks

Let p be a prime integer with p | k3, then p | b and p | A™(A™ +2B") = p | A™
or p| (A™+2B™).

#A-1-1-If | A™ = | A and p | A2, but A2 = 4d' = p | 4d = (u = 2,
but 2 | a’) or (i | a’). Then u | a it follows the contradiction with a,b coprime.

EA-1-2-If p | (A™ +2B") = ut A™ and p f 2B" then p # 2 and p t B". We
write p | (A™ 4 2B"™) as:

(84) A" +2B" = pt
It follows :
A™ 4 B" = ut’ — B" = A®™ 4 B*" 4 2A™B" = 1*t” — 2t'uB" 4 B*"
Using the expression of p:
(85) p=1t?u*—2t'B"u+ B"(B" — A™)
Asp="b=ko.ks and p | k3 then | b= I/ and b = py’, so we can write:
(36) Wi =l — 20/ BY) + Br(B" — A™)
From the last equation, we obtain p | B"(B™ — A™) = p | B" or u | (B" — A™).
*% A-1-2-1- If o | B™ which is in contradiction with pt B™.

K A-1-2-2- If p | (B™ — A™) and using that u | (A™ + 2B"™), we arrive to :

w|B"
(87) w|3B™ ¢ or
p=3

*4 A-1-2-2-1- If | B = p | B, it is the contradiction with u { B cited above.

** A-1-2-2-2- If = 3, then 3 | b, but 3 | a then the contradiction with a,b coprime.
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2.5.3.2. We assume now k3 =1

Then :
(88) A?™ L 2A™B" =k
(89) b=k
2v/3 . 20 k
(90) \{sing = ?1
Taking the square of the last equation, we obtain:
4 520 k?
37 T
16 2
—sm2QCOSQQ = M
3 3 3 b2
16 0030 _ I
3 3 b b2
Finally:
(91) 420/ (p —a) = k?
but a’ = a”?, then p — a is a square. Let:
(92) M=p—a=b-—a=b-3a"2= N +3a"%=b
The equation becomes:
(93) 4267\ =k} = ky = 4a”\
taking the positive root, but k; = A™(A™ 4 2B™) = 2a”(A™ + 2B"), then :
(94) A" +2B" =2\ = A=a" + B"

HA2-1- As A = 20" = 2 | AM = 2 | A = A = 2iA;, with i > 1 and
21 Ay, then A™ = 2a” = 2MAT = q” = 2™~ LAT but im > 3 = 4| a”. As
A = a” + B", taking its square, we obtain A2 = a”? 4+ 2¢”.B" + B*" — )\? =
B?(mod 4) = \? = B*" = 0(mod 4) or A\?> = B*" = 1(mod 4).

¥ A-2-1-1- We suppose that A2 = B?" = 0(mod4) = 4 | \2 = 2| (b —a). But
2 | a because a = 3a’ = 3a”? = 3 x 220m=1) A2™ and im > 3. Then 2 | b, it follows
the contradiction with a, b coprime.

¥ A-2-1-2- We suppose now that A2 = B?" = 1(mod4). As A™ = 2m-lAm
and im — 1 > 2, then A™ = 0(mod4). As B?" = 1(mod4), then B" verifies
B"™ = 1(mod 4) or B" = 3(mod 4) which gives for the two cases B"C! = 1(mod 4).

We have also p = b = A?>™ 4+ A™B" + B?>" = 4d’ + B".C! = 4a”% + B"C! =
B"Ct = X2 —@"%? = B".C', then )\, a” € N* are solutions of the Diophantine equation

(95) 2 —y? =N
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with N = B"C! > 0. Let Q(N) be the number of the solutions of (95) and 7(N)
is the number of suitable factorization of N, then we announce the following result
concerning the solutions of the equation (see theorem 27.3 in [2]):

-If N =2(mod4), then Q(N) = 0.

-If N=1or N =3(mod4), then Q(N) = [7(N)/2].

-If N =0(mod4), then Q(N) = [7(N/4)/2].

[z] is the integral part of = for which [z] <z < [z] + 1.

In our case, we have N = B".C! = 1(mod 4), then Q(N) = [1(N)/2]. As \,a” is
a couple of solutions of the Diophantine equation , then 3 d, d’ positive integers
with d > d’ and N = d.d’ so that :
(96) d+d =2\
(97) d—d =2a”
*k A-2-1-2-1- As C! > B", we take d = C' and d’ = B". It follows:
(98) C'+B" =2\ =A™+ 2B"
(99) C'— B" =2a" = A™

Then the case d = C! and d’ = B™ gives a priory no contradictions.

*k A-2-1-2-2- Now, we consider the case d = B"C' and d’ = 1. We rewrite the
equations (96H97)):

(100) B"C'+1 =2\

(101) B"C' — 1 = 2a”

We obtain 1 = A — a”, but from , we have A = a” + B", it follows B" = 1 and

C! — A™ = 1, we know [4] that the only positive solution of the last equation is
C=3,A=2,m=3and [l =2 < 3, then the contradiction.

** A-2-1-2-3- Now, we consider the case d = cl{_lC{ where ¢ is a prime integer with
c11Crand C = cCy, r > 1. Tt follows that d’ = ¢;.B"™. We rewrite the equations

(96197)):
(102) 10t 4 ¢.B™ = 2
(103) dr=1ct — ¢1.B™ = 2a”

As [ > 3, from the last two equations above, it follows that ¢; | (2X) and ¢; | (2a”).
Then ¢; =2,0r ¢; | Aand ¢; | a”.

% A-2-1-2-3-1- We suppose ¢; = 2. As 2 | A™ and 2 | C! because [ > 3, it follows
2| B", then 2 | (p =b). Then the contradiction with a,b coprime.
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** A-2-1-2-3-2- We suppose ¢ # 2 and ¢ | a” and ¢; | A. ¢1 | a” = ¢1 | a and
c1 | (A™ =2a"). B" = C! — A™ = ¢; | B". It follows that ¢1 | (p = b). Then the
contradiction with a, b coprime.

The other cases of the expressions of d and d’ with d,d’ not coprime so that
N = B"C! = d.d’ give also contradictions.

** A-2-1-2-4- Now, let C = ¢{C} with ¢; a prime, r > 1 and ¢; 1 Cy, we consider the
case d = C} and d' = ¢;'B" so that d > d’. We rewrite the equations (96}97):

(104) Ct 4 &' B = 2\

(105) Ct — &'B™ = 247

We obtain ¢!B" = A — a” = B" = ¢} = 1, then the contradiction.

** A-2-1-2-5- Now, let C' = ¢{C} with ¢; a prime, r > 1 and ¢; 1 C1, we consider the
case d = C{B™ and d’ = ¢! so that d > d’. We rewrite the equations (96}97):

(106) CiB' + ¢t =2\
(107) CiB! — &t = 247
We obtain ¢! = A —a” = B" = ¢; | B", then ¢; | A™ = 2a”. If ¢; = 2, the

contradiction with B"C! = 1(mod4). Then ¢; | a” = ¢; |a = ¢1 | (p = V), it
follows a, b are not coprime, then the contradiction.

Cases like d < C! a divisor of C! or d' < B! a divisor of B™ with d’ < d and
d.d = N = B"C" give contradictions.

*% A-2-1-2-6- Now, we consider the case d = b;.C! where by is a prime integer with
by 1 By and B = b By, r > 1. It follows that d’' = b]"_lB{L. We rewrite the equations

(96197):

(108) biCl+ b BY = 2

(109) bCt =V TIBY = 207

As n > 3, from the last two equations above, it follows that by | 2\ and by | (2a”).
Then by =2, or by | A and b; | a”.

** A-2-1-2-6-1- We suppose by =2 =2 | B". As2 | (A" =2a" =2 |a” = 2] q,
but 2 | B" and 2 | A" then 2 | (p = b). It follows the contradiction with a, b coprime.

** A-2-1-2-6-2- We suppose by # 2, then by | A and b | a” = b | A™ and
by | @ = b1 | a, but by | B" and by | A™ then b; | (p = b). It follows the
contradiction with a,b coprime.
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The other cases of the expressions of d and d’ with d,d not coprime and d > d’
so that N = C'B™ = d.d’ give also contradictions.

Finally, from the cases studied in the above paragraph A-2-1-2, we have found
one suitable factorization of N that gives a priory no contradictions, it is the case
N = B".C! = d.d’ with d = C',d’ = B" but 1 < 7(N), it follows the contradiction
with Q(N) = [7(N)/2] < 1. We conclude that the case A-2-1-2 is to reject.

Hence, the case k3 = 1 is impossible.

Let us verify the condition given by b < 4a < 3b. In our case, the condition
becomes :

(110) p < 3A%™ < 3p with p= A*™ 4+ B> + AmB"

and 342" < 3p = A?™ < p that is verified. If :

?
p<3A2m:>2A2m_AmBn_B2n’/>\O
Studying the sign of the polynomial Q(Y) = 2Y?2 — B"Y — B?" and taking
Y = A™ > B", the condition 24?™ — A™B™ — B?" > () is verified, then the
condition b < 4a < 3b is true.

In the following of the paper, we verify easily that the condition b < 4a < 3b implies
to verify that A™ > B"™ which is true.

2.5.4. Caseb|p= p=bp,p>1,0#2,b#4and 3 |a

4.b.9'.3.a'
_ p.o.a :4.p'a'

4.p a
111 Y R —"
(111) b 3.b

We calculate B*C!:

0 0 0
nel 3 2 20\ _ 3 2
(112) B"C" = {/p? (35m 3 ~cos 3> = \/p? (3—4005 3)
6 3.d

p . 2 .
but {/p? = =, using cos” = = , we obtain:
Ty e s s =y

0 D 3.a/ 4.0’
n l: 3/ 2 — 27 = — — = — = / — /
(113) B"C" = {/p (3 4cos 3> 3 (3 4 2 > .<1 2 > p'(b—4a’)

As p=1b.p/, and p’ > 1, so we have :
(114) B"C' = p/(b— 4d)
(115) and A*™ =49 .d

** B-1- We suppose that p’ is prime, then A?™ = 4a'p’ = (A™)? = p' | ¢/. But
B"C!'=p/(b—4d') = p | B*or p | CL.
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¥ B-1-1- If p | B = p' | B = B = p'B; with By € N*. Hence :
p"IBPCl =b—4ad'. Butn>2= (n—1)>1landp | d, thenp |b= aand b
are not coprime, then the contradiction.

#* B-1-2- If p' | ' = p/ | C. The same method used above, we obtain the same
results.

** B-2- We consider that p’ is not a prime integer.

*% B-2-1- p/, a are supposed coprime: A?™ = 4a'p’ = A™ = 2a”.p; with ¢’ = a2

and p’ = p?, then a”, p1 are also coprime. As A™ = 2a”.p; then 2 | a” or 2 | p;.
¥ B-2-1-1- 2 | @”, then 2 { p1. But p’ = p?.
** B-2-1-1-1- If p; is prime, it is impossible with A™ = 2a”.p;.

** B-2-1-1-2- We suppose that p; is not prime, we can write it as p; = w™ = p’ =
w?™, then: B"C! = w?™(b — 4d').

#% B-2-1-1-2-1- If w is prime, it is different of 2, then w | (B"C!) = w | B" or w | C".

* B-2-1-1-2-1-1- f w | B®* = w | B = B = w/B; with w { By, then
B}.C! = W™= (b — 4a).

% B-2-1-1-2-1-1-1- If 2m—n.j = 0, we obtain B}.C! = b—4a/. As C' = A"+ B" —
w|C' = w| C,and w | (b—4d’). But w # 2 and w is coprime with a’ then
coprime with a, then w tb. The conjecture is verified.

** B-2-1-1-2-1-1-2- If 2m — nj > 1, in this case with the same method, we obtain
w|C'= w|Candw]| (b—4d) and w { @ and w { b. The conjecture (34) is
verified.

¥ B-2-1-1-2-1-1-3- If 2m —nj < 0 = W 2"BP.Cl = b —4d. Asw | C
using C! = A™ + B" then C = wh.Cy = Wi 2mthipn ol = p — 4a’. If
n.j —2m+h.l < 0= w | BPC!, it follows the contradiction that w{ By or w { C.
Then if n.j —2m+ h.l > 0 and w | (b — 4a") with w, a,b coprime and the conjecture

is verified.

#% B-2-1-1-2-1-2- We obtain the same results if w | C'.
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*% B-2-1-1-2-2- Now, p’ = w?™ and w not prime, we write w = w{.Q with wy prime
tQand f > 1 an integer, and wy | A. Then B"C! = wff'mQQm(b —4d) = w |
(B"CY) = w1 | B" or wy | C.

#% B-2.1-1-2-2-1- If wy | B* = w; | B = B = w!B; with w; { Bi, then
Br.Cl = 2™ mmiqg2m(p — 44'):

¥ B-2-1-1-2-2-1-1- If 2f.m — n.j = 0, we obtain B}.C' = Q?*™(b — 4ad'). As
Cl=A"4+B" = w |C' = w | C = w; | (b—4d). But wy # 2 and w; is
coprime with a’, then coprime with a, we deduce wy t b. Then the conjecture
is verified.

¥ B-2-1-1-2-2-1-2- If 2f.m —n.j > 1, we have w1 | C' = w1 | C = w; | (b — 4d’)
and w; t a and wy 1 b. The conjecture is verified.

¥ B-2-1-1-2-2-1-3- If 2f.m —n.j < 0 = w7 2™/ Bp.Cl = Q2™ (b —4a/). Asw | C
using C! = A™ + B", then C = w}.C; = wnJ—2mJHhipn CL = O?m(h — 4a'). If
n.j —2m.f +h.l < 0= w; | BPC!, it follows the contradiction with wy { By and
wi 1 Cy. Then if n.j —2m.f 4+ h.l > 0 and w; | (b — 4a’) with wy,a,b coprime and
the conjecture is verified.

#* B-2-1-1-2-2-2- We obtain the same results if wy | C*.
#* B-2-1-2- If 2 | py, then 2 | p; = 2{a’ = 2{a. But p’ = p?.

*k B-2-1-2-1- If p; = 2, we obtain A™ = 4a” = 2 | a” as m > 3, then the
contradiction with a,b coprime.

% B-2-1-2-2- We suppose that p; is not prime and 2 | p1, as A™ = 2a”py, p; is writ-
ten as p; = 2" W™ = p’ = 22m~22™ It follows B"C! = 22" 22 (b — 4a') =
2| B"or2|C.

¥ B2-1-2-2-1- If 2 | B® = 2 | B, as 2 | A, then 2 | C. From B"C! =
22m=2,2m(p — 4a'), it follows if 2 | (b — 4a’) = 2 | b but as 2 { @/, there is no
contradiction with a, b coprime and the conjecture is verified.

% B-2-1-2-2-2- If 2 | C!, using the same method as above, we obtain the identical
results.
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** B-2-2- p/,a’ are supposed not coprime. Let w be a prime integer so that w | o
and w | p'.

¥ B-2-2-1- We suppose firstly w = 3. As A?™ =4a'p’ = 3| A, but 3| p' = 3| p,
asp = A’ 4+ B2 4 AMB" — 3 | B> = 3 | B, then 3 | C!' = 3 | C. We
write A = 3'A;, B = 3'B;, C = 3"C; and 3 coprime with A;, B; and C} and p =
32im A3m 4 32nj p2n y 3imtjn Am B — 38 g with k = min(2im, 2jn, im+jn) and 3 { g.
We have also (w = 3) | @ and (w = 3) | p’ that gives a = 3%a; = 3’ = @’ = 3% lay,
31 a; and p' = 3kpy, 34 p1 with A%2™ = 4da'p’ = 32M A" = 4 x 3971+ gy .p) =
a+p—1=2im. Asp=bp = b.3"p; = 3*.b.p;. The exponent of the term 3 of
p is k, the exponent of the term 3 of the left member of the last equation is p. If
3| b it is a contradiction with a,b coprime. Then, we suppose that 3 { b, and the
equality of the exponents: min(2im,2jn,im+ jn) = u, recall that a4+ p—1 = 2im.
But B"C! = p/(b — 4a’) that gives 3"+ BrCE = 3#p; (b — 4 x 3(@=Da;). We have
also A™ + B" = C! gives 3™M AT + 3" B} = 3MCL. Let € = min(im, jn), we have
e = hl = min(im, jn). Then, we obtain the conditions:

(116) k = min(2im, 2jn,im + jn) = p
(117) a+p—1=2im
(118) € = hl = min(im, jn)
(119) 3rath grot — 3ky, (b — 4 x 3(@ V)

** B-2-2-1-1- « = 1 = a = 3a; = 3d’ and 31 a1, the equation becomes:
W= 2im
and the first equation is written as:
k = min(2im, 2jn,im + jn) = 2im
- If k = 2¢m, then 2im < 2jn = im < jn = hl = im, and gives pu = 2im =
nj+hl =im—+nj = im = jn = hil. Hence 3 | A,3 | B and 3 | C and the conjecture

is verified.

-If k =2jn = 2jn = 2im = im = jn = hl. Hence 3 | A,3 | B and 3 | C' and the
conjecture is verified.

-If k=1im+ jn = 2im = im = jn = € = hl = im = jn case that is seen above
and we deduce that 3| A,3 | B and 3 | C, and the conjecture is verified.

% B-2-2-1-2- > 1= a>2and a’ =3 lqa.
-If k= 2im = 2im = p, but p = 2im + 1 — « that is impossible.
-Ifk=2jn=pu= 2jn =2im+ 1 — a. We obtain 2jn < 2im = jn < im =
2jn < im + jn, k = 2jn is just the minimum of (2im,2jn,im + jn). We obtain
jn = hl < im and the equation becomes:

BPCL = pi(b—4 x 307 Vgy)
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The conjecture is verified.

-Ifk=im+ jn <2im = jn <im and k = im + jn < 2jn = im < jn =
im=jn=—k=1m+4 jn =2im = p but u = 2im + 1 — « that is impossible.

-Ifk =im+ jn < 2im = jn < im and 2jn < im + jn = k that is a
contradiction with k& = min(2im,2jn,im + jn).

** B-2-2-2- We suppose that w # 3. We write a = w®a; with w t ay and p’ = whp;
with w { p1. As A?™ = 4d/p’ = 4w TF.a1.py = w | A = A = WA, w{ A;. But
B"C!' = p/(b—4d') = whp1(b—4d') = w | B"C! = w | B" or w | C".

** B-2-2-2-1-w | B" = w | B= B = wBj and w { B;. From A™ + B" =
Cl= w|C = w|C. Asp=1bp = whbp; = F(WHm-kAIm 4 y2in-kp2n 4
wmHIn=k Am B with k = min(2im, 2jn, im + jn). Then :

- If 4 =k, then w1 b and the conjecture is verified.

- If k> p, then w | b, but w | a we deduce the contradiction with a,b coprime.

- If k < p, it follows from :

w“bpl — wk(w%mka%m + w2jn7kB%n + wim+jnka71nB?)
that w | A1 or w | By that is a contradiction with the hypothesis.
¥ B-2-2-2-2-If w | C!' = w | C = C = w"C; with wt C;. From A™ + B" =

C' = w | (C' = A™) = w | B. Then, we obtain the same results as B-2-2-2-1-
above.

2.5.5. Case b=2p and 3 |a

We have :
0 a 3d dp.a  4p 3d
2 2m ! m\2 /
cos 3 b 2]) 3b 3 2p “ ( ) ‘ “ | “

Then 2 | a and 2 | b that is a contradiction with a,b coprime.

2.5.6. Case b=4p and 3 | a

We have :

s
w
g\

0 3a 4p. 4
005272927@:} 2m:ﬂ:

_ m\2 __ 2
30 4p 3D =a=")"=a

o]
£

with A™ =a”
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Let us calculate A™B"™, we obtain:

3 20 2 0 3 26 !
A"B" = pV'3 sine — Peos?? = pV3 sine. — %L
3 3 3 3 3 3 2
AZm 3 .20
AMB" 5 = p\:{.sm?)
Let:
2 20
(120) A2M 4 2 Am B = pg/gsm?)
2v/3 . 20
The left member of (|120)) is an integer and p is an integer, then \?)[sin?) will be
written as :
2v3 20 Kk
sin— = —
3 3 ko

where ki, ko are two integers coprime and ke | p = p = ko.k3.

** C-1- Firstly, we suppose that k3 # 1. Then :

AP 4 2AMB™ = kg.ky
Let 1 be a prime integer and p | ks, then pu | A™(A™ + 2B") = u | A™ or
p| (A™+2B").

G-I p | (A" = a”) = p | (@ = d) = pu | B3d = a). As
pl ks = pu|p=p| (4p=>0), then the contradiction with a,b coprime.
K C-1-2-If | (A™ +2B") = pt A™ and p 1 2B"™, then:
(121) w#2 and piB"
| (A™+2B"), we write:
A™ 4+ 2B" = pu.t’

Then:

A™ 4 B™ = ut’ — B = A*™ 4 B?" 4+ 2A™B" = *t"”? — 2t/ uB™ + B*"

— p=1t"?u? - 2'B"u + B"(B" — A™)
As b =4p = 4ko.ks and p | k3 then pu | b = 3y so that b = p.u/, we obtain:
W= p(4ut’® — 8t B™) + 4B"(B" — A™)

The last equation implies p | 4B™(B™ —A™), but p # 2 then p | B™ or pu | (B™— A™).

** (C-1-1-1- If p | B™ = then the contradiction with ((121)).
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K C-1-1-2- If p | (B™ — A™) and using u | (A™ + 2B"™), we have :

p|B"
w|3B" =< or
p=3

*k (C-1-1-2-1- If i | B™ then the contradiction with (121)).
** (C-1-1-2-2- If = 3, then 3 | b, but 3 | a then the contradiction with a,b coprime.

** (C-2- We assume now that k3 = 1, then:

(122) A?™ 4 2A™B" =k
p=ke
2V3 20 Ky
sin— = —
3 3 P
We take the square of the last equation, we obtain :
4 2
fsin2% = kt
3 3 p?
16 2
—sm2gcos2g = M
3 3 3 p?

Finally:
(123) d (4p — 3a') = k3
but @’ = a”?, then 4p — 3’ is a square. Let :
N=4p—-3d=4p—-a=b—a

The equation becomes :
(124) a”?N =k =k = a’\
taking the positive root. Using , we have:

ky = A™(A™ +2B") =a”(A™ + 2B")
Then :

A™ 4 2B" = A

92

Now, we consider that b —a = A2 = A2 + 3a”% = b, then the couple ()\,a”) is a

solution of the Diophantine equation:
(125) X?+3Y%=b

with X = XA and Y = ¢”. But using one theorem on the solutions of the equation
given by (125]), b is written under the form (see theorem 37.4 in [3]):

2 T
b = 228 X 3t,p§1 . .pggqlsl ... q%s
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where p; are prime integers so that p; = 1(mod 6), the ¢; are also prime integers so
that ¢; = 5(mod 6). Then, as b =4p :
-Ift>1=3|b, but 3| a, then the contradiction with a, b coprime.

** (C-2-2-1- Hence, we suppose that p is written under the form:

tg 251 28y

p=p' o gat g
with p; = 1(mod 6) and ¢; = 5(mod 6). Finally, we obtain that :
(126) p = 1(mod 6)
We will verify if this condition does not give contradictions.

We will present the table of the value modulo 6 of p = A*™ + A™B™ + B?" in
function of the values of A™, B"(mod 6). We obtain the table below:

TABLE 1. Table of p (mo
A™.B" 0 1 2
0

(oW
=

[y e Y TG IO BN | I
|| ||| | en

3
3
1
1
3
1
1

gl |lwl vl ~lo
(S S Y LY I

Sy RS ISy IS Y CY [
S I Y ) S

¥ (C-2-2-1-1- Case A™ = 0(mod 6) = 2 | (A™ =a”) = 2| (' = a"?) = 2] q,
but 2 | b, then the contradiction with a,b coprime. All the cases of the first line of
the table [I] are to reject.

** (C-2-2-1-2- Case A™ = 1(mod 6) and B" = 0(mod 6), then 2 | B" = B" = 2B’
and p is written as p = (A™ + B')? + 3B? with (p,3) = 1, if not 3 | p, then 3 | b,
but 3 | a, then the contradiction with a,b coprime. Hence, the pair (A™ + B’, B')
verifies the equation:

(127) (A" + B')?+3B"% =p

that we can write it as:

(128) (A™+B')?> - B? =p—4B? = A 4 B*™ + A"B" — B> = C'A™ = N
Then (A™ + B’, B') is a solution of the Diophantine equation:

(129) 2 —y? =N
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where N = C'A™ = 1(mod 6). Let Q(N) be the number of the solutions of
and 7(N) is the number of suitable factorization of N, then we recall the following
result concerning the solutions of the equation (see theorem 27.3 in [2]):

- If N =2(mod4), then Q(N) = 0.

-If N=1or N =3(mod4), then Q(N) = [7(N)/2].

-If N =0(mod4), then Q(N) = [7(N/4)/2].

As N = C'A™ = 1fmod6) = N is odd, the cases Q(N) = 0 and
Q(N) [T(N/4)/2] are rejected, then N = 1 or N = 3(mod4), it follows
Q(N) = [r(N)/2].

As A™ + B', B’ is a couple of solutions of the Diophantine equation ((129)), then
3 d, d positive integers with d > d’ and N = d.d’' so that :

(130) d+d =2(A™+ B')
(131) d—d =2B"=B"
We will use the same method used for the paragraph above A-2-1-2-.

*E (0-2-2-1-2-1- As C! > A™, we take d = C! and d' = A™. Tt follows:
Cl+ A™ =2(A™ + B') = 24™ + B"
C'— A™ = B" = 2B’

Then the case d = C! and d' = A™ gives a priory no contradictions.

*% (0-2-2-1-2-2- Now, we consider the case d = C'A™ and d’ = 1. We rewrite the
equations ([1304131)):

(132) C'A™ +1=2(A™ + B

(133) clA™ —1 =28

We obtain 1 = A™ it follows C! — B™ = 1, we know [4] that the only positive solu-
tion of the last equationis C = 3, B = 2,n = 3 and | = 2 < 3, then the contradiction.

** (C-2-2-1-2-3- Now, we consider the case d = clf"*lC{ where ¢1 is a prime integer
with ¢; 1 C; and C = ¢{C1, r > 1. It follows that d' = ¢;.A™. We rewrite the
equations (L30H131]):

(134) Ar1Ch e A™ = 2(A™ + B)

(135) dr=1cl — ¢, A™ = 2B’ = B"

As | > 3, from the last two equations above, it follows that ¢; | 2(A™ + B’) and
c1|(2B'). Then ¢y =2,0r ¢ | (A™+ B') and ¢; | B'.

** (C-2-2-1-2-3-1- We suppose ¢; = 2. As | > 3, from the equation (135)) it follows
that 2 | B", then 2 | (A™ =a”) = 2| (¢"? = a') = 2| (a = 3d’), but b = 4p (see
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2.5.6)), then the contradiction with a,b coprime.

*k(C-2-2-1-2-3-2- We suppose ¢ # 2, then ¢; | (A™ + B') and 1 | B'. It
follows ¢; | A™ and ¢; | (B® = 2B') = ¢ | p = & | b = 4p. From
c1 | (A™m =a”) = 1 | (@”? = d') => ¢1 | (a = 3d’), then the contradiction with
a, b coprime.

The other cases of the expressions of d and d’ with d,d not coprime and d > d’
so that N = C'A™ = d.d’ give also contradictions.

#% (0-2-2-1-2-4- Now, we consider the case d = a;.C' where a1 is a prime integer
with a1 t Ay and A = af Ay, r > 1. It follows that d' = aTTflA’ln. We rewrite the
equations (L30H131]):

(136) a1C 4+ a" T AT = 2(A™ + B)

(137) aCt —a" AT = 2B’ = B"

As m > 3, from the last two equations above, it follows that a; | 2(A™ + B’) and
aj | (2B'). Then a1 =2, 0r a1 | (A™ + B’) and a1 | B'.

¥ (0-2-2-1-2-4-1- We suppose a1 =2 == 2 | (A" =d") = a1 | (d"? =d) = a1 |
(a = 3d’). But b = 4p, then the contradiction with a,b coprime.

* (C-2-2-1-2-4-2- We suppose a1 # 2, then ay | (A™ + B’) and a1 | B'. Tt follows
aj | A and a; | (B" =2B') = a1 |p=a1 | b=4p. From a; | (A™ =d") =
ai | (a? = a') = a1 | (a = 3d’), then the contradiction with a, b coprime.

The other cases of the expressions of d and d’ with d,d not coprime and d > d’
so that N = C'A™ = d.d’ give also contradictions.

** (C-2-2-1-2-5- Now, let C' = ¢{C} with ¢; a prime, r > 1 and ¢; t C1, we consider
the case d = Cf and d’ = ¢’ A™ so that d > d’. We rewrite the equations (130{131)):
(138) Cl 4+ tA™ = 2(A™ + B)
(139) Ot —tAm =2B' = B

We obtain ¢[!A™ = A™ = ¢}l = 1, then the contradiction.

*k (C-2-2-1-2-6- Now, let C' = [ C} with ¢; a prime, » > 1 and ¢; t C1, we consider
the case d = C{ A™ and d’ = ¢} so that d > d’. We rewrite the equations (130}{131]):

(140) CLA™ 4 &t = 2(A™ + B)
(141) ctA™ — ' =2B' = B

We obtain ¢j! = A™ = ¢; | A", thenc¢; | A" =a” = ¢1 | (" =d) = ¢1 |
(@ =3d). Asc; | Cand ¢ | A™ = ¢; | B", it follows ¢; | (p = b), then the
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contradiction with a, b coprime.

The other cases of the expressions of d and d’ with d,d’ coprime and d > d’ so
that N = C'A™ = d.d’ give also contradictions.

Finally, from the cases studied in the above paragraph C-2-2-1-2, we have found
one suitable factorization of N that gives a priory no contradictions, it is the case
N = CL.A™ but 1 < 7(N), it follows the contradiction with Q(N) = [r(N)/2] < 1.
We conclude that the case A™ = 1(mod6) and B™ = 0(mod6) of the paragraph
C-2-2-1-2 is to reject.

*k (C-2-2-1-3- Case A™ = 1(mod6) and B™ = 2(mod6), then B™ is even, see
C-2-2-1-2-.

** (0-2-2-1-4- Case A™ = 1(mod 6) and B" = 3(mod 6), then 3 | B* = B" = 3B'.
Asp = A?™ + AmB" + B — p = 5(mod 6) #= 1(mod 6) (see (126))), then the
contradiction and the case C-2-2-1-4- is to reject.

#* (0-2-2-1-5- Case A™ = 1(mod 6) and B™ = 5(mod 6), then C' = 0(mod 6) =
2| C!, see C-2-2-1-2-.

4 (C-2-2-1-6- Case A™ = 2(mod6) = 2 | a” = 2 | a, but 2 | b, then the
contradiction with a, b coprime.

#% (0-2-2-1-7- Case A™ = 3(mod 6) and B™ = 1(mod 6), then C' = 4(mod 6) —
2| C' = C'=2C’, and C is even, see C-2-2-1-2-.

kO (C-2-2-1-8- Case A™ = 3(mod6) and B" = 2(mod6), then B™ is even, see
C-2-2-1-2-.

kO (C-2-2-1-9- Case A™ = 3(mod6) and B" = 4(mod6), then B™ is even, see
C-2-2-1-2-.

% (0-2-2-1-10- Case A™ = 3(mod 6) and B" = 5(mod 6), then C! = 2(mod 6) =
2| C! and C is even, see C-2-2-1-2-.

ik (C-2-2-1-11- Case A™ = 4(mod6) — 2 | a” = 2 | a, but 2 | b, then the
contradiction with a,b coprime.

K (0-2-2-1-12- Case A™ = 5(mod6) and B™ = 0(mod6), then B™ is even, see
C-2-2-1-2-.
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% (0-2-2-1-13- Case A™ = 5(mod 6) and B"” = 1(mod 6), then C! = 0(mod 6) =
2| C!, C is even, see C-2-2-1-2-.

¥ (-2-2-1-14- Case A™ = 5(mod 6) and B" = 3(mod 6), then C! = 2(mod 6) =
2| Cl= C'=2C', C is even, C-2-2-1-2-.

*k(C-2-2-1-15- Case A™ = 5(mod6) and B™ = 4(mod6), then B™ is even, see
C-2-2-1-2-.

We have achieved the study all the cases of the table [I] giving contradictions.

Then the case k3 = 1 is impossible.

2.5.7. Case 3 |a and b=2p', b#2 with p' | p
3|a= a=3d,b=2p with p=k.p/, then:
A2m 4-p

_4p 4.k.p' 3.

a
R — 2k.d
3D 6/ “

We calculate B"C':

B"C! = \3/; (352’7@22 - cos2g> = \S/E (3 - 4COS2§>

3.a’.

b
/ /!
B"C! = {’/ﬂ>2 <3 - 400522) = g (3 - 43: ) =Dp- (1 - 4: ) = k(p' — 2d’)

Asp=10.p/, and p’ > 1, then we have:

. 0
but {/p? = %, then using 00323 =

(142) B"C' = k(p' — 2d)
(143) and A*™ = 2k.d/

** D-1- We suppose that k is prime.

#* D-1-1- If k = 2, then we have p = 2p' = b = 2 | b, but A*™ = 4d/ = (A™)? =
A™ = 2a” with @’ = a”?, then 2 | a” = 2| (a = 3a”?), it follows the contradiction
with a,b coprime.

** D-1-2- We suppose k # 2. From A*" = 2k.a’ = (A™)? = k | a and
2| d = d =2ka? = A™ =2k.a”. Thenk | A" = k| A = A =k'".A
with i > 1 and k { A;. k"™MAP = 2ka” = 24" = k™ 1A7. From
B"C' = k(p' —2d') =k | (B"C') =k | B" or k | C".
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** D-1-2-1- We suppose that k | B = k | B= B = k’.By with j > 1 and k { B.
It follows k" —'BrC! = p' — 2d’ = p' —4ka™. Asn >3 = nj—1>2, then k| p’
but k #2 =k | (2p' =), but k | o/ = k| (3d’ = a). It follows the contradiction
with a, b coprime.

#% D-1-2-2- If k | C! we obtain the identical results.

** D-2- We suppose that k is not prime. Let w be an integer prime so that k = w?®.kq,
with s > 1, w1 k1. The equations become:
B"C' = Wi ki (p) — 2d)
and  A%™ = 2w% ky.d
** D-2-1- We suppose that w = 2, then we have the equations:
(144) A = o5t |y o
(145) B"C' = 25k (p' — 2d))

¥ D-2-1-1- Case: 2 | ' = 2| a, but 2 | b, then the contradiction with a, b coprime.

¥ D-2-1-2- Case: 21a’. As 21 ky, the equation (144)) gives 2 | A2™ — A = 2/ A,
with ¢ > 1 and 2t A;. It follows that 2im = s+ 1.

% D-2-1-2-1- We suppose that 2t (p' —2a’) = 21 p’. From the equation (145)), we
obtain that 2 | B"C! =2 | B" or 2| C".

#¥ D-2-1-2-1-1- We suppose that 2 | B* = 2 | B = B = 2/ B with 2 { B; and
j > 1, then BPC! = 2571k (p/ — 2d/):

-If s —jn > 1, then 2 | C' = 2| C, and no contradiction with C! = 2™ AT 4
2/n B and the conjecture is verified.

- If s — jn < 0, from BPC! = 2579 (p' — 2a’) = 21 C, then the contradiction
with C! = 2Mm A 4+ 2I" Bl — 2| C'.

** D-2-1-2-1-2- Using the same method of the proof above, we obtain the identical
results if 2 | C'.

** D-2-1-2-2- We suppose now that 2 | (p' — 2d') = p' — 2d’ = 2*.Q, with p > 1
and 21 Q. We recall that 21 a’. The equation ([145]) is written as:

B"C!' = 2% k1.0
This last equation implies that 2 | (B"C!) = 2| B or 2 | C".

¥ D-2-1-2-2-1- We suppose that 2 | B* = 2 | B = B = 2/B; with j > 1 and
21 B;. Then BPC! = 25+#=im |y Q:
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-Ifs+p—jn>1,then 2 | C! = 2| C, no contradiction with C! = 2™ AT 4
2/n B and the conjecture is verified.

-If s+ pu—jn <0, from BPC! = 254737k ) = 24 C!, then contradiction with
Cl=2mAm 4 2inBn — 2 | O

#% D-2-1-2-2-2- We obtain the identical results if 2 | C'.

** D-2-2- We suppose that w # 2. We have then the equations:

(146) AP = 208 ky.d
(147) B"C' = w® ky.(p) — 2d))

As w # 2, from the equation (146), we have 2 | (kj.d’). If 2 | o’ = 2 | a, but 2| b,
then the contradiction with a,b coprime.

* D-2-2-1- Case: 2ta’ and 2 | ky = k1 = 2#.Q with > 1 and 2 1 Q. From the
equation (146, we have 2 | A?™ = 2| A = A = 2'A; with i > 1 and 2{ Ay, then
2im = 1 + u. The equation ((147) becomes:

(148) B"C! = w24 Q.(p' — 2d)

From the equation (148)), we obtain 2 | (B"C') = 2| B" or 2 | C".

#* D-2-2-1-1- We suppose that 2 | B® = 2 | B = B = 2/ By, with j € N* and
21 By.

#% D-2-2-1-1-1- We suppose that 2 1 (p’ — 2a’), then we have BfC! = w*2=I"Q(p/ —
2d’):

-Ifp—jn>1=2|C" = 2| C, no contradiction with C! = 2im AT + 2i" B}
and the conjecture is verified.

-If 4 — jn <0 =24 C' then the contradiction with C! = 2™ AT 4- 2" B},

** D-2-2-1-1-2- We suppose that 2 | (p —2d') = p’ — 24’ = 2*.P, with o € N* and
21 P. Tt follows that BPC! = ws2rta—inQ p:

-If pta—jn>1= 2| C' = 2| C, no contradiction with C* = 2™ A" 42i" B}
and the conjecture is verified.

-If p+ a —jn < 0= 21 C" then the contradiction with C! = 2im AT + 2" B},

** D-2-2-1-2- We suppose now that 2 | C" = 2 | C. Using the same method
described above, we obtain the identical results.
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2.5.8. Case 3 |a and b=4p’, b# 4 with p' | p

3| a= a=3d,b=4p with p = k.p/, k # 1 if not b = 4p this case has been
studied (see paragraph [2.5.6)), then we have :

4.k.p' 3.a
12p/

A2m _ 4.p

=pa_ —kad
5D k.a

We calculate B"C":

B"C! = \?/;2 (3sin2§ - coszg) = \3/;2 (3 - 400322)

3.a"
L

, 0 a 4.0/
B”CZ—S/;?(3—400323) —§(3—43;>—p. (1— ba)—k(p’—a’)

Asp=>b.p', and p' > 1, we have :

0
but {/p? = g, then using 00525 =

(149) B"C' = k(p —d)

(150) and  AY = k.d/

** E-1- We suppose that k is prime. From A?™ = k.’ = (A™)? = k | a’ and
a =ka? = A" =ka”. Thenk | A" = k| A = A = kl.A; with i > 1
and k t Ay, k™A = ka” = a” = k™ 'AP. From B"C! = k(p/ —d') = k |
(B"C!Y) =k |B"or k| C.

** E-1-1- We suppose that k | B = k | B = B = k%.B; with j > 1 and k { B.
Then k"7 'BYC! = p/ —a'. Asnj—1>2= k| (p) —d). But k|d = k| a,
then k | p’ = k| (4p' = b) and we arrive to the contradiction that a, b are coprime.

** F-1-2- We suppose that k | C?, using the same method with the above hypothesis
k| B™, we obtain the identical results.

** E-2- We suppose that k is not prime.
** BE-2-1- We take k =4 = p = 4p’ = b, it is the case studied above.

** E-2-2- We suppose that k& > 6 not prime. Let w be a prime so that k = w?®.kq,
with s > 1, wt k1. The equations (149150 become:

(151) B"C!' = Wi ki (p) — d)
(152) and  AY = ky.d

** E-2-2-1- We suppose that w = 2.
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K E-2-2-1-1-1f 2 | o/ = 2| (3d' = a), but 2 | (4p’ = b), then the contradiction
with a, b coprime.

** E-2-2-1-2- We consider that 2 1 o/. From the equation ((152)), it follows that
2| AP = 2| A = A = 2'A; with 21 4; and:

Bncl _ 28k1 (p/ _ a/)

** E-2-2-1-2-1- We suppose that 2 1 (p' — @), from the above expression, we have
2| (B"CY) =2 | B"or2|C

#¥ }-2-2-1-2-1-1- If 2 | B* = 2 | B = B = 2/B; with 2 { B;. Then B}C' =
22imfjnk1 <p/ _ a/):

-If2im—jn > 1= 2| C' = 2 | C, no contradiction with C! = 2™ A" 4-2/" B}
and the conjecture is verified.

-If2im—jn < 0= 2¢ C', then the contradiction with C* = 2im AM 4 2IN B —
2| C.

¥ [-2-2-1-2-1-2- If 2 | C' = 2 | O, using the same method described above, we
obtain the identical results.

* E-2-2-1-2-2- We suppose that 2 | (p —d'). As24d = 2¢1p,2|(p) —d) =
p —a =2%P with « > 1 and 24 P. The equation (151)) is written as :

(153) B"C! = 25t . p = 2%mtag, p
then 2 | (B"C') = 2| B" or 2| C.

¥ E-2-2-1-2-2-1- We suppose that 2 | B* = 2 | B = B = 2/ By, with 2{ B;. The
equation becomes ByC! = 2%im+a=jng, p

-If2im+a—jn > 1= 2| C" = 2| C, no contradiction with C! =
2im AT 4 20" BT and the conjecture is verified.

- If 2im +a —jn < 0 = 2 { C! then the contradiction with C! =
2Mm AT 4 2N B — 2 | O,

¥ [-2-2-1-2-2-2- We suppose that 2 | C! = 2 | C. Using the same method
described above, we obtain the identical results.

** E-2-2-2- We suppose that w # 2. We recall the equations:

(154) AP = % ky.d!
(155) B"C!' = Wi ki (p) — d)
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** E-2-2-2-1- We suppose that w,a’ are coprime, then w t a’. From the equation
(154), we have w | A?™ = w | A = A = w'A; with wt A; and s = 2im.

** F-2-2-2-1-1- We suppose that w { (p’ — a’). From the equation ((155) above, we
have w | (B"C') = w | B" or w | C".

¥ F-2-2-2-1-1-1- If w | B = w | B = B = w/ By with w{ B;. Then BPC! =
22im—jnk1 (p/ _ a/):

-If2im—jn > 1= w | C' = w | C, no contradiction with C! = w"™A*4wI" B}
and the conjecture is verified.

-1f 2im—jn < 0 = w { C', then the contradiction with C! = wim AT +w/" B} =
w | CL

¥ [B-2-2-2-1-1-2- If w | C' = w | O, using the same method described above, we
obtain the identical results.

** E-2-2-2-1-2- We suppose that w | (p/ —a’) = w 1 p’ as w and d’ are coprime.
wl(p —d)=p —d =w*P with a > 1 and wt P. The equation ((155)) becomes :

(156) B"C! = ¥tk P = WEmOR, P
then w | (B"C!) = w | B" or w | C.

*¥ B-2-2-2-1-2-1- We suppose that w | B = w | B = B = w’/ By, with w { B.
The equation is written as BPC! = 2%mta—ing, p.

-If2im+a—jn>1 = w| C = w | C, no contradiction with C! =
WA 4+ wI" BT and the conjecture (34)) is verified.

- If 2im+ o —jn < 0 = w { C! then the contradiction with C! =
WM AT 4+ WINBY = w | C'.

¥ F-2-2-2-1-2-2- We suppose that w | O = w | C, using the same method
described above, we obtain the identical results.

¥ [-2-2-2-2- We suppose that w,a’ are not coprime, then o = w’.a” with w { a”.
The equation (154 becomes:

AP = Wkd = W Pky.a”
We have w | A?™ = w | A = A = w'A; with w{ A and s + 3 = 2im.

%k E-2-2-2-2-1- We suppose that w1 (p/ — ') = w{p' = w1t (b = 4p’). From the
equation (155)), we obtain w | (B"C!) = w | B" or w | C".
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#¥ [-2-2-2-2-1-1- If w | B® = w | B = B = w/B; with w { B;. Then B}C! =
2570k (p/ — a'):

-If s—jn>1= w|C!' = w| C, no contradiction with C! = w™ A" + wi" B}
and the conjecture is verified.

-If s — jn < 0 = w { O, then the contradiction with C! = wim AP + wW" B} —>
w | C.

¥ [(-2-2-2-2-1-2- If w | C' = w | O, using the same method described above, we
obtain the identical results.

¥ [-2-2-2-2-2- We suppose that w | (p/ —a/ = p'—wP.a”) = w | p = w | (4p' = b),
but w | @’ = w | a. Then the contradiction with a,b coprime.

The study of the cases of is achieved.

2.5.9. Case 3|a and b | 4p

4 0  4p3d
a=3a’ and 4p = k1b. As A?™ = §COS2§ = nga = kia' and B"CL:

/
B"C! = f/pi2 (352'1122 - 0052§> = g (3 — 46052§> = g (3 - 43Z> = %(b — 4a')

As B"C' is an integer, we must obtain 4 | ki, or 4 | (b — 4a’) or (2 | ki and
2| (b—4d)).
*PF-1-If by =1 = b=4p: it is the case[2.5.6

¥*PF-2-1f ky =4 = p=1>: it is the case [2.5.3

¥ F-3-1f ky = 2 and 2 | (b—4a’): in this case, we have A?™ = 2d = 2 | ' = 2| a.
2| (b—4a") = 2| b then the contradiction with a, b coprime.

FEF4-1f2 | kyand 2 | (b—4d'): 2| (b—4d) = b—4d' =2°\, a and A e N* > 1
with 24 X\; 2 | ky = ki = 2k} with t > 1 € N* with 21 k] and we have:

(157) A% = 2tk d
(158) BCt = 2tk A

From the equation (157), we have 2 | A?™ = 2| A = A =2'A;,i > 1and 21 A;.
** F-4-1- We suppose that ¢ = a = 1, then the equations (157H158)) become :

(159) A% = 2k d/
(160) B"C! = k{\
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From the equation (159) it follows that 2 | ¢/ = 2 | (a = 3d’). But
b=4a 4+ 2\ = 2| b, then the contradiction with a,b coprime.

** F-4-2- We suppose that t + o — 2 > 1 and we have the expressions:
(161) AP = 2K d
(162) BCt = 22\

** F-4-2-1- We suppose that 2 | ' = 2 | a, but b = 2\ + 4a’ = 2 | b, then the
contradiction with a, b coprime.

¥ F-4-2-2- We suppose that 21 a’. From (161, we have 2 | A?" =2 | A = A =
2A; and B"C! = 272N = 2| B"C' = 2| B" or 2| C.
1

¥ F-4-2-2-1- We suppose that 2 | B". We have 2 | B = B = 2/By, j > 1 and
21 By. The equation (162) becomes B}C! = 2t+a=2=inj! X

-Ift+a—-2—jn >0= 2| C! = 2| C, no contradiction with C! =
2im A™ 4 20" BT and the conjecture is verified.

-Ift+a—2—jn < 0= 2| K\ but 21k} and 2 { A\. Then this case is
impossible.

-Ift+a—2—jn=0= B}C' = kA = 24 C! then it is a contradiction with
Cl = 2imAm 4 2inpn,

% F-4-2-2-2- We suppose that 2 | C'. We use the same method described above,
we obtain the identical results.

¥k F-5- We suppose that 4 | ky with k1 > 4 = k; = 4k}, we have :

(163) A?™ = 4kha

(164) B"C! = k(b — 4d)

** F-5-1- We suppose that kb is prime, from , we have k) | a/. From ,
Ky | (B"CY =k | B" or kb | CL.

# F.5-1-1- We suppose that k) | B® = kj | B => B = kB, with 8 > 1
and K, + By. It follows that we have kJ" 'BrC! = b — 4d/ = kb | b then the
contradiction with a,b coprime.

#* F-5-1-2- We obtain identical results if we suppose that & | C*.
¥k F-5-2- We suppose that k5 is not prime.

*k F-5-2-1- We suppose that k) and o are coprime. From (163), k5 can be
written under the form kf = q%y g5 and ¢q1 1 g2 and ¢ prime. We have
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AP — 4q%j.q%a’ — q; | A and B"C! = q%j.qg(b —4a') = q1 | B" or ¢1 | C".

#* F.5-2-1-1- We suppose that ¢, | B => ¢, | B => B = ¢/ .B; with ¢ { B;. We
obtain BPC! = ¢¥I"2(b — 4d'):

“If2j—fn>1=q | C' = ¢q1 | C but C' = A™ + B" gives also q; | C and the
conjecture is verified.

- If 25 — f.n = 0, we have BPC! = ¢3(b — 4a’), but C' = A™ + B" gives ¢q1 | C,
then q1 | (b —4a’). As ¢1 and a’ are coprime, then ¢ 1 b, and the conjecture is
verified.

-If2j— fn < 0= q1 | (b—4d") = ¢1 1 b because d’ is coprime with ¢;, and
C' = A™ + B™ gives q; | C, and the conjecture is verified.

#* F-5-2-1-2- We obtain identical results if we suppose that q; | C*.

¥k F-5-2-2- We suppose that kb, a’ are not coprime. Let ¢; be a prime so that
¢ | K, and q1 | o/. We write k, under the form ¢].go with j > 1, ¢1 t go. From
A — 4kha! = q; | A2 = q; | A. Then from B"C! = ¢lqo(b — 4d’), it follows
that q; | (B"C!) = q1 | B" or 1 | C.

** F-5-2-2-1- We suppose that ¢; | B" = q1 | B=—= B = q’f.Bl with 8 > 1 and
@1 1 B1. Then, we have ¢/’ BrC! = ¢lqa(b — 4a’) = BPC! = ¢ P o (b — 4d').
-Ifj—nB > 1, then q; | C' = ¢1 | C, but C' = A™ 4 B™ gives ¢, | C, then the
conjecture is verified.

-If j — nB = 0, we obtain BPC! = ¢o(b— 4d’), but C' = A™ + B™ gives q; | C, then
q1 | (b—4ad") = ¢1 | b because q1 | @ = ¢1 | a, then the contradiction with a,b
coprime.

-Ifj—-np<0= q | (b—4d) = ¢ | b, because q1 | «’ = q1 | a, then the
contradiction with a,b coprime.

#* F_5-2-2-2- We obtain identical results if we suppose that q; | C*.

*EF-6-1f4 4 (b—4ad’) and 4 1 ky it is impossible. We suppose that 4 | (b—4a’) = 4 | b,
and b—4a’ = 4'.g , t > 1 with 41 g, then we have :

A2m = k:la'
B"C! = k.47 g

**% F_6-1- We suppose that k; is prime. From A?™ = kia’ we deduce easily that
ki | a’. From B"C! = k1.4~ 1.g we obtain that k | (B"C') =k, | B” or k; | C".

* F-6-1-1- We suppose that ki | B" = ki | B = B = k{.By with j > 0 and
ki 1 By, then K BpCl = kyat-lg — k7 7'BpCl = 4719 But n > 3 and
j > 1, then n.j —1 > 2. We deduce as k; # 2 that ky | g = k1 | (b — 4d’), but
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ki | a’ = k1 | b, then the contradiction with a,b coprime.
** F-6-1-2- We obtain identical results if we suppose that k1 | C*.

** F-6-2- We suppose that k; is not prime # 4, (k1 = 4 see case F-2, above) with
41 k.

** F-6-2-1- If ky = 2k’ with k¥’ odd > 1. Then A*™ = 2k'a’ = 2 | ' = 2| a, as
4 | b it follows the contradiction with a, b coprime.

** F-6-2-2- We suppose that ki is odd with k1 and a’ coprime. We write k1 under
the form k; = ¢].q2 with q1 { g2, ¢1 prime and j > 1. B"C! = ¢].qu4""'g = ¢q1 | B"
or q1 | C.

** F-6-2-2-1- We suppose that ¢; | B" = ¢1 | B— B = q{.Bl with ¢1 + B;. We
obtain BFC! = q{ff'"q24t_lg.

-Ifj—fn>1=q | C'= q1 | C, but C' = A™ 4 B" gives also ¢; | C and the
conjecture is verified.

-If j — fn = 0, we have BJC! = ¢24'"1g, but C! = A™ + B" gives ¢q; | C, then
q1 | (b—4a"). As ¢1 and o’ are coprime then ¢ 1 b and the conjecture is verified.
-Ifj— fn<0= q | (b—4d") = q1 1 b because q,a’ are primes. C! = A™ + B"
gives q1 | C and the conjecture (34) is verified.

#* F-6-2-2-2- We obtain identical results if we suppose that q; | C*.

** F-6-2-3- We suppose that ki and o’ are not coprime. Let ¢; be a prime so
that ¢; | k1 and ¢1 | /. We write k; under the form q{.qg with g1 t ¢2. From
AP = k! = q | AP™ = ¢ | A. From B"C! = q{qg(b — 4d’), it follows that
q1 | (B"CY) = q1 | B" or ¢, | C".

** F-6-2-3-1- We suppose that ¢ | B" = ¢q1 | B=— B = qlﬁ.Bl with 8 > 1 and
q1 1 B1. Then we have q?ﬁB{LCl = q{qg(b —4ad') = BPC! = q{_"ﬁqg(b —4d):

-Ifj—nB > 1, then q1 | C' = ¢1 | C, but C' = A™ 4 B™ gives q; | C, and the
conjecture is verified.

-1If j—npB = 0, we obtain BJC! = g2(b—4a’), but q; | A and ¢; | B then ¢; | C and
we obtain ¢ | (b —4a’) = ¢1 | b because q1 | @’ = q1 | a, then the contradiction
with a, b coprime.

-Ifj—nB < 0= q1 | (b—4d) = ¢ | b, then the contradiction with a,b
coprime.

#* F-6-2-3-2- We obtain identical results as above if we suppose that ¢; | C'.
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2.6. Hypothése: {3 |p and ©b|4p}

2.6.1. Case b=2and 3 |p

3| p=p=3p with p’ #1 because 3 < p, and b = 2, we obtain:
dp.a  4.3p'.a 4.p.a
A% — = = =27
3b 30 2 p-a

As:
1 0 3 0 1
Z<0032§:9:g<1:>1<2a<3:>a:1:>0032§:§

b
but this case was studied (see case [2.4.1.2)).

2.6.2. Caseb=4 and 3 |p

we have 3 | p = p = 3p’ with p/ € N*| it follows :

dp.a  4.3p'.a
A2m:7: pr— /'
3 3x4 P
and: ) p 5
Z<cos2§:%:%<1:>1<a<3:>a:2

as a, b are coprime, then the case b =4 and 3 | p is impossible.

2.6.3. Case: b#2,b#A4,b#3,b|pand 3|p

As 3| p, then p = 3p’ and :

Az 20 _Apa _Ax e dpa

3 3 30 3 b b
We consider the case: b | p’ = p' = bp” and p” # 1 (If p” = 1, then p = 3b, see
paragraph Case k' = 1). Finally, we obtain:
_ 4bpa
b
** G-1- We suppose that p” is prime, then A?™ = 4ap” = (A™)?> = p” | a. But
B"C!' = p”(3b — 4a) = p” | B" or p” | C*.

A%m =4dap”; B"C'=p”.(3b - 4a)

# G1-1- If p” | B" = p” | B = B = p’B; with B, € N*. Then
p""1BPC! = 3b—4a. Asn > 2, then (n—1) > 1 and p” | a, then p” | 3b = p” = 3
or p” | b.

¥ G-1-1-1- If p” = 3 = 3 | a, with a that we write as a = 3a/?, but
A™ = 6a) = 3 | AM = 3 | A = A = 34, then 3" AP = 2d/ = 3 |
a = a' =3a". As p""1BPC! = 3" 1BPC! = 3b — da = 3" 2BPC! = b — 36a72.
Asn >2=n—22>1, then 3| b and the contradiction with a,b coprime.
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** G-1-1-2- We suppose that p” | b, as p” | a, then the contradiction with a,b
coprime.

** (3-1-2- If we suppose p” | C!, we obtain identical results (contradictions).

** G-2- We consider now that p” is not prime.

** (G-2-1- p”,a coprime: A?™ = dap” = A™ = 2a’.p; with a = /* and p” = p?,

then @, p; are also coprime. As A™ = 2a’.py, then 2 | a’ or 2 | py.
** (3-2-1-1- We suppose that 2 | @/, then 2 | o’ = 2{ p1, but p” = p?.
** G-2-1-1-1- If py is prime, it is impossible with A™ = 2d’.p;.

** (3-2-1-1-2- We suppose that p; is not prime so we can write p; = W™ = p” =
w?™. Then B"C! = w?™(3b — 4a).

¥ (3-2-1-1-2-1- If w is prime, w # 2, then w | (B"C') = w | B" or w | C".

#* G-2-1-1-2-1-1- If w | B® = w | B = B = w/B; with w { Bj, then
Bp.C! = w?™=" (3b — 4a).

¥ (G-2-1-1-2-1-1-1- If 2m — n.j = 0, we obtain B}.C' = 3b — 4a. As C' =
AM 4 B" = w | C' = w | C, and w | (3b — 4a). But w # 2 and w, a’ are coprime,
then w, a are coprime, it follows w t (3b), then w # 3 and w { b, the conjecture
is verified.

o G-2-1-1-2-1-1-2- If 2m — nj > 1, using the method as above, we obtain
w|C'= w|Candw | (3b—4a) and w{ a and w # 3 and w { b, then the conjecture
(34)) is verified.

O G-2-1-1-2-1-1-3- If 2m — nj < 0 = w™~2mBr.Cl = 3b — 4a. From
A"+ B" = C' = w | C' = w | O, then C = w".Cy, with w { Cy, we ob-
tain wnI—2mHhipe Ot = 3b — da. If n.j —2m + hl < 0 = w | B}C! then the
contradiction with w t By or wt Cy. It follows n.j —2m + h.l > 0 and w | (3b — 4a)
with w, a, b coprime and the conjecture is verified.

#% (3-2-1-1-2-1-2- Using the same method above, we obtain identical results if w | C*.

*% (3-2-1-1-2-2- We suppose that p” = w?™ and w is not prime. We write w = w{.Q
with wy prime { ©, f > 1, and wy | A. Then B"C! = w%f'mQQm(Sb —4da) = wy |
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(B"C") = wy | B" or wy | CL.

% G-21-1-2-2-1- If wy | B" = w; | B = B = w{By with w1 { Bi, then
Bp.Cl = ™M Q2 (3h — da):

0 G-2-1-1-2-2-1-1- If 2f.m — n.j = 0, we obtain B}.C' = Q?™(3b — 4a). As
Cl=A"4+B" = w; | C' = w; | C, and wy | (3b —4a). But wy # 2 and wy, d’ are
coprime, then w, a are coprime, it follows wy 1 (3b), then wy # 3 and w; 1 b, and the
conjecture is verified.

¥ (G-2-1-1-2-2-1-2- If 2f.m — n.j > 1, we have w; | C' = wy | C and wy | (3b — 4a)
and w; ta and wy # 3 and wy 1 b, it follows that the conjecture is verified.

K (3-2-1-1-2-2-1-3- I 2f.m—n.j < 0 = W2/ Br Ol = 2™ (3b—4a). Aswy | C
using C' = A™ + B", then C = wf.Cy = w™Ii—2mfHhipn b — 2™ (3b — 4a).
If n.j —2m.f + hl < 0 = w; | BYC!, then the contradiction with w; t By and
w1 1 Ci. Then if n.j —2m.f + h.l > 0 and wy | (3b — 4a) with wq,a,b coprime and
the conjecture is verified.

#* (3-2-1-1-2-2-2- Using the same method above, we obtain identical results if w; | C'.
#* (3-2-1-2- We suppose that 2 | p1: then 2 | p; = 2tad’ = 21{a, but p” = p?.

** (G-2-1-2-1- We suppose that p; = 2, we obtain A™ = 4a’ = 2 | d/, then the
contradiction with a,b coprime.

** (G-2-1-2-2- We suppose that p; is not prime and 2 | p;. As A™ = 2d'p;, p; can
written as p; = 2" W™ = p” = 22" 2y?™ Then B"C! = 2220, (3b —4a) =
2| B"or2|CL

** (3-2-1-2-2-1- We suppose that 2 | B" = 2 | B. As 2 | A, then 2 | C.
From B"C! = 22m=2?™(3b — 4a) it follows that if 2 | (3b — 4a) = 2 | b but
as 2 a there is no contradiction with a, b coprime and the conjecture is verified.

** (3-2-1-2-2-2- We suppose that 2 | C', using the same method above, we obtain
identical results.

** (3-2-2- We suppose that p”, a are not coprime: let w be a prime integer so that
wl|aand w|p”
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#* (3-2-2-1- We suppose that w = 3. As A?™ = 4ap” = 3 | A, but 3 | p. As
p= A 4+ B 4 AmB" — 3 | B> = 3 | B, then 3 | C! = 3 | C. We
write A = 3'A;, B = 3/By, C = 3"C, with 3 coprime with A;, B; and C; and
p = 3%mAm 4 320 p2n y gimtin Ampr — 3k g with k = min(2im, 2jn, im + jn) and
31 g. We have also (w = 3) | @ and (w = 3) | p” that gives a = 3%, 3 { a1 and
p” = 3Mp1, 31 p1 with A%™ = dap” = 32M A" = 4 x 3%TF.a1.p; = a + p = 2im.
As p = 3p’ = 3b.p” = 3b.3*p; = 3*#tTL.b.p1, the exponent of the factor 3 of p is k,
the exponent of the factor 3 of the left member of the last equation is y + 1 added
of the exponent 8 of 3 of the term b, with 8 > 0, let min(2im,2jn,im + jn) =
p+ 14 B and we recall that o + p = 2im. But B"C' = p”(3b — 4a), we obtain
3i+h) grot = 341y (b — 4 x 3(eVay) = 3441 p (38b; — 4 x 3(>=Vay), 31 by, We
have also A™ + B" = C! = 3" AP + 37" B? = 3MCL. We call € = min(im, jn), we
have € = hl = min(im, jn). We obtain the conditions:
(165) k = min(2im,2jn,im +jn) =pu+ 1+ 0
(166) a+p=2im
€ = hl = min(im, jn)
3lnathh prot — gutly, (39, — 4 x 3107 Vay)
** G-2-2-1-1- a = 1 = a = 3a; and 3 { a;, the equation (166) becomes:
14+ p=2im
and the first equation ((165)) is written as:
k = min(2im,2jn,im + jn) = 2im +
-If k = 2im = B = 0 then 3 { b. We obtain 2im < 2jn = im < jn, and
2im < im + jn = im < jn. The third equation gives hl = im and the last
equation gives nj + hl = p+ 1 = 2im = im = nj, then im = nj = hl and
BPCY = p1(b—4ay). As a,b are coprime, the conjecture is verified.

-If Kk = 2jn or kK = im + jn, we obtain § = 0,im = jn = hl and
BPC! = p1(b — 4ay1). As a,b are coprime, the conjecture (34) is verified.

** G-2-2-1-2-a> 1= a > 2.

-Ifk=2im= 2im=pu+1+ 05, but 4 = 2im — « that givesa=14+>2 =
B # 0= 31b, but 3| a then the contradiction with a,b coprime.

Sfk=2n=p+1+B<2im=pu+1+B<pu+ta=1+p<a=B>1.
If 3>1=3]|bbut 3| a, then the contradiction with a,b coprime.

-Ifk =im+jn = im+jn < 2im = jn < im, and im+jn < 2jn = im < jn,
then im = jn. Ask =im+ jn = 2im = 1+ pu+ § and o + g = 2im, we obtain
a=14+p>2= [ >1= 3|b, then the contradiction with a,b coprime.

** (5-2-2-2- We suppose that w # 3. We write a = w®a; with w { a; and p” = wp;
with w { p1. As A?™ = 4ap” = 4w Ha1.py = w | A = A = WAy, w{ A;. But
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B"C' = p”(3b — 4a) = wpy(3b — 4a) = w | B*"C' = w | B" or w | C".

#* (3-2-2-2-1- We suppose that w | B = w | B = B = w'Bj and w { B.
From A" 4+ B" = C!' = w | C' = w | C. As p = bp/ = 3bp” = 3whbp, =
wh(wm=kA2m 4 2in=kp2n 4 imtin=k AmBR) with k = min(2im, 2jn,im + jn).
Then:

- If kK = p, then w1 b and the conjecture (34]) is verified.

- If k> p, then w | b, but w | a then the contradiction with a,b coprime.

- If k < p, it follows from:

Bw“bpl — wk(WQim—kA%m + w2jn—kB%n + wim—l—jn—kAgnB?)
that w | A1 or w | By then the contradiction with wt Ay or w1 By.
B G-2-222- Ifw | C! = w | C = C = whC; with w{ C;. From A™ + B" =

C! = w | (C' = A™) = w | B. Then, using the same method as for the case
(-2-2-2-1-, we obtain identical results.

2.6.4. Case b=3 and 3| p

As 3| p= p=3p/, We write :

3773730 3 3 3

As A?™ is an integer and a, b are coprime and coszg < 1 (see equation ), then
we have necessary 3 | p’ = p’ = 3p” with p” # 1, if not p = 3p’ =3 x 3p” =9, but
9 < (p = A? 4 B2 + A™B"), the hypothesis p” = 1 is impossible, then p” > 1,
and we obtain:

_4pla 4 x3pTa

AP = —= = =5 = dpPa; B"C'=p".(9 ~ 4a)
1 0 3
AsZ<0032§:%:§<Z:>3<4a<9:>asa>1,a:2andweobtain:
3p”"(9—4
(167) A2m :4p77a:8p77; Bncl — 14 ( 3 a’) :p77

The two last equations above imply that p” is not a prime. We can write p” as :
p” = [Licr pi* where p; are distinct primes, «; elements of N* and i € I a finite set
of indexes. We can write also p” = p{*'.q; with p; { ¢1. From (167), we have p; | A
and py | B"C' = py | B" or py | C".

** H-1- We suppose that p; | B" = B = pfl.Bl with p1 1 By and ;1 > 1. Then,
we obtain B}C! = p?lfnﬁl.ql with the following cases:

-Ifag —npr > 1= p1 | C' = p1 | C, in accord with p; | (C' = A™ + B"), it
follows that the conjecture is verified.
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-Ifag —nf =0 = B{LC’Z = q1 = p1 1 C, it is a contradiction with p; |
(A™ — B") = p; | C'. Then this case is impossible.

- If oy — nBy < 0, we obtain p?ﬂl*alB’fCl =q = p1 | q1, it is a contradiction
with p1 1 ¢1. Then this case is impossible.

#* H-2- We suppose that p; | C!, using the same method as for the case p; | B", we
obtain identical results.

2.6.5. Case 3|pand b=p

0
We have cos’>— = a_ and:
3 b p

cos —=
3 3 3 p 3

As A?™ is an integer, it implies that 3 | a, but 3 | p = 3 | b. As a and b are

coprime, then the contradiction and the case 3 | p and b = p is impossible.

A2m:4£ 00 _4pa _4a

2.6.6. Case 3 |pand b=4p

3| p=p=3p, p #1 because 3 < p, then b = 4p = 12p'.
4p ,0 4pa a

= =—-=-=3
3973730 3 @
as A%™ is an integer. But 3 | p = 3 | [(4p) = b], then the contradiction with a,b

coprime and the case b = 4p is impossible.

2.6.7. Case 3 |pand b=2p

3| p=p=3p, p #1 because 3 < p, then b = 2p = 6p'.
4p 0 4pa 2a
3°°37 30 3 la
as A?™ is an integer. But 3 | p = 3| (2p) = 3 | b, then the contradiction with
a,b coprime and the case b = 2p is impossible.

2.6.8. Case 3| p and b # 3 a divisor of p

We have b =p’ # 3, and p is written as p = kp’ with 3| k= k =3k and :
4p 0 4p a
AQm — £ 27 =2~ = 4 /
3 cos 3 3D ak
0
B"C! = g <3 — 400323) =K' (3p' — 4a) = K'(3b — 4a)

L1- K £ 1
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** I-1-1- We suppose that &’ is prime, then A?™ = 4ak’ = (A™)2 = k' | a. But
B"Cl = K/(3b— 4a) = K | B" or K | CL.

¥ 11-1-1- If ¥ | B = kK | B = B = k'B; with By € N*. Then
Em=1BPC! = 3b — 4a. Asn > 2, then (n —1) > 1 and k' | a, then &' | 3b = k' = 3
or k' | b.

4 1-1-1-1-1- If ¥ = 3 = 3 | a, with a that we can write it under the form
a=3a" But A" =6a' = 3| A™ = 3| A = A = 3A4; with 4; € N*. Then
3MIAN = 2¢/ = 3 | d = d’ = 3a”. But K" 1BYC! = 3" 1BIC! = 3b — 4a =
3"2BPC = b—36a"%. Asn >3 = n—22>1, then 3 | b. Hence the contradiction
with a, b coprime.

** 1-1-1-1-2- We suppose that &’ | b, but k' | a, then the contradiction with a,b
coprime.

#% ]-1-1-2- We suppose that &' | C!, using the same method as for the case k' | B™,
we obtain identical results.

** 1-1-2- We consider that &’ is not a prime.

*% [-1-2-1- We suppose that k’,a coprime: A?™ = 4dak’ =— A™ = 2d'.p; with
a = a’? and k' = p?, then a,p; are also coprime. As A™ = 2a’.p; then 2 | a’ or
2] p1.

% 1-1-2-1-1- We suppose that 2 | @/, then 2 | ¢’ = 2{ p1, but k' = p?.
** 1-1-2-1-1-1- If py is prime, it is impossible with A™ = 2a’.p;.

** 1-1-2-1-1-2- We suppose that p; is not prime and it can be written as
p1 = w™m = k' = w?. Then B"C' = w?™(3b — 4a).

% 1-1-2-1-1-2-1- If w is prime # 2, then w | (B"C!) = w | B" or w | C".

¥ [1-2-1-1-2-1-1- If w | B" = w | B = B = w/B; with w { By, then B}.C! =
w?m=nI (3b — 4a).

-If 2m — n.j = 0, we obtain B}.C' = 3b—4a,as C' = A" + B" = w | C! =
wl|C,and w | (3b — 4a). But w # 2 and w,a’ are coprime, then w t (3b) = w # 3
and w 1 b. Hence, the conjecture is verified.

-If2m—nj > 1, using the same method, we have w | C' = w | C'and w | (3b—4a)
and w{a and w # 3 and w 1 b. Then the conjecture is verified.
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-If2m —nj < 0= W™ 2MPBP.Cl = 3b — 4a. As C' = A™ + B" = w | C then
C =wh.Cy = wni=2m+hipn Ot = 3b — 4a. If n.j —2m +hl < 0 = w | B}C!,
then the contradiction with w{ By or wt Cy. If n.j —2m+h.l > 0= w | (30 —4a)
with w, a, b coprime, it implies that the conjecture is verified.

% [-1-2-1-1-2-1-2- We suppose that w | C!, using the same method as for the case
w | B™, we obtain identical results.

#* 1-1-2-1-1-2-2- Now k&’ = w?™ and w not a prime, we write w = w{.Q with w; a
prime { Q and f > 1 an integer, and wy | A, then B"C! = w%f'mQ%”(Sb — 4a) =
wi | (B"CY) = wy | B or wy | C.

o 1-1-2-1-1-2-2-1- f wy; | B" = w1 | B = B = w{Bl with w; { Bj, then
Bp.CL = wFmmig2m (3p — 4q).

-If 2f.m —n.j = 0, we obtain B}.C' = Q?™(3b—4a). As C' = A™ + B" = w |
C!' = w1 | C, and wy | (3b — 4a). But w; # 2 and wy,a’ are coprime, then w,a are
coprime, then w 1 (3b) = w1 # 3 and wy 1 b. Hence, the conjecture is verified.

-If 2f.m —n.j > 1, we have wy | C' = w; | C and wy | (3b — 4a) and w; { a and
w1 # 3 and wy t b, then the conjecture (34]) is verified.

SIE2fm —ng < 0 = WP B Ol = 02m(3b — 4a). As C' = A™ 4+ B" —
wy | C , then C = whCy = wri—2mfrhipe ot — Q?™(3b — 4a). If
nj —2m.f + hl < 0 = w; | BPCY, then the contradiction with w; { B
and wy { C1. Then if n.j —2m.f 4+ h.l > 0 and w; | (3b — 4a) with wq, a, b coprime,
then the conjecture is verified.

% [-1-2-1-1-2-2-2- As in the case w; | B”, we obtain identical results if wy | C'.
#¥ [-1-2-1-2- If 2 | p1: then 2 | py = 2+ad’ = 2{a, but k' = p?.

*# 1-1-2-1-2-1- If p; = 2, we obtain A™ = 4a’ = 2 | d/, then the contradiction with
21a’. Case to reject.

** 1-1-2-1-2-2- We suppose that p; is not prime and 2 | p;. As A™ = 2d/p,
p1 is written under the form p; = 27 lwm — p% = 22m=242m  Then
B"C' = k/'(3b — 4a) = 22 2w?*™(3b — 4a) = 2| B" or 2| C.

¢ 11-2-1-2-2-1- If 2 | B" = 2 | B,as 2 | A = 2 | C. From B"C' =
22m=24y2m(3b — 4a) it follows that if 2 | (3b — 4a) == 2 | b but as 2 { a, there is no
contradiction with a, b coprime and the conjecture is verified.
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% 1-1-2-1-2-2-2- We obtain identical results as above if 2 | C*.

** 1-1-2-2- We suppose that £/, a are not coprime: let w be a prime integer so that
w|aandw | p?.

#* [-1-2-2-1- We suppose that w = 3. As A?™ = 4ak’ = 3 | A, but 3 | p. As
p= A’ 4 B 4 A"B" — 3 | B = 3 | B, then 3 | C' = 3 | C. We
write A = 3’4y, B = 3'By, C = 3"C; with 3 coprime with A;, B; and C; and
p = 3%mAIm 4 32nj g2n 4 gimtin Am B — 35 g with s = min(2im, 2jn, im + jn) and
31 g. We have also (w = 3) | a and (w = 3) | &’ that give a = 3%a4, 3 { a1 and
k' = 3tpy, 31 po with A?™ = 4ak’ = 3%MmA2™ = 4 x 39T q1.py = o + p = 2im.
As p = 3p' = 3b.k' = 3b.3"py = 3*T1.b.py. The exponent of the factor 3 of p is s, the
exponent of the factor 3 of the left member of the last equation is u+ 1 added of the
exponent [ of 3 of the factor b, with 5 > 0, let min(2im, 2jn,im + jn) = p+ 1+ 5,
we recall that a 4+ p = 2im. But B"C! = k/(4b — 3a) that gives 3 +th)prct =
3t (b — 4 x 30 Vay) = 30+, (38h — 4 x 3@ Day), 3 + by. We have also
A™ 4 B™ = C! that gives 3" AP + 3" B} = 3MCL. We call € = min(im, jn), we
obtain € = hl = min(im, jn). We have then the conditions:

(168) s = min(2im,2jn,im +jn) =pu+ 1+
(169) a+p=2im
(170) € = hl = min(im, jn)
(171) 3mithl) pnol — gutlp, (38h) — 4 x 3(Ngy)

## 1-1-2-2-1-1- « = 1 = a = 3a; and 3 { a;, the equation becomes:
14 p=2im
and the first equation is written as :
s = min(2im, 2jn,im + jn) = 2im +

-If s =2im = f =0 = 31{0b We obtain 2im < 2jn = im < jn, and
2im < im + jn = im < jn. The third equation gives hl = im. The last
equation gives nj + hl = p+ 1 = 2im = im = jn, then im = jn = hl and
B}CY = pa(b—4ay). As a,b are coprime, the conjecture is verified.

-If s = 2jn or s = im + jn, we obtain § = 0,im = jn = hl and
BYCY = pa(b — 4a1). Then as a,b are coprime, the conjecture is veri-
fied.

*11-2-2-1-2-a> 1= a > 2.
-Ifs=2im=2im=pu+14+8,but u=2im—aitgivesa=1+>2= g #
0 = 3| b, but 3 | a then the contradiction with a,b coprime and the conjecture

is not verified.
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Ifs=2n=p+148<2im= p+1+<put+a=140<a=p=1.1f
8 =1= 3| bbut 3| a, then the contradiction with a, b coprime and the conjecture
is not verified.

-If s =im+jn = im+jn < 2im = jn <im, and im+jn < 2jn = im < jn,
then im = jn. As s = im+jn =2im =14+ pu+ B and a + u = 2im it gives
a=14+p5>2= f>1= 3|b, then the contradiction with a,b coprime and the
conjecture is not verified.

** 1-1-2-2-2- We suppose that w # 3. We write a = w®a; with w t a; and k' = whps
with w { pa. As A?™ = dak! = 4w H.a1.py = w | A = A = w'Ay, w{ A;. But
B"C! = K'(3b — 4a) = whpy(3b — 4a) = w | B"C' = w | B or w | C.

#*11-2-22-1-w | B* = w | B= B" = w/Bj and w { B;. From A™ + B" =
Cl = w | C' = w | C. Asp = bp = 3bk = 3whbpy = w(wW?m=sA?m 1
w2n=s BIn 4 yim+in=s Am B with s = min(2im, 2jn, im + jn). Then:

- If s = p, then w t b and the conjecture is verified.

- If s > p, then w | b, but w | a then the contradiction with a,b coprime and the
conjecture is not verified.

- If s < p, it follows from:

3w“bp1 — ws(WQim—sA%m + w2jn—sB%n + wim-{—jn—sAgnB?)
that w | Ay or w | B that is the contradiction with the hypothesis and the
conjecture is not verified.

¥ 11-2-22-2- fw | C' = w | C = C = w'Cy with w { C;. From
A"+ B" = C' = w | (C' = A™) = w | B. Then we obtain identical re-
sults as the case above 1-1-2-2-2-1-.

*k 1.2- We suppose k' = 1: then ¥/ = 1 = p = 3b, then we have A?>™ = 4q =
(2a')? = A™ = 2d’, then a = a'? is even and :

2
A"B" = 2\3/50055\3/5 <\/§sin9 — cose) = Msm—e —2a
3 3 3 3 3
and we have also:
2 2 2
(172) A2M 4 2AM BN = p;gsm:f = 2b\/§sz’n§‘9

The left member of the equation (172)) is a naturel number and also b, then 2v/3sin—

can be written under the form :
20k
2V 3sin— = —
V3sin 3 "

where k1, ko are two natural numbers coprime and ko | b = b = ko.k3.
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#%1.2-1- k' = 1 and k3 # 1: then A?™ +2A™B™ = k3.k;. Let u be a prime integer
so that p | ks. If u=2=2|b, but 2| a, it is a contradiction with a,b coprime. We
suppose that p # 2 and p | k3, then o | A™(A™+2B") = p | A™ or | (A™+2B").

HL2-1-1-p | A™: T p | A™ = pu | A2 = p|da=p|a Aspl| ks = p|b,
the contradiction with a, b coprime.

RRT-2-1-2- | (A" +2B™): If p| (A™ 4 2B™) = ut A™ and p 1 2B", then p # 2
and put B™. p| (A™ 4+ 2B"™), we can write A™ + 2B" = p.t'. Tt follows:
A™ 4+ B" =yt — B" = A*™ 4+ B®" 4+ 2A™B" = i*t"”* — 2t/ uB™ + B*"
Using the expression of p, we obtain:
p=1t?u*—2'B"u+ B"(B" — A™)
As p =3b=3ky.ks and p | k3 then pu | p = p = p.p/, then we obtain:
w o = p(ut’? — 2t B") + B"(B" — A™)
and p | B"(B" — A™) = pu| B"or pu | (B" — A™).

#41-2-1-2-1- p | B™ If u | B" = p | B, that is the contradiction with I-2-1-2-
above.

K 1-2-1-2-2- p | (B" — A™): If p | (B™ — A™) and using that u | (A™ 4 2B"), we
obtain :
p|B"= p|B
w|3B" =< or
uw=3
K 1-2-1-2-2-1- p | B™: If p | B® = p | B, that is the contradiction with I-2-1-2-
above.

K 1-2-1-2-2-2- = 3: If p =3 = 3| ks = k3 = 3k}, and we have b = koks =
3kok}, it follows p = 3b = 9kok}, then 9 | p, but p = (A™ — B")? + 3A™B" then:
9kokl — 3A™B" = (A™ — B")?
that we write as:
(173) 3(3kokh — A™B™) = (A™ — B")?
then:
3| (Bkokh — A"B") = 3| A"B" = 3| A™ or 3| B"
B [2-1-2-2-2-1- 3 | A™ If 3 | A™ = 3 | A and we have also 3 | A?™, but

AP = 4q = 3 | 4a = 3| a. As b= 3kgk} then 3 | b, but a,b are coprime, then
the contradiction and 3 1 A.
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K 1-2-1-2-2-2-2- 3 | B™: If 3 | B" = 3 | B, but the equation (173]) implies
3| (A™—B")? = 3| (A™ - B") = 3| A™ = 3| A. The last case above has
given that 31 A. Then the case 3 | B™ is to reject.

Finally the hypothesis ks # 1 is impossible.

** 1-2-2- Now, we suppose that k3 =1 = b = ko and p = 3b = 3k, then we have:

20  k
(174) 2V3sin" = -
3 b
with k1, b coprime. We write (174)) as :

0 0 k
4\/§sin§cos§ = ?1

0 a
Taking the square of the two members and replacing 00525 by 7 we obtain:

3x4%ab—a) =kl = k2 =3 x4%.d?*(b—a)
it implies that :

b—a=30% aeN* = b=d?+3a> =k =12d

ki =12da = A™(A™ +2B") = 3a = d' + B"

We consider now that 3 | (b — a) with b = a’?> + 3a%. The case a = 1 gives
a’ + B™ = 3 that is impossible. We suppose a > 1, the pair (a/, ) is a solution of
the Diophantine equation:

(175) X2 43v%=0b

with X = @’ and Y = a. But using a theorem on the solutions of the equation given
by (175), b is written as (see theorem in [2]):

b=2% x 3Lplt . plogi ... g2
where p; are prime numbers verifying p; = 1(mod 6), the g; are also prime numbers
so that ¢; = 5(mod 6), then :
-If s>1=2|b, as 2 | a, then the contradiction with a, b coprime.
-Ift>1=3]|b,but 3| (b—a) = 3| a, then the contradiction with a,b
coprime.

** [-2-2-1- We suppose that b is written as :

g 281 28y

b:pilptgql qT
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with p; = 1(mod 6) and ¢; = 5(mod 6). Finally, we obtain that b = 1(mod 6). We
will verify then this condition.

*% 1.2-2-1-1- We present the table below giving the value of A™ + B" = C! mod-
ulo 6 in function of the value of A™, B"(mod6). We obtain the table below after
retiring the lines (respectively the colones) of A™ = 0(mod 6) and A™ = 3(mod 6)
(respectively of B™ = 0(mod 6) and B™ = 3(mod 6)), they present cases with con-
tradictions:

TABLE 2. Table of C!(mod 6)

A™B™ 1 2 4 5
1 2 350
2 34 01
4 5 0 2 3
5 01 3 4

#% 1-2-2-1-1-1- For the case C' = 0(mod6) and C' = 3(mod6), we deduce that
3|]C' = 3|C = C = 3"Cy, with h > 1 and 3 { C;. It follows that
p— B"C! = 3b - 3CiB" = AP = 3 | (A’ = 4a) => 3 | a = 3 | b, then the
contradiction with a, b coprime.

#% [-2-2-1-1-2- For the case C! = 0(mod 6), C' = 2(mod 6) and C' = 4(mod 6), we
deduce that 2 | C!' = 2 | C = C = 2"Cy, with h > 1 and 21 C;. It follows that
p=23b= A’ 4 B"C! = 4a + 2""CIB" = 2 | 3b = 2 | b, then the contradiction
with a,b coprime.

#* 1-2-2-1-1-3- We consider the cases A™ = 1(mod 6) and B" = 4(mod 6) (respec-
tively B" = 2(mod 6)): then 2 | B* = 2 | B => B = 2/B; with j > 1 and 24 By.
It follows from 3b = A%?™ + B"C! = 4a + 2" BPC! that 2 | b, then the contradiction
with a, b coprime.

#* 1-2-2-1-1-4- We consider the case A™ = 5(mod 6) and B" = 2(mod 6): then
2| B" = 2| B = B = 2By with j > 1 and 2 { B;. It follows that
3b = A?™ 4 B"C! = 4a + 2" BPC!, then 2 | b and we obtain the contradiction with
a,b coprime.

#* 1-2-2-1-1-5- We consider the case A™ = 2(mod 6) and B" = 5(mod 6): as A™ =
2(mod 6) = A™ = 2(mod 3), then A™ is not a square and also for B". Hence, we
can write A™ and B" as:
Am = CLU.A2
n __ b()B2
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where ag (respectively by) regroups the product of the prime numbers of A™ with
exponent 1 (respectively of B™) with not necessary (ap,.A) = 1 and (b, B) = 1.
We have also p = 3b = A?™ + AmB" + B = (A™ — B")? + 3A™B" = 3 |
(b— AmB") = A™B" = b(mod3) but b = a + 302> = b = a = a’*(mod3),
then A™B" = a?mod3). But A™ = 2@mod6) = 24’ = 2(mod6) =
4a? = 4(mod6) = a?> = 1(mod3). It follows that A™B" is a square, let
AmB" = N? = A%2.B2.a¢.by. We call N2 = ag.by. Let p1 be a prime number so that
p1| a0 = ap = pr.a1 with py tay. p1 | N = p1 | M1 = N1 = p{N] with ¢ > 1
and p1 f NV], then p¥ NP2 = a1.bg. As 2t > 2 =2t —1 > 1 = p; | a1.by but
(p1,a1) =1, then py | bg = p1 | B" = p1 | B. But p1 | (A™ = 2d/), and p; # 2
because p; | B™ and B™ is odd, then the contradiction. Hence, p; | ¢’ = p1 | a. If
p1 = 3, from 3 | (b —a) = 3 | b then the contradiction with a,b coprime. Then
p1 > 3 a prime that divides A™ and B", then p; | (p = 3b) = p1 | b, it follows the
contradiction with a,b coprime, knowing that p = 3b = 3(mod 6) and we choose
the case b = 1(mod 6) of our interest.

#k 1-2-2-1-1-6- We consider the last case of the table above A™ = 4(mod6) and
B"™ = 1(mod 6). We return to the equation (175]) that b verifies :
(176) b=X?43Y?
with X=d; Y=«

and 3a =ad + B"
But p = A?™ + A™B" + B?" = 3b = 3(3a% + a/?) = A?™ + C'B" = 3a"? 4+ 9a?%. As
A% = (24a/)? = 4a"?, we obtain:

90% — a? = C'.B"
Then the pair (3, a’) € N* x N* is a solution of the Diophantine equation:
(177) 22 —y? =N
where N = CL.B™ > 0.

Let Q(N) be the number of the solutions of and 7(N') the number of ways to
write the factors of IV, then we announce the following result concerning the number
of the solutions of (see theorem 27.3 in [2]):

- If N =2(mod4), then Q(N) = 0.

-If N=1or N =3(mod4), then Q(N) = [7(N)/2].

- If N =0(mod4), then Q(N) = [7(N/4)/2].

As A™ = 2d/,;m > 3 = A™ = 0(mod4). Concerning B", for B" = 0(mod4) or
B" = 2(mod 4), we find that 2 | B = 2 | « = 2 | b, then the contradiction with
a,b coprime.
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For the last case B" = 3(mod4) = C! = 3@mod4) = N = B"C! =
1(mod4) = Q(N) = [1(N)/2].

As (3a,d’) is a couple of solutions of the Diophantine equation (177)) and 3a > d/,
then 3 d, d’ positive integers with d > d’ and N = d.d’ so that :

(178) d+d = 6a

(179) d—d =24

We will use the same method used in the above paragraph A-2-1-2-

#% 1.2-2-1-1-6-1- As C' > B", we take d = C' and d’ = B™. It follows:

(180) C' + B" = 6a = 2d/ +2B™ = A™ + 2B"
(181) C'— B"=2d =A™

Then the case d = C! and d’ = B" gives a priory no contradictions.

#% 1.2-2-1-1-6-2- Now, we consider the case d = B"C! and d’ = 1. We rewrite the
equations ([255H256():

(182) B"C' +1 = 6a

(183) B"C' —1=2d

We obtain 1 = B", it follows C! — A™ = 1, we know [4] that the only positive

solution of the last equation is C = 3,A = 2,;m = 3 and | = 2 < 3, then the
contradiction.

#% 1.2-2-1-1-6-3- Now, we consider the case d = ¢/’ *C} where ¢ is a prime integer
with ¢; 1 Cy and C = ¢[Cy, r > 1. It follows that d = ¢;.B". We rewrite the
equations ([255H256():

(184) 10l + ¢1.B" = 6o

(185) dr=tct —¢;.B™ = 24/

As | > 3, from the last two equations above, it follows that ¢; | (6a) and ¢; | (24').
Then ¢; =2,0or ¢y =3 and 3 |d’ or¢; #3 | aand ¢ | d'.

% 1-2-2-1-1-6-3-1- We suppose ¢; = 2. As 2 | (A™ =2da') = 2| (a = a” and 2 | C"
because | > 3, it follows 2 | B", then 2 | (p = 3b). Then the contradiction with a,b
coprime.

¥ 1-2-2-1-1-6-3-2- We suppose ¢1 = 3 = ¢1 | 2d/ = ¢1 | d = ¢1 | (a = a?). Tt
follows that (c; = 3) | (b = a? + 3a?), then the contradiction with a,b coprime.
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** 1-2-2-1-1-6-3-3- We suppose ¢1 # 3 and ¢ | 3 and ¢; | @’. Tt follows that ¢; | a
and ¢1 | (b= a’? + 3a2, then the contradiction with a,b coprime.

The other cases of the expressions of d and d’ not coprime so that N = B"C! = d.d’
give also contradictions.

## 1-2-2-1-1-6-4- Now, let C = ¢{C; with ¢; a prime, » > 1 and ¢; t C}, we consider
the case d = C! and d’ = ¢! B" so that d > d’. We rewrite the equations (255/{256)):
(186) Cl + ¢i'B" = 6a
(187) Ci—d'B" =2d

We obtain ¢}!B" = B" = ¢}! = 1, then the contradiction.

** 1-2-2-1-1-6-5- Now, let C' = ¢[C; with ¢; a prime, r > 1 and ¢; 1 C1, we consider
the case d = C!B™ and d’ = ¢} so that d > d’. We rewrite the equations (255{256)):
(188) CiB' + ¢! = 6a
(189) C!B - &t = 24/
We obtain ¢}l = B" = ¢; | B", as ¢; | C then ¢; | A™ = 2d/. If ¢; = 2, the con-

tradiction with B"C! = 1(mod 4). Then ¢; | d' = ¢1 | (a = a?) = ¢; | (p = b), it
follows a, b are not coprime, then the contradiction.

Cases like ' < C! a divisor of C! or d < B! a divisor of B™ with d' < d and
d.d = N = B"C" give contradictions.

#% 1.2-2-1-1-6-6- Now, we consider the case d = b;.C' where b; is a prime integer
with by 1 By and B = b By, r > 1. It follows that d' = b’fr_lB{L. We rewrite the
equations ([255H256():

(190) bCt + 0V IBY = 6a

(191) bC! — b BY = 24

As n > 3, from the last two equations above, it follows that by | 6c and by | (2a').
Then by =2, or by | @ and by | @’ or by =3 and 3 | @'.

#* 1-2-2-1-1-6-6-1- We suppose by =2 =2 | B". As 2| (A" =2d = 2| d =
2| a,but 2| B" and 2 | A™ then 2 | (p = 3b). It follows the contradiction with a,b
coprime.

% [-2-2-1-1-6-6-2- We suppose by # 2,3, then by | a and by | @/ = by | (a = a’),
then by | (b = 3a? + a'?), it follows the contradiction with a,b coprime.
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** 1-2-2-1-1-6-6-3- We suppose by =3 = 3 | 6, and 3 | (A™ = 2d') = 3| (a =
a'?), then 3 | (b= 3a? + a’?), it follows the contradiction with a, b coprime.

The other cases of the expressions of d and d’ with d,d not coprime and d > d’
so that N = C'B™ = d.d’ give also contradictions.

Finally, from the cases studied in the above paragraph I-2-2-1-1-6-, we have found
one suitable factorization of N that gives a priory no contradictions, it is the case
N = B".C! = d.d’ with d = C',d’ = B" but 1 < 7(N), it follows the contradiction
with Q(N) = [7(N)/2] < 1. The last case A™ = 4(mod6) and B"” = 1(mod6)
gives contradictions.

It follows that the condition 3 | (b — a) is a contradiction.

The study of the case is achieved.

2.6.9. Case 3 |pand b |4p

The following cases have been soon studied:

*3|p, b=2=b|4p: cas.em7
*3|p,b=4=b]|4p: case[2.6.2
*Blp=p=3p,b|p = p =bp”, p” # 1: case2.6.3
*3|p,b=3=>b|4p: case[2.6.4]
*3lp=p=3p,b=p = b|4p: case|2.6.8

** J-1- Particular case: b = 12. In fact 3 | p = p = 3p’ and 4p = 12p’. Taking
b =12, we have b | 4p. But b < 4a < 3b, that gives 12 < 4a < 36 = 3 < a < 9. As
2| b and 3 | b, the possible values of a are 5 and 7.

4 _ 5" 5

#k Jo1-1- a = 5 and b = 12 = 4p = 12p/ = bp/. But A?™ = 5 T
3|p = p = 3p” with p” € N*, then p = 9p”, we obtain the expressions:

SaliES!

(192) A% = 5p”
neol B . ZQ _ 9
(193) B"C" = 3 3 —4cos 3 =4p

As n,l > 3, we deduce from the equation (193 that 2 | p” = p” = 2%p; with a > 1
and 2 { p;. Then (192) becomes: A*™ = 5p” =5 x 2% = 2 | A = A = 2 A4,
i>1and 21 A;. We have also B"C! = 2°+2p; = 2| B" or 2 | C".

#* J-1-1-1- We suppose that 2 | B* = B = 2/By, j > 1 and 2 | B;. We obtain
BPCt = 20270y,
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-Ifa+2—jn >0 = 2| C there is no contradiction with C* = 2im AT 4
2/m B — 2| C! and the conjecture is verified.

-Ifa+2—jn=0= BPC' = p;. From C=2MmAP + 2"B} = 2 | C! that
implies that 2 | p1, then the contradiction with 21t py.

-Ifa+2—jn < 0= 2m22BrC! = py, it implies that 2 | pi, then the
contradiction as above.
#% J-1-1-2- We suppose that 2 | C!, using the same method above, we obtain the
identical results.

** J-1-2- We suppose that a = 7and b = 12 = 4p = 12/ = bp/. But A?™ =
dp a 12 7 7p

37 3 12 3

= 3| p' = p=9p”, we obtain:

A2m — 7pn
0
B"C! = g (3 — 4cos23> = 2p”

The last equation implies that 2 | B"C!. Using the same method as for the case
J-1-1- above, we obtain the identical results.

We study now the general case. As 3 |p = p =3p' and b | 4p = Fk; € N* and
4p = 12p' = k1b.

K J-2-ky =1: Ifky = 1 then b= 12p', (p/ # 1, if not p = 3 < A?™ + B?" + A™B").
4 0 12p/ 4p’.
But A?™ = §.0032§ = 3p% = 11;; = % = 3 | a because A?™ is a natural

number, then the contradiction with a, b coprime.

#% J3- ky =3 : If ky = 3, then b = 4p’ and A?>™ = gosT g =g =a= (A™)?2 =
3 20
a? = A™ =d/. The term A™B" gives A" B" = p\?’fsin3 — g, then:

2pf

(194) A?™M 4 2A™B" = sm— =2p \[sm—

The left member of (194) is an integer number and also p’, then 2\/35@'713 can be

written under the form:

20 ko
2
Vasin': -

where ko, k3 are two integer numbers and are coprime and k3 | p’ = p’ = ks.ky.

** J-3-1- k4 # 1 : We suppose that kg # 1, then:

(195) AP L 2AMBY = ko ky
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Let p be a prime number so that p | k4, then p | A™(A™ 4+ 2B") = p | A™ or
p| (A™+2B").

R J31-1-p | Am M p | A" = p | A2 = pu|a Asp|ky = pl|p = u|
(4p' = b). But a,b are coprime, then the contradiction.

K J-3-1-2- | (A" +2B") : If | (A™ +2B") = put A™ and p 1 2B"™, then p # 2
and pt B™. p| (A™+ 2B™), we can write A™ + 2B™ = p.t’. Tt follows:

Am+Bn:Mt/—Bn :>A2m+B2n+2AmBn :M2tl2—2tlﬂBn—|—B2n

Using the expression of p, we obtain p = 2% — 2t/ B+ B"(B™ — A™). As p = 3p/
and p | p' = p| (3p') = u|p, we can write : Iu’ and p = py/, then we arrive to:

o= p(ut? — 2t B") + B"(B" — A™)

and p | B"(B" — A™) = pu | B" or pu | (B™ — A™).
** J-3-1-2-1- p | B" : If p | B® = p | B, it is in contradiction with J-3-1-2-.

K J-3-1-2-2- | (B"—A™) : If | (B™ — A™) and using u | (A™ 4+ 2B"™), we obtain

p|B"
w|3B" =< or
p=3

** J-3-1-2-2-1- p | B™ : If | B* = p | B, it is in contradiction with J-3-1-2-.

K J-3-1-2-2-2- p=3: If p =3 = 3| ks = kg = 3k}, and we have p/ = ksky =
3ksk’, it follows that p = 3p’ = 9ksk/, then 9 | p, but p = (A™ — B")2 + 3A™B",
then we obtain:

9ksk) — 3A™B" = (A™ — B")?
that we write : 3(3ksk} — A™B") = (A™ — B")2, then : 3 | (3k3k} — A™B") =
3| A™B" = 3| A" or 3| B".

R J3-1-2-2-2-1-3 | AM : If 3| A" = 3| A’™ = 3 |a,but3 | p' = 3| (4p') = 3| b,
then the contradiction with a,b coprime and 3t A.

% J.3-1-2-2-2-2- 3 | B : If 3 | B" but A™ = put/ — 2B™ = 3t — 2B" = 3 | A™ it
is in contradiction with 3 1 A.

Then the hypothesis k4 # 1 is impossible.
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** J-3-2- k4 = 1: We suppose now that ks = 1 = p’ = k3ks = k3. Then we have:

20 k&
(196) 2\/§sin§ = i
with ko, p’ coprime, we write (196) as :
0 06 k
4\/§5in§cos§ = i

0
Taking the square of the two members and replacing 00325 by % and b = 4p’, we

obtain:
3.a(b—a) = k3
As A?™ = q = a/?, it implies that :
3/(b—a), and b—a=b—ad?=3a*
As ky = A™(A™ + 2B"™) following the equation (195) and that 3 | ks = 3 |
A™(A™ 4 2B") = 3| A™ or 3| (A™ + 2B").

4 J3-2-1-3 | A If 3| Am = 3| A’™ = 3 | a, but 3| (b—a) = 3| b, then
the contradiction with a, b coprime.

#* J-3-2-2- 3| (A™ +2B") = 31 A™ and 31 B". As k3 = 9aa® = 9a"%a® = ky =
3a'a = A™(A™ 4 2B"™), then :

(197) 3a = A™ + 2B"

As b can be written under the form b = a’? + 302, then the pair (a/, @) is a solution
of the Diophantine equation:

(198) 224+ 3y°2=b

As b=4p/, then :

*k J-3-2-2-1- If x,y are even, then 2 | a’ = 2 | a, it is a contradiction with a,b
coprime.

*k J-3-2-2-2- If z,y are odd, then d’, a are odd, it implies A™ = o’ = 1(mod 4) or
A™ = 3(mod4). If u,v verify , then b = u? + 3v?, with u # @’ and v # «,
then w,v do not verify : 3v # u + 2B", if not, v = 3v — 2B" = b =
(3v — 2B™)? + 3v? = a/? + 3a2, the resolution of the obtained equation of second
degree in v gives the positive root v; = «, then u = 3v — 2B"™ = 3a — 2B"™ = d/,
then the uniqueness of the representation of b by the equation .
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*k J-3-2-2-2-1- We suppose that A™ = 1(mod4) and B"™ = 0(mod4), then B" is
even and B"™ = 2B’. The expression of p becomes:
p=a?+2d'B' +4B? = (d + B')? +3B? =3y = 3| (d' + B') = da' + B' = 3B”
p'=B?+3B" = b=4p = (2B)? + 3(2B")? = a? + 3a?

as b has an unique representation, it follows 2B’ = B"™ = a’ = A™, then the
contradiction with A™ > B".

% J-3-2-2-2-2- We suppose that A™ = 1(mod4) and B™ = 1(mod4), then C' is
even and C! = 2C". The expression of p becomes:
p= C2l _ Can 4 BZn — 4cv/2 _ QC/Bn + B2n — (C/ _ Bn)Z 4 30/2 — 3p/
= 3| (C'"-B") = C'"—B"=3C"
p=C%+3C" = b=4p' = (2C")? + 3(2C")* = a”* + 302

as b has an unique representation, it follows 2C' = C' = o/ = A™, then the
contradiction.

*k J-3-2-2-2-3- We suppose that A™ = 1(mod4) and B" = 2(mod4), then B" is
even, see J-3-2-2-2-1-.

*x J-3-2-2-2-4- We suppose that A™
even, see J-3-2-2-2-2-.

1(mod4) and B"

3(mod 4), then C! is

** J-3-2-2-2-5- We suppose that A" = 3(mod4) and B"™ = 0(mod4), then B" is
even, see J-3-2-2-2-1-.

*x J-3-2-2-2-6- We suppose that A™
even, see J-3-2-2-2-2-.

3(mod4) and B™ = 1(mod4), then C' is

** J-3-2-2-2-7- We suppose that A”™ = 3(mod4) and B"™ = 2(mod4), then B" is
even, see J-3-2-2-2-1-.

% J-3-2-2-2-8- We suppose that A™ = 3(mod4) and B™ = 3(mod4), then C' is
even, see J-3-2-2-2-2-.

We have achieved the study of the case J-3-2-2- . It gives contradictions.

** J-4- We suppose that k; # 3 and 3 | ki = k1 = 3k} with k] # 1, then
4
4p = 12p' = kb = 3kjb = 4p’ = kjb. A?™ can be written as A%?™ = —pcos2g =

3 3
3k\b 6 K
27 _ Kja and B"C! = g <3 - 40052) = “1(3b — 4a). As B"C! is an integer

30 3 4
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number, we must have 4 | (3b — 4a) or 4 | K} or [2 | k] and 2| (3b — 4a)].
*¥ J-4-1- We suppose that 4 | (3b — 4a).

** J-4-1-1- We suppose that 3b —4a =4 = 4 | b = 2 | b. Then, we have:

AP — kla

B"C' =k
#% J-4-1-1-1- If k| is prime, from B"C! = k}, it is impossible.

** J-4-1-1-2- We suppose that & > 1 is not prime. Let w be a prime number so
that w | k.

*% J-4-1-1-2-1- We suppose that k] = w®, with s > 6. Then we have :

(199) AP = wa
(200) B"C! = w*

*% J-4-1-1-2-1-1- We suppose that w = 2. If a, k] are not coprime , then 2 | a, as
2| b, it is the contradiction with a,b coprime.

%k J-4-1-1-2-1-2- We suppose w = 2 and a, k] are coprime, then 2 { a. From
, we deduce that B = C = 2 and n +1 = s, and A*™ = 2%q, but
Am — 2l_2n — A2m — (21_2n)2 — 22l+22n_2(21+n) — 22l+22n_2x2s =925 q —>
22l 4220 = 25(g + 2). If | = n, we obtain a = 0 then the contradiction. If [ # n, as
Am =2l -2 > 0 = n < = 2n < s, then 227(1 4 220720 _ 2s+1=2n) — onol g,
We call | = n+4np = 1422720 _25+1=2n — 9m1 4 Hut the left member is odd and
the right member is even, then the contradiction. Then the case w = 2 is impossible.

** J-4-1-1-2-1-3- We suppose that &} = w® with w # 2:

#% J-4-1-1-2-1-3-1- Suppose that a, k] are not coprime, then w | a = a = w'.a; and
t 1 aj. Then, we have:

(201) AP = 5T gy
(202) B"C! = w*

From , we deduce that B® = w", C" = w!, s = n+1and A™ = ! —w" >
0 = | > n. We have also A?™ = w*T.a; = (W' — w")? = W + W2 — 2 x W*. As
w # 2 => w is odd, then A?™ = w***.a; = (W' —w")? is even, then 2 | a1 = 2 | a,
it is in contradiction with a,b coprime, then this case is impossible.
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% J-4-1-1-2-1-3-2- Suppose that a, k] are coprime, with :

(203) AP = s

(204) B"C! = w*

From (204), we deduce that B" = w", C' = w!and s =n+1. Asw # 2 = w is

odd and A?™ = ws.a = (W' — w")? is even, then 2 | a. It follows the contradiction
with a,b coprime and this case is impossible.

¥ J-4-1-1-2-2- We suppose that k] = w®.ke, with s > 6, w t k2. We have :

AP = 0 ko.a

B"C! = W' ks
** J-4-1-1-2-2-1- If ko is prime, from the last equation above, w = ko, it is in
contradiction with w { k9. Then this case is impossible.

¥ J-4-1-1-2-2-2- We suppose that k] = w®.ke, with s > 6, w k2 and k2 not a prime.
Then, we have:
A% = % ky.a
(205) B"C! = Wi ky
#¥ J-4-1-1-2-2-2-1- We suppose that w,a are coprime, then w { a. As A?™ =

wikya = w| A= A=w"A withi>1and wt A, then s = 2i.m. From (205),
we have w | (B"C!") = w | B" or w | C..

¥ J-4-1-1-2-2-2-1-1- We suppose that w | B" = w | B => B = w/.B; with j > 1
and wt By. then :
B?CZ _ w2im—jnk2

- If 2im — jn > 0, w | C' = w | C, no contradiction with C! = W™ AP + w/" B}
and the conjecture is verified.

- If 2im — jn = 0 = BPC! = kg, as w { ks = w { C', then the contradiction
with w | (C! = A™ + B").

-If 2im—jn < 0 = wj”*%mB{LCl = ko = w | ko, then the contradiction with
w1 ka.

% J-4-1-1-2-2-2-1-2- We suppose that w | C!. Using the same method used above,
we obtain identical results.

#¥ J-4-1-1-2-2-2-2- We suppose that a,w are not coprime, then w | a = a = w'.a;
and w { a;. So we have :

(206) AP = ¥ ey ay
(207) B"C! = W ky
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As A2 = Wt koay = w | A = A = w'A; with 4 > 1 and w { Ay, then
s+t = 2im. From (207), we have w | (B"C') = w | B" or w | C".

¥ J-4-1-1-2-2-2-2-1- We suppose that w | B" = w | B = B = w/B; with j > 1
and w t By. then:
BILCZ _ w2im—t—jnk2

-If 2im —t — jn > 0, w | C' = w | C, no contradiction with C! = wm AT + wi" B}
and the conjecture is verified.

-If 2im —t — jn = 0 = B}C! = ko, As w{ ko = w{ C', then the contradiction
with w | (C! = A™ + B").

-If2im—t—jn< 0= wj"+t_2imB{LCl = ko = w | ko, then the contradiction
with w f ko.

¥ J-4-1-1-2-2-2-2-2- We suppose that w | C!. Using the same method used above,
we obtain identical results.

%% J.4.1-2-3b— 4a # 4 and 4 | (3b — 4a) => 3b — da = 4°Q with s > 1 and 41 Q.
We obtain:

(208) A = Ela

(209) B"C!' = 4571k Q

% J-4-1-2-1- We suppose that k| = 2. From (208, we deduce that 2 | a. As

4| (3b — 4a) = 2 | b, then the contradiction with a,b coprime and this case is
impossible.

*¥ J-4-1-2-2- We suppose that k] = 3. From we deduce that 3% | A2™. From
, it follows that 3% | B” or 3% | C!. In the last two cases, we obtain 3 | p. But
4p = 3k1b = 9b = 3 | b, then the contradiction with a,b coprime. Then this case
is impossible.

#% J-4-1-2-3- We suppose that k] is prime > 5:

#%J-4-1-2-3-1- Suppose that k] and a are coprime. The equation (208)) gives
(A™)2 = K} .a, that is impossible with k] { a. Then this case is impossible.

*% J-4-1-2-3-2- Suppose that k] and a are not coprime. Let k] | a = a = k{*aq
with @ > 1 and k| t a;. The equation (208) is written as :
AP = Fla =K a

The last equation gives kf | A*™ = k{ | A = A = k{'. Ay, with k| { A;. If
2i.m # (a + 1), it is impossible. We suppose that 2i.m = a + 1, then k] | A™.
We return to the equation (209). If k] and § are coprime, it is impossible. We
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suppose that k] and € are not coprime, then k] | Q and the exponent of k] in
2 is so the equation is satisfying. We deduce easily that k] | B™. Then
k2 | (p = A2™ + B?" + A™B"), but 4p = 3kib = k| | b, then the contradiction
with a, b coprime.

** J-4-1-2-4- We suppose that k7 > 4 is not a prime.

#*J-4-1-2-4-1- We suppose that k] = 4, we obtain then A?*" = 4a and
B"C! = 3b—4a = 3p’ —4a. This case was studied in the paragraph case ** [-2-.

** J-4-1-2-4-2- We suppose that k] > 4 is not a prime.

#¥ J-4-1-2-4-2-1- We suppose that a, k] are coprime. From the expression A?™ =
!.a, we deduce that a = a? and k| = k”2. It gives :

AT = al.k”l
B"C' =47k .0

Let w be a prime so that w | K"y and k”; = w'.k”y with w { k”5. The last two
equations become :

(210) A™ = ay.wh k7
211 B"C!' = 457 W k2.0
2

From (210), w | A™ = w | A = A = w'.A; with w{ A; and im = t. From (211,
we obtain w | B"C! = w | B" or w | C".

¥ J-4-1-2-4-2-1-1- f w | B" = w | B = B = w’/.B; with w{ B;. From (210), we
have BPC! = w?—ings=1 72 Q.

% J-4-1-2-4-2-1-1-1- If w = 2 and 21 Q, we have BPC! = 22t+2s=in=2f»2 ().

- If 2t + 25 — jn — 2 < 0 then 2 { C!, then the contradiction with C! = w™ AT +
wIn BT

-If 2t 425 —jn—2>1= 2| C' = 2| C and the conjecture is verified.

K J-4-1-2-4-2-1-1-2- f w = 2 and if 2 | Q@ = Q = 2.0Q; because 4 t Q, we have
B{LCZ — 22t+23+1—j.n—2k77%§21:

- If 2t + 25 — jn — 3 < 0 then 2 C!, then the contradiction with C! = w™ AT +
wIn BT,

-If 2t +25s—jn—3>1= 2| C' = 2| C and the conjecture is verified.

% J-4-1-2-4-2-1-1-3- If w # 2, we have B}C! = w?=in45=1 72 ()
-If 2t — jn < 0 = w{ C' it is in contradiction with C! = W™ AP + wI" B},
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AIf 2t — jn > 1= w | C!' = w | C and the conjecture is verified.

¥ J-4-1-2-4-2-1-2- If w | O' = w | C = C = w01, with w{ C;. Using the same
method as in the case J-4-1-2-4-2-1-1 above, we obtain identical results.

** J-4-1-2-4-2-2- We suppose that a, k] are not coprime. Let w be a prime so that
w | aand w | kj. We write:

a=w%ay

K = wh k7

with a1, k”; coprime. The expression of A?™ becomes A?" = w® *.ay.k”;. The
term B"C! becomes:

(212) B"C! = 4571wt k71.Q

K J-4-1-2-4-2-2-1- If w = 2 = 2 | a, but 2 | b, then the contradiction with a,b
coprime, this case is impossible.

K J-4-1-2-4-2-2-2- If w > 3, we have w | a. If w | b then the contradiction with
a,b coprime. We suppose that w { b. From the expression of A?™, we obtain
w| A = w| A= A=uw" A withw{ Ay, i>1and 2i.m = a+ u From ,
we deduce that w | B" or w | C'.

¥ J-4-1-2-4-2-2-2-1- We suppose that w | B" = w | B = B = w/ B with w1t B;
and 7 > 1. Then, BfCl = 457 1pr=in k7 Q) -

*wiQ:

-If w—jn > 1, we have w | O = w | C, there is no contradiction with
Cl = W™ AP + W™ B} and the conjecture is verified. ' '

- If 4 — jn < 0, then w { C! and it is a contradiction with C! = w™ AT + W/ BY.
Then this case is impossible.

*w | Q: we write Q = w?.Q; with > 1 and w { Q. As 3b — 4a = 4°.Q =
45 wP Q) = 3b = da + 15.wWP .0 = dw¥a; + 5P = 3b = 4w(w0‘_1.a1 +
4571 wP=1.0). If w = 3 and = 1, we obtain b = 4(3°'a; +4°71Q;) and BPC"
4s=1gptl=in k7 Q).

-If 4 —jn+1>1, then 3 | C* and the conjecture is verified.

-If p—jn+1 < 0, then 3 4 C! and it is the contradiction with C! = 3m AT 437" B1.

Now, if 8 > 2 and a = im > 3, we obtain 3b = 4w?(w* 2a; +4°1wWP2Qy). Ifw =3
or not, then w | b, but w | a, then the contradiction with a,b coprime.
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% J-4-1-2-4-2-2-2-2- We suppose that w | C! = w | C = C = w"Cy with w { C;
and h > 1. Then, B”C’{ = 457 1wr=h k71 Q. Using the same method as above, we
obtain identical results.

** J-4-2- We suppose that 4 | k.

K J-4-2-1- k) = 4 = 4p = 3k|b = 12b = p = 3b = 3p/, this case has been studied
(see case I-2- paragraph [2.6.8]).

% J4-2-2- K, > 4 with 4| k| = K| = 4°%k” and s > 1, 41 k"1. Then, we obtain:

AP = 45k7 10 = 2%°k71a
B"C! = 4571k (3b — 4a) = 22727 (3b — 4a)

** J-4-2-2-1- We suppose that s = 1 and &} = 4k”7; with k71 > 1, so p = 3p/ and
p' = k”1b, this is the case already studied.

¥ J-4-2-2-2- We suppose that s > 1, then k] = 4°k”1 = 4p = 3 x 4°k”1b and we
obtain:

(213) AP = 457 1a
(214) B"C! = 457171 (3b — 4a)

% J-4-2-2-2-1- We suppose that 2 { (k”1.a) = 2 1 k"1 and 2 { a. As (A™)? =
(2%)2.(k"1.a), we call d> = k”1.a, then A =25.d =2 | A" =2 | A = A =2/A,
with 24 A; and i > 1, then: 2 AT = 25.d = s = 9m. From the equation ,
we have 2 | (B"C') = 2| B" or 2 | C".

¥ J-4-2-2-2-1-1- We suppose that 2 | B" = 2 | B = B = 2/.By, with j > 1 and
2t By. The equation (214)) becomes:

B?CZ _ 2237]'77,72]?771(3[) _ 4(1) — 22’imfjn72k771(3b . 4@)

* We suppose that 2t (3b — 4a):

- If 2im — jn — 2 > 1, then 2 | C, there is no contradiction with C! = 2™ AT +
2/" B and the conjecture is verified.

-1f 2im—jn—2 < 0, then 2 { C!, then the contradiction with C! = 2 AT +-2/" B,

* We suppose that 2* | (3b — 4a), p > 1:

-If 2im+ pu— jn—2 > 1, then 2 | C!, no contradiction with C! = 2™ AT 4 20" B}
and the conjecture is verified.

- If 2im +pu — jn — 2 < 0, then 2 ¢ C', then the contradiction with
Cl = 2im AP + 20" BT,
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% J-4-2-2-2-1-2- We suppose that 2 | C! = 2 | C = C = 2".Cy, with h > 1 and
24 Cy. With the same method used above, we obtain identical results.

ok J-4-2-2-2-2- We suppose that 2 | (k”1.a):
** J-4-2-2-2-2-1- We suppose that k"1 and a are coprime:

¥ J-4-2-2-2-2-1-1- We suppose that 2{a and 2 | k71 = k") = 22%.k"3 and a = a3,
then the equations (213{214]) become:

(215) AP = 45 220t = A™ = 251 k5.
(216) B"Ch = 47712275 (3b — da) = 2224 72K75(3b — 4da)

The equation (215) gives 2 | A™ = 2 | A = A = 20.A; with 24 Ay, i > 1 and
im = s + p. From the equation (216)), we have 2 | (B"C') = 2| B" or 2| C".

¥ J-4-2-2-2-2-1-1-1- We suppose that 2 | B» = 2 | B= B = 2/.By, 2 B; and
j > 1, then BPC! = 22s+21=in=272(3h — 4q):

* We suppose that 21 (3b — 4a):

- If 2im + 2 — jn —2 > 1 = 2 | C, then there is no contradiction with C! =
2im AT 4 29" BT and the conjecture is verified.

- If 2im + 2 — jn — 2 < 0 = 2 { C', then the contradiction with C! =
2im Am 4 2N B

* We suppose that 2% | (3b — 4a), o > 1 so that a, b remain coprime:

-If 2im 4+ 2u+a—jn—2 > 1= 2| C! then no contradiction with C! =
2im AT 4 2In BT and the conjecture is verified.

SIf 2im42u +a—jn—2 < 0 = 2t C! then the contradiction with
Cl = 2im AP + 21" BT,

% J-4-2-2-2-2-1-1-2- We suppose that 2 | C! = 2| C = C = 2".Cy, with h > 1
and 2 1 C,. With the same method used above, we obtain identical results.

% J-4-2-2-2-2-1-2- We suppose that 21 k"1 and 2 | a = a = 2%*.a? and k"1 = k"3,
then the equations (213H214)) become:

(217) AP = 450216273 = A™ = 25TF qy K7y,

(218) B"C' = 4571k73(3b — 4a) = 2%72k7%(3b — 4a)

The equation (217) gives 2 | A™ = 2| A = A = 20.A; with 21 A3, 7 > 1 and
im = s + p. From the equation (218)), we have 2 | (B"C') = 2| B" or 2 | C".
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¥ J-4-2-2-2-2-1-2-1- We suppose that 2 | B* = 2 | B= B = 2/.By, 2 B; and
4 > 1. Then we obtain ByC! = 225=i"=2"2(3h — 4a):

* We suppose that 21 (3b — 4a) = 21 b

- If 2im — jn — 2> 1= 2| C!, then no contradiction with C! = 2im A" + 2i" B}
and the conjecture is verified.

- If 2im — jn —2 < 0 = 21 C!, then the contradiction with C! = 2fm AT 4 2/n Bn,

* We suppose that 2¢ | (3b — 4a), o > 1, in this case a,b are not coprime, then
the contradiction.

% J-4-2-2-2-2-1-2-2- We suppose that 2 | C' = 2 | C = C = 2".Cy, with h > 1
and 2 { C1. With the same method used above, we obtain identical results.

*k J-4-2-2-2-2-2- We suppose that k£”; and a are not coprime 2 | a and 2 | k”1. Let
a=2a; and k"1 = 2"k”3 and 2t a; and 2 1 k7. From (213)), we have p +t = 2\
and a1.k”y = w?. The equations (213[214)) become:

(219) AP =4°k"1a = 2% .2/k75.2" ay = 2P WP = AT = 2R
(220) B"Cl = 45712175 (3b — 4a) = 2% 2175(3b — 4a)

From (219) we have 2 | A™ = 2 | A = A = 2'A;i > 1 and 2 { A;. From({220),
25+ 1 — 2 > 1, we deduce that 2 | (B"C!) = 2| B" or 2 | C".

% J-4-2-2-2-2-2-1- We suppose that 2 | B® = 2 | B = B = 2/.By, 2{ By and
j > 1. Then we obtain BPC! = 225F1#=in=21"2(3h — 4q):

* We suppose that 2 1 (3b — 4a):

-If2s+p—jn—2>1= 2| C', then no contradiction with C! = 2im A" 4 2i" By
and the conjecture is verified.
-1f 2s+p—jn—2 < 0 = 21 C', then the contradiction with C! = 2™ A" -2/ B7.

* We suppose that 2% | (3b — 4a), for one value @« > 1. As 2 | a, then
2% (3b—4a) = 2| (3b—4a) = 2 | (3b) = 2 | b, then the contradiction with
a,b coprime.

% J-4-2-2-2-2-2-2- We suppose that 2 | C! = 2 | C = C = 2".0y, with h > 1
and 2 1 Cq. With the same method used above, we obtain identical results.

#* J-4-3- 2 | k7 and 2 | (3b — 4a): then we obtain 2 | kj = k| = 2.7y with t > 1
and 21 k"1, 2| (3b —4a) = 3b — 4a = 2*.d with 4 > 1 and 2 { d. We have also
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2| 0. If 2| a, it is a contradition with a, b coprime.

We suppose, in the following, that 2 { a. The equations (213}{214]) become:
(221) AP =2t k70 = (A™)?
(222) BCl = 2t or g = ot 2gr 4
From (221)), we deduce that the exponent ¢ is even, let ¢ = 2\. Then we call
w? = k"1.a, it gives AM = 22w = 2| A" = 2| A = A =2".A; withi > 1
and 21 A;. From (222)), we have 2A+u—2 > 1, then 2 | (B"C') = 2| B" or 2 | C":

#* J-4-3-1- We suppose that 2 | B® = 2 | B => B = 2/ By, with j > 1 and 21t B.
Then we obtain BPC! = 22A+r=in=2 7, (.

SIf2X+pu—jn—2>1= 2| C' = 2| C, there is no contradiction with
Cl = 2m AT 4+ 2" BY and the conjecture is verified.

-If 2s+t+pu—jn—2 < 0 = 24 C, then the contradiction with C! = 2im A 42/ B7.

#% J-4-3-2- We suppose that 2 | C' = 2 | C. With the same method used above,

we obtain identical results.
O

The Main Theorem is proved.

2.7. Examples and Conclusion

2.7.1. Numerical Examples
2.7.1.1. Example 1:

We consider the example : 63 + 3% = 35 with A™ = 63, B" = 33 and C! = 3°. With
the notations used in the paper, we obtain:

p=3"x73 ¢=8x3"1 A=4x383"x42-73% <0

38 x 7373 4x 3 x/3

(223) =2 2OV o= Y2
V3 7373
4 0 6 34%m 24
As A% = Ep.0032§:>0082§: 34p = 3;3 = %:>a=3><24, b = 73; then
we obtain:
0 43 6

224 c0S— = —(—, =3".b
(224) 3= 7 P

We verify easily the equation to calculate cosf using . For this example,
we can use the two conditions from as 3| a,b|4pand 3 | p. The cases and
are respectively used. For the case it is the case B-2-2-1- that was used
and the conjecture (34]) is verified. Concerning the case m it is the case G-2-2-1-
that was used and the conjecture is verified.
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2.7.1.2. Example 2:

The second example is: 74472 = 143. We take A™ = 74, B" = 73 and C! = 143. We
obtainp =57x 70 =3x19x 70, ¢=8x70 A =27¢>—4p3 =27 x4 x718(16 x

4 x7
49 —193) = =27 x4 x T8 x 6075 < 0, =19 x 7 x V19, cosh) = ————.
) , P , 19v/19
4p 0 0  3AT™ 7 a
As AP = —.cos’s = cos’~ = = == a=T7,b=4x19
i 33 T3 T Ty Tax19 b T Sind
7
th == d we have the t incipal conditions 3 dbo| (4p). Th
en cosz = o T and we have the two principal conditions 3 | p and b | (4p) e
0
calculation of cosf from the expression of cosg is confirmed by the value below:
9 0 7 \° 7 4x7
cost = cos3(0/3) = 4cos® = — 3cos— =4 <> -3 = -
(6/3) 3 3 2v/19 2v/19 19419

Then, we obtain 3 | p = p = 3p/, b | (4p) with b # 2,4 then 12p’ = k1b = 3 x 7%. It
concerns the paragraph of the second hypothesis. As k; = 3 x 7% = 3k} with

I =170 # 1. Tt is the case J-4-1-2-4-2-2- with the condition 4 | (3b — 4a). So we
verify :

3b—4a=3x4x19—-4x7>=32= 4 (3b—4a)

with A?2™ = 78 = 76 x 72 = k{.a and k]| not a prime, with a and k| not coprime with
w=T71Q(=2). We find that the conjecture (34) is verified with a common factor
equal to 7 (prime and divisor of k} = 79).

2.7.1.3. Example 3:

The third example is: 19% + 383 = 573 with A™ = 19%, B® = 383 and C! = 575.
We obtain p = 19% x 577, ¢ =8x27 x 1910, A =27¢%> — 4p> = 4 x 19'8(273 x

199 x 577/577 4 x 3 x 193
16 x 192 —5773) <0, == "= Tt cosh=——"""_"" " As AP =
) ’ 3B BTTVBTT

4 0 0 3A=™ 3 x 19

Ep.cos2§ = 0082§ = 1 =1 : P = % — a =3 x 192, b = 4 x 577, then
o 19V3 . .

cos= = and we have the first hypothesis 3 | @ and b | (4p). Here again, the
3 24577

0
calculation of cosf from the expression of cos is confirmed by the value below:

3
cost = cos3(0/3) = 40053Q - 3COSQ =4 ( 19V3 ) -3 19V3 _ 4 31 19v3
3 3 2V/577 2V/577 577577
Then, we obtain 3 | @ = a = 3a’ = 3 x 192, b | (4p) with b # 2,4 and b = 4p/
with p = kp’ soit p’ = 577 and k = 19%. This concerns the paragraph of
the first hypothesis. It is the case E-2-2-2-2-1- with w = 19, @/, w not coprime and
w=19¢(p —a') = (577 — 19?) with s — jn = 6 — 1 x 3 = 3 > 1, and the conjecture
is verified.




2.7. EXAMPLES AND CONCLUSION 79

2.7.2. Conclusion

The method used to give the proof of the conjecture of Beal has discussed many
possibles cases, using elementary number theory and the results of some theorems
about Diophantine equations. We have confirmed the method by three numerical
examples. In conclusion, we can announce the theorem:

Theorem 13. — Let A, B,C,m,n, and | be positive natural numbers with
m,n,l > 2. If :
(225) A™ + B" = ("

then A, B, and C have a common factor.
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CHAPTER 3

A COMPLETE PROOF OF THE CONJECTURE
c < rad"%(abc)

Abstract. — In this paper, we consider the abc conjecture, we will give the proof
that the conjecture ¢ < rad'%(abc) is true. It constitutes the key to resolving the
abc conjecture.

The paper is under reviewing.

To the memory of my Father who taught me arithmetic,
To my wife Wahida, my daughter Sinda and my son Mohamed Mazen
To Prof. A. Nitaj for his work on the abc conjecture

3.1. Introduction and notations

Let a be a positive integer, a = []; a;", a; prime integers and «; > 1 positive integers.
We call radical of a the integer []; a; noted by rad(a). Then a is written as:

(226) a=[]a =rad(a). []ai"

We denote:
(227) o = I_Ia?i_1 = a = pg.rad(a)

The abc conjecture was proposed independently in 1985 by David Masser of the
University of Basel and Joseph (Esterlé of Pierre et Marie Curie University (Paris
6) [1]. It describes the distribution of the prime factors of two integers with those
of its sum. The definition of the abc conjecture is given below:

Conjecture 14. — (abc Conjecture): For each € > 0, there exists K (e)
such that if a, b, c positive integers relatively prime with ¢ = a + b, then :

(228) ¢ < K(e).rad "¢ (abc)

where K is a constant depending only of e.
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L
We know that numerically, _HO9C 1629912 [2]. It concerned the best
Log(rad(abc))
example given by E. Reyssat [2]:
(229) 2 +3%0.109 = 23° = ¢ < rad"%?%'2(abc)

A conjecture was proposed that ¢ < rad?(abc) [3]. In 2012, A. Nitaj [4] proposed
the following conjecture:

Conjecture 15. — Let a, b, c be positive integers relatively prime with ¢ =
a+ b, then:

(230) ¢ < rad"%(abc)

(231) abe < rad***(abc)

In this paper, we will give the proof of the conjecture given by ([230)) that consti-
tutes the key to obtain the proof of the abc conjecture using classical methods with
the help of some theorems from the field of the number theory.

3.2. The Proof of the conjecture ¢ < rad*%(abc)

Let a,b,c be positive integers, relatively prime, with ¢ = a + b, b < a and
j/:J/

R = rad(abc), ¢ = H cf,j/,,@’j/ > 1, ¢y > 2 prime integers.
=1

In the following, we will give the proof of the conjecture ¢ < rad'-%(abc).

Proof. — :

3.2.1. Trivial cases:

- We suppose that ¢ < rad(abc), then we obtain:

¢ < rad(abe) < rad*%(abc) =

and the condition (230 is satisfied.
- We suppose that ¢ = rad(abc), then a, b, c are not coprime, case to reject.

In the following, we suppose that ¢ > rad(abc) and a,b and ¢ are not all prime
numbers.

- We suppose p, < rad®%(a). We obtain :

c=a+b<2a<2rad"%(a) < rad"%(abc) = ¢ < rad*%(abc) =
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Then (230) is satisfied.

- We suppose g, < rad’%(c). We obtain :

¢ = perad(c) < rad“%(c) < rad"%(abc) =

and the condition (230 is satisfied.

3.2.2. We suppose . > rad’%(c) and p, > rad’%(a)
3.2.2.1. Case : rad*%(c) < p. < rad*%3(c) and rad*®(a) < u, < rad*%(a)

We can write:

pe < radt%3(c) = ¢ < rad*%3(c)
— ac < rad*%(ac) = a* < ac < rad*%(ac)
ta < radv%3(a) = a < rad*%3(a)

— a < rad'3%(ac) = ¢ < 2a < 2rad3(ac) < rad*%3(abe)

SN T

3.2.2.2. Case : rad'%(c) < p. or rad%(a) < p,
I - We suppose that rad>%3(c) < p. and rad*%3(a) < pg < rad*(a):
I-1- Case rad(a) < rad(c):

In this case a = pgq.rad(a) < rad®(a) < rad*%(a)rad*>"(a) < rad*%3(a).rad"37(c)
— ¢ < 2a < 2rad*%3(a).rad"3"(c) < rad“%3(abc) = .

I-2- Case rad(c) < rad(a) < rad%g(c): As a < rad %(a).rad3"(a) <
rad'%(a).rad*%(c) = ¢ < 2a < 2rad*%3(a).rad"%(c) < R*% = .

I-3- Case md%(c) < rad(a):

I-3-1- We suppose rad*%3(c) < p. < rad*?%(c), we obtain:
c <rad®>*(c) = c < rad"%(c).rad % (c) =
c < rad"%3(c).rad'3"(a) < rad"%3(c).rad*%(a).rad"%3(b) = R —
I-3-2- We suppose pi, > rad??%(c) = ¢ > rad>%(c).
I-3-2-1- We consider the case y, = rad*(a) = a = rad®(a) and ¢ = a + 1. Then,
we obtain that X = rad(a) is a solution in positive integers of the equation:

(232) X’ +1=c
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I-3-2-1-1- We suppose that ¢ = rad"(c) with n > 4, we obtain the equation:
(233) rad™(c) — rad®(a) = 1
But the solutions of the equation (233) are [5] :(rad(c) = 3,n = 2,rad(a) = +2), it

follows the contradiction with n > 4 and the case ¢ = rad™(c),n > 4 is to reject.

I-3-2-1-2- In the following, we will study the cases p. = A.rad"(c) with rad(c) 1
A,n > 0. The above equation (232]) can be written as :

(234) (X+D)(X?2-X+1)=c¢
Let 6 one divisor of ¢ so that :

(235) X+1=90
(236) X2—X+1:§:m:52—3x

We recall that rad(a) > rad%(c).

I-3-2-1-2-1- We suppose § = l.rad(c). We have § = l.rad(c) < ¢ = pe.rad(c) =
¢ perad(c) e 2 2
l e As - =——F= =" =m=0§ —-3X c=I1lm=1("-3X). F
< he- As 5 rad(c) ;=m = U m = I( ). From

m = 6% —3X) and X = rad(a), we obtain:
m = I*rad*(c) — 3rad(a) = 3rad(a) = I*rad*(c) —m
A- Case 3lm = m = 3m/,m' > 1: As pu. = ml = 3m/l = 3|rad(c) and
(rad(c), m') not coprime. We obtain:
d
ol _
It follows that a, c are not coprime, then the contradiction.

rad(a) = *rad(c).

B-Case m =3 = pu. = 3l = ¢ = 3lrad(c) = 30 = §(6% — 3X) = §? =
31+4X)=3=d=lrad(c) =3=c=30=9=a+1=0a=8=c=9<
(2 x 3)163 ~ 18.55, it is a trivial case and the conjecture is true.

I-3-2-1-2-2- We suppose § = l.rad?(c),l > 2. If n = 0 then u. = A and from the
equation above ([236)):
me S perad(c)  Arad(c) A

§  lrad®(c)  lrad?(c) - Irad(c)
It follows the contradiction with the hypothesis above rad(c) 1 A.

= rad(c)|A

I-3-2-1-2-3- We suppose § = Irad?(c),l > 2 and in the following n > 0. As
m = % = 7;:;261((0(;) = lrfdc(c)’ if lrad(c) 1 p. then the case is to reject.

We suppose lrad(c)|pe = pe = m.lrad(c), with m,rad(c) not coprime, then
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=m =6 — 3rad(a).

Selle

C-Casem =1=¢/d = 6% —3rad(a) =1 = (6§ —1)(0 + 1) = 3rad(a) =
rad(a)(§ + 1) = § = 2 = l.rad?(c), then the contradiction.

D - Case m = 3, we obtain 3(1 + rad(a)) = 62 = 30 => § = 3 = Irad?(c). Then the

contradiction.

E - Case m # 1,3, we obtain: 3rad(a) = [*rad*(c) — m = rad(a) and rad(c) are
not coprime. Then the contradiction.

I-3-2-1-2-4- We suppose § = l.rad®(c),l > 2 with n > 3. ¢ = perad(c) =
Irad™(c)(6? — 3rad(a)) and m = 6% — 3rad(a) = 6% — 3X.

F - As seen above (paragraphs C,D), the cases m = 1 and m = 3 give contradictions,
it follows the reject of these cases.

G - Case m # 1,3. Let ¢ be a prime that divides m (g can be equal to m), it follows

al(pe =lm) = q = cjy = cj(/)](SQ = ¢j;|3rad(a). Then rad(a) and rad(c) are

not coprime. It follows the contradiction.
I-3-2-1-2-5- We suppose 6 = [[,c, cfj, Bj > 1 with at least one jo € J; with:
(237) Bjo =2, rad(c)to
We can write:
(238) d = ps.rad(d), rad(c) =rrad(d), r>1, (r,us)=1
Then, we obtain:
¢ = perad(c) = perrad(d) = §(6% — 3X) = ps.rad(6)(6? — 3X) =
(239) T = p15(0% — 3X)

- We suppose fi. = pis => 7 = 62 — 3X = (pe.rad(5))? —3X. As § < 62 - 3X —
r > 3§ = rad(c) > r > (ie.rad(8) = Arad™(c)rad(s)) = 1 > A.rad” (), then
the contradiction.

- We suppose p. < pi5. As rad(a) =0 — 1 = pgrad(d) — 1, we obtain:
rad(a) > pe.rad(d) —1 >0 = rad(ac) > c.rad(d) — rad(c) > 0
As ¢ =1+ a and we consider the cases ¢ > rad(ac), then:
¢ > rad(ac) > crad(0) —rad(c) >0 = ¢ > c.rad(d) — rad(c) > 0 =

rad(c)

(240) 1> rad(d) — >0, rad(d) > 2= The contradiction
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- We suppose p. > ps. In this case, from the equation (239) and as (r, us) = 1, it
follows we can write:

Pe = f1-p2,  fa, p2 > 1,
¢ = perad(c) = py.pz.rad(d).r = 6.(6% — 3X),
We do a choice so that s = pus, 7.1 =62 —3X = § = po.rad(d).

* 1- We suppose (p1, p2) # 1, then 3¢, so that c¢j,[u1 and ¢jy|pe. But ps = po =
cj20|5. From 3X = 62 — rpu; = ¢, |3X = ¢;,| X or ¢j, = 3.

- If ¢j,|(X = rad(a)), it follows the contradiction with (c,a) = 1.

-Ifcj, =3. Wehave rp; =62 —3X =62-3(0—1) = 62 —36+3 —r.us = 0.
As 3|y = 1 = 3%, 34 1), k > 1, we obtain:

(241) 62 =35 +3(1—-3""ru}) =0

#* 1-1- We consider the case k > 1 == 3t (1—3*"1ry}). Let us recall the Eisenstein
criterion [6]:

Theorem 16. — (FEisenstein Criterion) Let f = ap+ - + a, X" be a
polynomial € Z[X]. We suppose that Ip a prime number so that p t an,
plai, (0<i<n—1), and p®{ ag, then f is irreducible in Q.

We apply Eisenstein criterion to the polynomial R(Z) given by:
(242) R(Z) = 7% - 3Z 4+ 3(1 — 35 1ryh)
then:

=311, -3[(=3)-3[3(1 =3 1ru)), and - 32 1 3(1 — 3F1rp)).
It follows that the polynomial R(Z) is irreducible in Q, then, the contradiction with
R(5) = 0.
*% 1-2- We consider the case k = 1, then py = 3u) and (u},3) = 1, we obtain:
(243) 62 —35+3(1—ru)) =0

*k 1-2-1- We consider that 31 (1 —r.u}), we apply the same Eisenstein criterion to
the polynomial R'(Z) given by:

R(Z)=27?—-3Z +3(1 —ruh)
and we find a contradiction with R'(§) = 0.

¥k 1-2-2- We consider that:

(244) 3|(1 —rph) = rpy —1=3"h,i>1,3{h,h € N*
J is an integer root of the polynomial R'(Z):

(245) R(Z)=27*-3Z+3(1—ru}) =0
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The discriminant of R/'(Z) is:
A=3*4+3" x4h

As the root § is an integer, it follows that A = ¢? > 0 with ¢ a positive integer. We
obtain:

(246) A=3%(1+3"1 x4nh) =+
(247) — 143 'x4h=¢*>>1,qe N*
We can write the equation (243) as :

(248) 5(6 —3) =3+ h = 334} rad(d) (tyrad(8) — 1) = 31 h =

(249) 740 (irad(a) ~ 1) = b

We obtain i = 2 and ¢? = 1+ 12h = 1 + 4y rad()(pyrad(5) — 1). Then, ¢ satisfies :
(250) ¢® — 1 =12h = 4p)rad(8)(y)rad(s) — 1) =

(251) (q%.% = 3h = (pyrad(d) — 1).pjrad(d) =

(252) q—1=2u\rad(0) — 2

(253) q+1=2u\rad(d)

It follows that (¢ = x,1 = y) is a solution of the Diophantine equation:
(254) 2 —y? =N

with N = 4pjrad(6)(pjrad(d) — 1) = 12h > 0. Let Q(N) be the number of the
solutions of and 7(NV) is the number of suitable factorization of N, then we
announce the following result concerning the solutions of the Diophantine equation
(254) (see theorem 27.3 in [7]):

- If N =2(mod4), then Q(N) = 0.

-If N=1or N =3(mod4), then Q(N) = [T(N)/2].

-If N =0(mod4), then Q(N) = [r(N/4)/2].

[x] is the integral part of x for which [z] <z < [z] + 1.

As N = 4prad(0)(pyrad(d) —1) = N = 0(mod 4) = Q(N) = [1(N/4)/2]. As
(g,1) is a couple of solutions of the Diophantine equation (254)), then 3 d, d’' positive
integers with d > d’ and N = d.d’ so that :

(255) d+d =2q

(256) d—d =21=2

** 1-2-2-1 As N > 1, we take d = N and d' = 1. It follows:

{N+1:2q

N_1—9 — N = 3 = then the contradiction with N = 0(mod 4).
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*k 1-2-2-2 Now, we consider the case d = 2u)rad(0)(pjrad(d) — 1) and d' = 2. Tt
follows:

2pyrad(6)(pyrad(s) — 1) +2 = 2q / / o
{ 2pirad(0)(pyrad(d) — 1) —2 =2 = 2pnrad(0)(mrad(d) — 1) =q+1

As g+ 1 =2pu)rad(d), we obtain ujrad(d) = 2, then the contradiction with 3|4.

*k 1-2-2-3 Now, we consider the case d = pjrad(d)(pjrad(d) —1) and d' = 4. Tt
follows:

{ whrad(d)(pyrad(d) — 1) +4 = 2q
whrad(d)(pirad(d) — 1) — 4 =2 = pirad(d)(pyrad(d) — 1) =6

As pirad(d) > 0 = pirad(d) =3 = u}) =1, rad(d) = 3 and ¢ = 5. From

q®> = 1+ 12h, we obtain h = 2. Using the relation (244) ru) —1 =3'h as p} = 1,i =

2,h =2, it gives r — 1 = 9h = 18. As ¢ is the positive root of the equation (243)):
7?2 -3Z4+31-7r)=0=0=9=23°

But 6 =1+ X =1+ rad(a) = rad(a) = 8 = 23, then the contradiction.

*k 1-2-2-4 Now, let ¢j, be a prime integer so that c;j|radd, we consider the case

d =y} rad(9) (pirad(d) — 1) and d’ = 4cj,. It follows:
Jo
rad(9)
1 ‘ (#irad(d) —1) + dcj, = 2q ,rad(s),
) m(ﬁ(g) — M (parad(d) —1) = 2(1 4 2¢),) =

1y 20 (1 rad(5) — 1) — ey, = 2 i

Cjo
Then the contradiction as the left member is greater than the right member 2(1 + 2¢;,).
* 1-2-2-5 Now, we consider the case d = 4pjrad(d) and d' = (pfrad(d) —1). It
follows:

{ Ay rad(8) + (phrad(8) — 1)
dpyrad(6) — (pyrad(s) — 1)

*% 1-2-2-6 Now, we consider the case d = 2ujrad(0) and d' = 2(pjrad(d) —1). It
follows:

7 — 3uyrad(§) = 1 = Then the contradiction.

2pirad(0) + 2(pyrad(d) — 1) = 2¢ = 2pfrad(0) — 1 =¢q
2pirad(d) — 2(pirad(d) — 1) =2 =2 =2

It follows that this case presents no contradictions a priori.
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j=J
K 1-2-2-7 phrad(d) and pjrad(d) — 1 are coprime, let pjrad(d) —1 = H )\;-Yj, we
j=1

irad(6) —1
consider the case d = 2\ prad(d) and d' = 2%. It follows:

j
phrad(d) — 1

2)\j/ILL/17“CLd(5) +2
A

B 2,1/1rad(5) -1

X

¥ 1-2-2-7-1 We suppose that v;; = 1. We consider the case d = 2\ pfrad(d) and

{rad(s) — 1
d = 2“17’@;). It follows:

J

/ —
N 2,ulrad(5) 1

X

= 4\ pirad(8) = 2(g+1) = 2Ajpirad(d) = g+1
phrad(d) — 1
Ajr
But from the equation (253)), ¢ + 1 = 2pjrad(d), then Ajy = 1, it follows the
contradiction.

2\ phrad(d) — 2 =2

¥ 1-2-2-7-2 We suppose that v;; > 2. We consider the case d = 2)\;,J'lirj/u'17“ad(5)
_ Qu&rad(é) -1

and d’ - . It follows:
1
=t frad(d) — 1
2)\;/] T uirad(8) + 2% =2q
A7
J g—r',
_— = 4)\;f Tphrad(8) =2(qg+1)
=T -1
o\ prad(s) — 24T =1y
A
j

7]'/7%’ /
= 2\, pirad(d) =q+1

As above, it follows the contradiction. It is trivial that the other cases for more
factors H )\;Y?;”_r 7" give also contradictions.

j??
*k 1-2-2-8 Now, we consider the case d = 4(pjrad(d) — 1) and d' = pjrad(d), we
have d > d'. Tt follows:
{ 4(pyrad(6) — 1) + pirad(d) = 2q = Sufrad(d)

2(q +2) Then the contradiction as
4(pyrad(d) — 1) — phrad(6) = 2 = pirad(d)

2 3/6.
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frad(é
*k 1-2-2-9 Now, we consider the case d = 4u(pjrad(d) — 1) and d' = Mﬁ"i()’
where u > 1 is an integer divisor of ujrad(d). We have d > d’ and:
irad(é
du(pirad(d) — 1) + Hyrad(d) = 2q
u
= 2u(pjrad(§) — 1) = pirad(d)
!/
du(pirad(d) — 1) — #rad(9) =2
u

Then the contradiction as p)jrad(d) and (ujrad(d) — 1) are coprime.

In conclusion, we have found only one case (** 1-2-2-6 above) where there is
no contradictions a priori. As 7(N) is large and also [7(N/4)/2], it follows the
contradiction with Q(N) < 1 and the hypothesis (u1, u2) # 1 is false.

** 2- We suppose that (1, p2) = 1.

From the equation 7u; = 02 — 3X and the condition rad(a) = X >
rad"93/137(¢) = 6§ —1 = X > rad"“'%(c), we obtain the following inequal-

ity:
§—1> (rrad(0))*? = —3(6 — 1) < —=3r.rad(8).(rrad(8))*1? =
rup =62 —3(0 — 1) < (r.rad(d))? — 3r.rad(d).(r.rad(9))*!? =
p < rrad?(8) — 3.rad(d).(r.rad(8))% =

3
2 I
(257) w1 < r.rad*(9) (1 (r.rad(é))0-81>
As a = rad3(a) < ¢, we can write:
3
2 rad(8).rad?(e) (1 - )
rad’(a) < pperad(c) < pa.rad(d).rad*(c) ( (rrad(0))05

but (r,rad(8)) = 1, rrad(§) > 6 = (r.rad(5))’8" > (6°%! ~ 4.26) and § =
pa.rad(6), it follows:

rad®(a) < pyparad(c) < pg.rad(d).rad*(c) = rad>(a) < d.rad*(c) < 1.6rad(a).rad?(c)

As rad(a) > (rad“%/%37(c) = rad"(c)) = rad"*(c) < rad(a) < 1.27rad(c),
then we obtain:

rad*(c) < 1.27rad(c) = rad(c) < 3.5 = rad(c) < 3, but rad(c) = r.rad(5) > 6

Then the contradiction.

It follows that the case p. > rad®>?®(c) = ¢ > rad®>*(c) and a = rad3(a) is
impossible.
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I-3-2-2- We consider the case u, = rad*(a) => a = rad®(a) and ¢ = a + b. Then,
we obtain that X = rad(a) is a solution in positive integers of the equation:
(258) X*+1=c¢

withc=c—b+1=a+ 1= (¢,a) = 1. We obtain the same result as of the case
I-3-2-1- studied above considering rad(a) > rad%g(é).

I-3-2-3- We suppose p. > rad®?%(c) = ¢ > rad®?%(c) and ¢ large and p, < rad?(a),
we consider ¢ = a4 b,b > 1. Then ¢ = rad>(c) + h, h > rad>(c), h a positive integer
and we can write a + [ = rad®(a), [ > 0. Then we obtain :

(259) rad®(c) +h = rad®*(a) — 1 +b = rad®*(a) —rad*(c) =h+1—-b>0

as rad(a) > radrs? (c). We obtain the equation:

(260) rad*(a) —rad*(c) =h+1—-b=m >0

Let X = rad(a) —rad(c), then X is an integer root of the polynomial H(X) defined
as:

(261) H(X)= X3+ 3rad(ac)X —m =0

3

To resolve the above equation, we denote X = u + v, It follows that u?, v® are the

roots of the polynomial G(t) given by:
(262) G(t) = t* — mt — rad®(ac) =0

The discriminant of G(t) is A = m? + 4rad®(ac) = a?, a > 0. As m = rad®(a) —
rad3(c) > 0, we obtain that a = rad>(a) + rad®(c) > 0, then from the expression
of the discriminant A, it follows that the couple (o = z,m = y) is a solution of the
Diophantine equation:

(263) 22 —y? =N

with N = 4rad?(ac) = 4rad>(a).rad®(c) > 0. Here, we will use the same method
that is given in the above sub-paragraph ** 1-2-2- of the paragraph I-3-2-1-2-
5-. We have the two terms rad®(a) and rad®(c) coprime. As («,m) is a couple of
solutions of the Diophantine equation (263)) and « > m, then 3 d, d’ positive integers
with d > d’ and N = d.d’ so that :
(264) d+d =2a
(265) d—d =2m
I-3-2-3-1- Let us consider the case d = 2rad®(a), d’ = 2rad?(c). It follows:
2rad(a) + 2rad®(c) = 2a = a = rad3(a) + rad®(c)
2rad®(a) — 2rad®(c) = 2m = m = rad>(a) — rad>(c)

It follows that this case presents a priori no contradictions.
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I-3-2-3-2- Now, we consider for example, the case d = 4rad®(a) and d =
rad3(c) = d > d’. We rewrite the equations (2641265)):

4rad®(a) — rad®(c) = 2(rad>(a) — rad®(c)) = 2rad®(a) = —rad>(c))
Then the contradiction.

I-3-2-3-3- We consider the case d = 4rad®(c)rad®(a) and d =1 = d > d'. We
rewrite the equations (2641265)):
drad3(c)rad®(a) + 1 = 2(rad®(c) + rad3(a)) =
2(2rad®(c)rad?(a) — rad3(c) — rad*(a)) = —1 = a contradiction

4rad?(c)rad®(a) — 1 = 2(rad®(c) — rad?(a))

Then the contradiction.

I-3-2-3-4- Let ¢; be the first factor of rad(c). We consider the case d = 4cirad>(a)
and @/ = ")

C1

— d > d'. We rewrite the equation (264):

rad>(c)

o - 2(rad®(a) + rad*(c)) =

4eyrads(a) +

~—

rad’(c) (2¢1 — 1) = 2rad®(a) = radQ(c).%

2rad®(a)(2c; — 1) =
rad’(a)(2c; — 1) o o

c1 = 2 or not, there is a contradiction with a, ¢ coprime.

The other cases of the expressions of d and d’ not coprime so that N = d.d’ give
also contradictions.

Let Q(N) be the number of the solutions of (263), as N = 0(mod4), then
Q(N) = [1(N/4)/2]. From the study of the cases above, we obtain that Q(N) < 1
is < [(7(N)/4)/2]. It follows the contradiction.

Then the cases ji, < rad?(a) and ¢ > rad®?5(c) are impossible.

IT- We suppose that rad'%3(c) < u. < rad®(c) and p, > rad*%(a):

I1-1- Case rad(c) < rad(a) : As ¢ < rad3(c) = rad“%(c).rad'3"(c) = ¢ <
rad*%3(c).rad'3"(a) < rad*%(ac) < rad"%3(abc) = .

IT-2- Case rad(a) < rad(c) < rad%(a):
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Asc < rad3(c) < rad%3(c).rad'37(c) = ¢ < rad*%3(c).rad*%(a) < rad*%3(abc) =

<R
I1-3- Case radis (a) < rad(c):

I1-3-1- We suppose rad'%(a) < p, < rad**(a) = a < rad“%(a).rad"%*(a)
= a < rad*%3(a).rad'?(c) = ¢ = a+b < 2a < 2rad"%(a).rad*%3(c) <

rad*%(abc) = ¢ < R*%3 — .

I1-3-2- We suppose p, > rad??%(a) = a > rad>*%(a) and p. < rad?(c). Using
the same method as it was explicated in the paragraphs I-3-2- (permuting a,c
see in Appendix IT’-3-2-), we arrive at a contradiction. It follows that the cases
pe < rad?(c) and p, > rad*2?%(a) are impossible.

3.2.2.3. Case i, > rad"%(a) and p. > rad*%3(c):

Taking into account the cases studied above, it remains to see the following two
cases:

- pte > rad®(c) and p, > rad-%(a),

- ftq > rad?(a) and p. > rad"%(c).

ITII- We suppose . > rad?(c) and p, > rad%(a) = c¢ > rad®(c) and
a > rad*%3(a). We can write ¢ = rad®(c) + h and a = rad(a) + | with h a
positive integer and ! € Z.

ITI-1- We suppose rad(c) < rad(a). We obtain the equation:

(266) rad®(a) —rad*(c) =h—1—b=m >0

Let X = rad(a)—rad(c), from the above equation, X is a real root of the polynomial:
(267) H(X) = X3+ 3rad(ac)X —m =0

As above, to resolve (267)), we denote X = u + v, It follows that u3,v? are the roots
of the polynomial G(t) given by :

(268) G(t) = t* —mt — rad®(ac) = 0
The discriminant of G(t) is:
(269) A =m? +4rad®(ac) = o, a>0

As m = rad®(a) —rad®(c) > 0, we obtain that a = rad®(a) +rad3(c) > 0, then from
the equation (269)), it follows that (aw = z,m = y) is a solution of the Diophantine
equation:

(270) 22 —y? =N
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with N = 4rad>(ac) > 0. Let Q(N) be the number of the solutions of (270]) and
7(NN) is the number of suitable factorization of N, and using the same method as in
the paragraph I-3-2-3- above, we obtain a contradiction.

ITI-2- We suppose rad(a) < rad(c). We obtain the equation:
(271) rad*(c) —rad*(a) =b+1—h=m>0

Let X be the variable X = rad(c) — rad(a), we use the similar calculations as in
the paragraph above I-3-2-3- permuting c, a, we find a contradiction.

It follows that the case . > rad?(c) and p, > rad*%3(a) is impossible.
IV - We suppose p, > rad?(a) and p. > rad'%(c), we obtain a > rad*(a) and
c > rad®%3(c). We can write a = rad>(a) + h and ¢ = rad3(c) + | with h a positive

integer and [ € Z.

The calculations are similar to those in the cases of the paragraph III. We obtain
a contradiction.

It follows that the case p. > rad%3(c) and p, > rad?(a) is impossible.

All possible cases are discussed. O

We can state the following important theorem:

Theorem 17. — Let a,b, c positive integers relatively prime with ¢ = a + b,
then ¢ < rad*%3(abc).

From the theorem above, we can announce also:

Corollary 18. — Let a, b, c positive integers relatively prime with ¢ = a+b,
then the conjecture c < rad?(abc) is true.

Acknowledgments. The author is very grateful to Professors Mihailescu
Preda and Gérald Tenenbaum for their comments about errors found in previous
manuscripts concerning proposed proofs of the abc conjecture.

Appendix

I1°-3-2- We suppose i, > rad®>?%(a) = a > rad®>?%(a).
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IT’-3-2-1- We consider the case . = rad*(c) = ¢ = rad®(c) and ¢ = a + 1. Then,
we obtain that Y = rad(c) is a solution in positive integers of the equation:

(272) Y3-1=a

IT°-3-2-1-1- We suppose that a = rad"(a) with n > 4, we obtain the equation:
(273) rad(c) — rad™(a) = 1

But the solutions of the Catalan equation [5] 2P —y? = 1 where the unknowns z, y, p
and ¢ take integer values, all > 2, has only one solution (z,v,p,q) = (3,2,2,3), but

the solution of the equation (273) are (rad(c) = 3,rad(a) = 2,3 # 2,n > 4), it
follows the contradiction with n > 4 and the case a = rad™(a),n > 4 is to reject.

IT°-3-2-1-2- In the following, we will study the cases u, = A.rad"(a) with rad(a) 1
A,n > 0. The above equation can be written as :

(274) Y -1)(Y?*+Y+1)=a

Let ¢ one divisor of a so that :

(275) Y—-1=9§

(276) Y2+Y+1:%:m:62+3Y

We recall that rad(c) > radrs? (a).

IT’-3-2-1-2-1- We suppose ¢ = l.rad(a). We have § = l.rad(a) < a = pq.rad(a) =
I < pg. As 9 is a divisor of a, then [ is a divisor of p,, ¢ _ M — Ha _
d  lrad(a) l

62 + 3Y, then o = l.m. From p, = 1(6% + 3Y), we obtain:

m = I’rad*(a) + 3rad(c) = 3rad(c) = m — I*rad*(a)
A’- Case 3lm = m = 3m/,m’ > 1: As pu, = ml = 3m'l = 3|rad(a) and
(rad(a), m') not coprime. We obtain:

rad(a)
3

It follows that a, ¢ are not coprime, then the contradiction.

rad(c) = m' — *rad(a).

B’ - Case m = 3 = g = 3l = a = 3lrad(a) = 36 = §(62 +3Y) = &% =
3(1-Y) = -3 <0, then the contradiction.

II’-3-2-1-2-2- We suppose § = l.rad*(a),l > 2. If n = 0 then p, = A and from
the equation above ([276)):
a  pgrad(a)  Arad(a) A

5 Ilrad?(a)  lrad?(a) B Irad(a)

= rad(a)|A



98 CHAPTER 3. A COMPLETE PROOF OF THE CONJECTURE c < rad!-%3(abc)

It follows the contradiction with the hypothesis above rad(a) { A.

I1°-3-2-1-2-3- We suppose § = Irad?(a),l > 2 and in the following n > 0.
rad a . . .

As m = % = /;:*;1;2((;)) = lr(Zi(a)’ if lrad(a) t pe then the case is to reject.

We suppose lrad(a)|pe = pa = m.lrad(a), with m,rad(a) not coprime, then

% =m = 6%+ 3rad(c).

C’ - Case m = 1 = a/d = 62 + 3rad(c) = 1, then the contradiction.
D’ - Case m = 3, we obtain 3(1 — rad(c)) = 62 = 6 < 0. Then the contradiction.

E’ - Case m # 1,3, we obtain: 3rad(c) = m — [>rad*(a) = rad(a) and rad(c) are
not coprime. Then the contradiction.

IT’-3-2-1-2-4- We suppose § = l.rad"(a),l > 2 with n > 3. From a = pg.rad(a) =
Irad™(a)(6? + 3rad(c)), we denote m = §2 + 3rad(c) = §% + 3Y.

F’ - As seen above (paragraphs C’,D’), the cases m = 1 and m = 3 give contradic-
tions, it follows the reject of these cases.

G’ - Case m # 1,3. Let ¢ be a prime that divides m (¢ can be equal to m), it
follows q|pa = ¢ = aj = aj6|(52 = aj;|3rad(c). Then rad(a) and rad(c) are not
coprime. It follows the contradiction.

IT’-3-2-1-2-5- We suppose ¢ = [[;c, a?j, Bj > 1 with at least one jp € J; with:
(277) Bjo > 2, rad(a)fd

We can write:

(278) ¢ = ps.rad(d), rad(a)=rrad(d), r>1, (r,rad(d))=1= (r,us)=1
Then, we obtain:

a = pg.rad(a) = pg.r.rad(8) = §(6% + 3Y) = ps.rad(6)(6? + 3Y) =
(279) Tt = ps(6% + 3Y)

- We suppose fig = ps = 17 = 6% + 3Y = (ug.rad(8))? +3Y. As § < §%2 +3Y =
r> 6§ = rad(a) > r > (jg.rad(8) = Arad™(a)rad(d)) = 1 > A.rad™ (), then
the contradiction.

- We suppose jiq < p5. As rad(c) = psrad(d) + 1, we obtain:

rad(c) > pg.rad(d) +1 >0 = rad(ac) > a.rad(s) + rad(a) > 0
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As ¢ =1+ a and we consider the cases ¢ > rad(ac), then:

¢ > rad(ac) > a.rad(§) +rad(a) > 0= a+ 1> a.rad(é) + rad(a) > 0 =
rad(a)
a

a> a.rad(d) +rad(d) = 1> rad(d) + >0, rad(d) > 2 = The contradiction

- We suppose i, > pgs. In this case, from the equation (239) and as (r, us) = 1, it
follows we can write:

(280) Pa = f1-p2,  p1, p2 > 1
(281) a = pgrad(a) = py.po.rrad(8) = 6.(6% 4 3Y)
(282) sothat 7. =62 +3Y, po = pus = 0 = po.rad(d)

*% 1- We suppose (1, p2) # 1, then Jaj, so that aj,|p1 and aj,|p2. But ps = po =
a§0|5. From 3Y = 7y — 6% = a,|3Y = a,|Y or aj, = 3.

- If aj,|(Y = rad(c)), it follows the contradiction with (¢, a) = 1.

-If aj, = 3. We have rpuy = 62 +3Y =62 +3(0+1) = 62 +35+3 —r.ug = 0.
As 3|y = p1 = 3u), 34 1), k > 1, we obtain:

(283) 2436431 -3 1rul)=0

#% 1-1- We consider the case k > 1 == 3 (1—3*"1ru}). Let us recall the Eisenstein
criterion [6]:

Theorem 19. — (FEisenstein Criterion) Let f = ag+ -+ + ap, X™ be a
polynomial € Z[X]|. We suppose that Ip a prime number so that p t ay,
plai, (0<i<n—1), and p?{ ag, then f is irreducible in Q.

We apply Eisenstein criterion to the polynomial R(Z) given by:
(284) R(Z) = Z% +3Z 4+ 3(1 — 35 1ruh)
then:

=341, -3[(+3),- 3[3(1 — 3 1ry)), and - 32 1 3(1 — 3F1rp)).
It follows that the polynomial R(Z) is irreducible in Q, then, the contradiction with
R(5) =0.
¥ 1-2- We consider the case k = 1, then py = 3} and (u},3) = 1, we obtain:
(285) 435 +3(1—ruy) =0

** 1-2-1- We consider that 31 (1 — r.u}), we apply the same Eisenstein criterion to
the polynomial R'(Z) given by:

R(Z)=Z*+3Z +3(1 —ru})
and we find a contradiction with R'(d) = 0.
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** 1-2-2- We consider that:
(286) 3[(1 —rp)) = rpy —1=3"h,i>1,31h,h € N*
d is an integer root of the polynomial R'(Z):
(287) R(Z)=2Z*+3Z+3(1—ruy) =0
The discriminant of R'(Z) is:
A=32+3" x4h
As the root ¢ is an integer, it follows that A = t? > 0 with ¢ a positive integer. We
obtain:
(288) A=3%1+3"1 x4nh) =+
(289) — 143" x4h=¢*>1,qge N*
As ps = p2 and 3|pue = g = 3ub, then we can write the equation as :

(200)  6(6+3) = 3+Lh = 33 mc;(é). (tyrad(d) + 1) = 37+ h =

(291) 1 raczi))(é)‘ (phrad(8) +1) = h

We obtain i = 2 and ¢? = 1+ 12h = 1+ 4phrad(d)(phyrad(d) + 1). Then, ¢ satisfies :
(292) q® — 1 =12h = 4pbrad(8) (phrad(8) + 1) =

(293) D) @) — 3p = phrad(8) (phrad(8) + 1). =

(294) q+1=2ubrad(d) + 2

(295) q—1=2ukrad(d)

It follows that (¢ = x,1 = y) is a solution of the Diophantine equation:
(296) 2 —y? =N

with N = 4pbrad(6)(phrad(d) + 1) = 12h > 0. Let Q(NN) be the number of the
solutions of and 7(N) is the number of suitable factorization of N, then we
announce the following result concerning the solutions of the Diophantine equation
(296]) (see theorem 27.3 in [7]):

- If N =2(mod4), then Q(N) = 0.

-If N=1or N =3(mod4), then Q(N) = [7(N)/2].

-If N =0(mod 4), then Q(N) = [r(N/4)/2].

[x] is the integral part of = for which [z] <z < [z] + 1.

As N = 4pubrad(0)(puhrad(d) + 1) = N = 0(mod4) = Q(N) = [7(N/4)/2]. As
(g,1) is a couple of solutions of the Diophantine equation (296)), then 3 d, d’ positive
integers with d > d’ and N = d.d’ so that :

(297) d+d =2q

(298) d—d =21=2
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** 1-2-2-1 As N > 1, we take d = N and d' = 1. It follows:

{N+1:2q

Nei1—9 — N = 3 = then the contradiction with N = 0(mod 4).

*k 1-2-2-2 Now, we consider the case d = 2ubrad(0)(pyrad(d) +1) and d' = 2. Tt
follows:

/ / —
{ 2usrad(6)(pyrad(d) +1) +2 = 2¢q = brad(8)(brad(8) +1) = g — 1

2usrad(d)(pyrad(d) +1) —2 =2

As g — 1 = 2pbrad(), we obtain phrad(d) = 1, then the contradiction.

*k 1-2-2-3 Now, we consider the case d = phrad(d)(uhyrad(d) +1) and d' = 4. Tt
follows:

{ phrad()(phrad(d) + 1) +4 = 2¢
whrad(d)(phrad(d) + 1) — 4 = 2 = phrad(d)(phrad(d) +1) =6

As phrad(0) > 2 = phrad(d) = 2 = ph =1 = us = 3 = ps and rad(d) = 2 but
312, then the contradiction.

*H 1-2-2-4 Now, let aj, be a prime integer so that aj,|radd, we consider the case

d(o
d = il ra ( )(uérad(d) +1) and d’ = 4aj,. It follows:
jo
rad(é
6 hrad(6) + 1) 0 =2
10 = 1 (porad(d) +1) = 2(1 + 2aj,) =
/Tad( ) ! 5 . L a/jo
Mo (ngrad(0) +1) — daj, =2

Jo
Then the contradiction as the left member is greater than the right member 2(1 + 2a;,).

*% 1-2-2-5 Now, we consider the case d = 4uhrad(d) and d' = (phrad(d) +1). Tt
follows:

{ 4pbrad(d) + (phrad(d) + 1) = 2q

dyirad(8) — (hrad(d) + 1) = 2 = 3ubhrad(§) = 3 = Then the contradiction.
2 — (M3 =

*k 1-2-2-6 Now, we consider the case d = 2(uhrad(d) + 1) and d = 2uhrad(d). Tt
follows:

2(phrad(8) + 1) + 2ubrad(d) = 2¢ = 2pbrad(d) + 1 =¢q
2(phrad(8) + 1) — 2ubrad(d) =2 = 2=2

It follows that this case presents no contradictions a prior.
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j=J
K 1-2-2-7 phrad(d) and phrad(d) + 1 are coprime, let phrad(d) +1 = H )\j-j, we
j=1

Srad() +1
consider the case d = 2\ puhrad(d) and d' = 2%. It follows:

j
phrad(d) + 1

2)\]-///2rad(5) +2
A

B 2,u’2rad(5) +1

X

¥ 1-2-2-7-1 We suppose that v;; = 1. We consider the case d = 2\ pu5rad(d) and
Srad(d) + 1
d = 2“2”LA()+. Tt follows:
j/

'rad(6) — 1
2\ 4t rad(8) + 2““““;/) =2

j
= 4\ pirad(8) = 2(g+1) = 2Ajpirad(d) = g+1
phrad(d) — 1
Ay
But from the equation (253)), ¢ + 1 = 2pjrad(d), then Ajy = 1, it follows the
contradiction.

2\ phrad(d) — 2 =2

/

¥ 1-2-2-7-2 We suppose that v;; > 2. We consider the case d = 2)\;,J'lirj/u'27“ad(5)
_ Qu’zrad(é) +1

and d’ - . It follows:
1
~/—7'/,, ! d 5 1
oA yrad(s) + 22270 L,
A
! Wj'_T;" /
_—_ = 4\ porad(d) = 2(q+ 1)
=Tt 1
o\ yrad(s) prarad®) +1 _
A7
j

’Yj/*T;/ ’

= 2\, phrad(d) = q+1
As above, it follows the contradiction. It is trivial that the other cases for more
factors H )\;Y?;”_r 7" give also contradictions.

j??

*k 1-2-2-8 Now, we consider the case d = 4(phrad(d) + 1) and d' = phrad(d), we
have d > d'. Tt follows:
{ 4(phrad(0) + 1) + phrad(d) = 2q = Subrad(d)

4(phrad(0) + 1) — phrad(d) = 2 = phrad(d) = 2

2(q +2) { Then the contradiction as
319.
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brad(d
*k 1-2-2-9 Now, we consider the case d = 4u(pyrad(d) + 1) and d' = M,
u

where u > 1 is an integer divisor of uSrad(d). We have d > d’ and:

prad(d)

4u(phrad(d) +1) + =——= = 2¢
u
= 2u(phyrad(§)+1) = phrad(6)+1 = 2u =1
!/
du(pbhrad(d) + 1) — Horad(9) =2
u

Then the contradiction.

In conclusion, we have found only one case (** 1-2-2-6 above) where there is
no contradictions a prior. As 7(N) is large and also [7(N/4)/2], it follows the
contradiction with Q(N) < 1 and the hypothesis (u1, u2) # 1 is false.

¥k 2- We suppose that (p1, pu2) = 1.

We recall that rad(c) = Y > rad"%/137(a), 64+1 = Y, rad(a) = r.rad(6), (r, rad(5)) =
1,0 = porad(d) and ruy = 62 + 3X, it follows:

(299) U@)=62+304+3—ruy =0

#* 2-1- We suppose 3|(3 — ru1) and 32 1 (3 — 1), then we use the Eisenstein cri-
terion [6] to the polynomial U(J) given by the equation (299)), and the contradiction.

** 2.2 We suppose 3|(3 — ru1) and 32|(3 — 7). From 3|(3 — ruy) = 3|ru; =
3|ror3|u1.

- If 3|r = (3,7add) = 1 = 3 1 6. Then the contradiction with 3|62 by the
equation .

-TIf 3|ug = 31 pu2 = 316, it follows the contradiction with 3|62 by the equation
299).

*k 2-3- We suppose 3 1 (3 —ru1) = 3t rup = 3t r and 3 t py. From
the equation (299), U(6) = 0 = ru; = 6*(mod3), as 62 is a square then
62 = 1(mod3) = ru; = 1(mod3), but this result is not all verified. Then the
contradiction.

It follows that the case j, > rad>?®(a) = a > rad®*?*®(a) and ¢ = rad3(c) is
impossible.

IT’-3-2-2- We consider the case pi. = rad?(c) => ¢ = rad®(c) and ¢ = a + b. Then,
we obtain that Y = rad(c) is a solution in positive integers of the equation:

(300) Yi4l=¢
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withc=a+4+b+1=c+1= (¢,c) = 1. We obtain the same result as of the case
I-3-2-1- studied above considering rad(c) > radTse (c).

II’-3-2-3- We suppose j, > rad*?%(a) = a > rad®?%(a) and c large and . <
rad?(c), we consider ¢ = a + b,b > 1. Then a = rad®(a) + h,h > 0, h a positive
integer and we can write c+1 = rad®(c), | > 0. As rad(c) > rad%(a) = rad(c) >
rad(a) = h+1+4+b=m > 0, it follows:

(301) rad®(c) —1 = rad®(a) + h+b> 0= rad*(c) —rad*(a) =h+1+b=m >0

We obtain the same result (a contradiction) as of the case I-3-2-3- studied above
considering rad(c) > radts? (a). Then, this case is to reject.

Then the cases . < rad?(c) and a > rad>?%(a) are impossible.
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CHAPTER 4

THE EXPLICIT abc CONJECTURE OF ALAN
BARKER IS TRUE

Abstract. — In this paper, assuming that the conjecture ¢ < rad'%3(abc) is true,
we give the proof that the explicit abc conjecture of Alan Baker (2004) is true. Some
numerical examples are given.

The paper is under reviewing.

To the memory of my Father who taught me arithmetic
To my wife Wahida, my daughter Sinda and my son Mohamed
Mazen
To Prof. A. Nitaj for his work on the abc conjecture

4.1. Introduction and notations

Let a be a positive integer, a = []; a;"*, a; prime integers and «;; > 1 positive integers.
We call radical of a the integer []; a; noted by rad(a). Then a is written as:

(302) a= H ait = rad(a). H afi~?t

We denote:
(303) fa = Haf‘“l = a = pg.rad(a)

The abc conjecture was proposed independently in 1985 by David Masser of the
University of Basel and Joseph (Esterlé of Pierre et Marie Curie University (Paris
6) [1]. It describes the distribution of the prime factors of two integers with those
of its sum. The definition of the abc conjecture is given below:

Conjecture 20. — (abc Conjecture): For each € > 0, there exists K (e)
such that if a, b, c positive integers relatively prime with ¢ = a + b, then :

(304) ¢ < K(e).rad "¢ (abc)

where K is a constant depending only of e.
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L
We know that numerically, _O9C < 1629912 [2]. It concerned the best
Log(rad(abc))
example given by E. Reyssat [2]:
(305) 2+ 319109 = 23° = ¢ < rad"**'2(abc)

A conjecture was proposed that ¢ < rad?(abc) [3]. In 2004, Alan Baker [1], [4]
proposed the explicit version of the abc conjecture namely:

Conjecture 21. — Let a,b, c be positive integers relatively prime with ¢ =
a—+ b, then:

6 _(LogR)¥
306 < -R———
) ¢ 5 w!
with R = rad(abc) and w = w(abc) the number of distinct prime factors of
abe.

In the following, we assume that the conjecture ¢ < rad*%3(abe) is true, I give an
elementary proof of Alan Baker’s conjecture cited above. For our proof, we proceed
by contradiction of the abc conjecture. We give also some numerical examples.

4.2. The Proof of the explicit abc conjecture

Proof. — : We proceed by contradiction. It exists at least one triplet (a,b,c) of
positive integers relatively prime with ¢ = a + b and :
(307)
w
> g R(LogR)

& (LOQR)”}

=—> Logc > Logl.2 + 1.63LogR — 0.63LogR + Log [ '
w!

we assume that the conjecture ¢ < rad'%3(abc) true, we can write :

1.63 LogR)¥
(308) 0> ~Log=—— > Logl.2 — 0.63LogR + Log {("j')]
We write LogR as:
0.37
LogR = LogR"™% (1 )
ogR ogR + 0.63

The equation (308) becomes:

o 0.37 Loa( R0-63))«
0> —Log > Logl.2 — 0.63LogR + wLog (1 + ) + Log (Log(R™"7))* > Logl.2
¢ 0.63 ol
Loa(R-63))
0.63LogR + Log(1 + 0.5873w) + Log [Wff(')) .
w.
R Loa(R063))w
0 >{308og—— > —0.63LogR + Log(1.2 + 0.70476w) + Log M
¢ w.
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L R0'63 w
Let A = (og(w'))’ we obtain:
‘ I3 0.631)2 o (L 0.63Y\k
R0.63 — eLOgR063 _ 1+L09(R0.63) + ( Og(R )) + +A+ Z ( Og(R ))
2! k!
k=w+1
+o0 0.63\\k
A= RO63 _ 1 _ Z (LOQ(R' ) —
k=1,#w k!
1 T~ 0.63\\k )
A=RY"H 1= o5 |14 )0 (OQ(Z)) =R'®(1-B)>0,0<B<1
k=1,#w ’

The equation (309)) becomes:

1.63
(310) 0 > —Log

> Log(0.70476w + 1.2 — 0.70476 Bw — 1.2B)
C

Let us consider the smallest case 9 =8+ 1= w =2,R=2x3=6 <9 =c. The
conjecture is verified ¢ = 9 < 11.56, we obtain B = 0.54 <« 2 = w with R = 6 and
0.70476w + 1.2 — 0.70476 Bw — 1.2B = 1.2 > 1. If R is large, then w can be large
and B will be small, then B <« w, it follows that the term :

1.63

0.70476w + 1.2 — 0.70476Bw — 1.2B > 1= 0> —Log >0

c
Then it is the contradiction and we obtain:

_ 6 (LogR)
5 w!

The proof of the explicit abc conjecture of Alan Baker is finished.
Q.ED

We give below some numerical examples.

4.3. Examples

4.3.1. Example 1. of Eric Reyssat
We give here the example of Eric Reyssat [1], it is given by:
(311) 310 % 109 4 2 = 23° = 6436343

a= 31109 = u, = 3% = 19683 and rad(a) = 3 x 109,
b=2= pup=1and rad(b) = 2,
c = 235 = 6436343 = rad(c) = 23. Then rad(abc) = 2 x 3 x 109 x 23 = 15042.

LogR)®
(LogR)” _ 6 137500.238 > 6436343, B = 0.86 < w — 4.

6
=4= -R
w 5 w!
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4.3.2. Example 2. of Nitaj

See [5]:
a=11'6.132.79 = 613474843 408 551 921 511 = rad(a) = 11.13.79
b=T7%.412.3113 = 2477678 547239 = rad(b) = 7.41.311
c = 2.33.5%3.953 = 613474 845886 230 468 750 = rad(c) = 2.3.5.953
rad(abe) = 2.3.5.7.11.13.41.79.311.953 = 28 828 335 646 110
w=10 = gR(LOwg!R)w = 7794478289809 729 132 015,590 > 613 474 845 886 230 468 750, B =

0.9927 < (w = 10).

4.3.3. Example 3.

The example is of Ralf Bonse, see [2] :
25434.182587.2802983.85813163 + 21°.377.11.173 = 5°6.245983
a = 2543*.182587.2802983.85813163
b=2153711.173
c = 5°6.245983
rad(abc) = 2.3.5.11.173.2543.182587.245983.2802983.85813163
rad(abc) = 1.5683959920004546031461002610848¢ + 33

6 _(LogR)¥

w=10 = 5R ol = 4.6712291777572705786110845974696¢ + 358 >

c = 3.4136998783296235160378273576498¢ + 44, B~ 1 K (u) = 10).
4.4. Conclusion

Assuming ¢ < R'93 is true, we have given an elementary proof of the explicit abc
conjecture. We can announce the important theorem:

Theorem 22. — Assuming ¢ < RY%3 is true, the explicit abc conjecture of
Alan Baker is true:
Let a, b, ¢ positive integers relatively prime with ¢ = a + b, then:
(LogR)“
w!
where w is the number of distinct prime factors of abc.

6
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CHAPTER 5

A NEW APPROACH FOR THE PROOF OF THE
abc CONJECTURE

Abstract. — In this paper, we assume that the explicit abc conjecture of Alan
Baker and the conjecture ¢ < RY%3 are true, we give a proof of the abc conjecture
and we propose the constant K (€). Some numerical examples are given.

The paper is under reviewing.

To the Memory of my Mother

5.1. Introduction and notations

Let a be a positive integer, a = iaf‘i, a; prime integers and «; > 1 positive integers.
We call radical of a the integer []; a; noted by rad(a). Then a is written as:

(313) a=]]a =rad(a).[] afi~t

We denote:

(314) o = Ha?i_l = a = pg.rad(a)

The abc conjecture was proposed independently in 1985 by David Masser of the
University of Basel and Joseph (Esterlé of Pierre et Marie Curie University (Paris
6) [1]. It describes the distribution of the prime factors of two integers with those
of its sum. The definition of the abc conjecture is given below:

Conjecture 23. — (abc Conjecture): For each € > 0, there exists K (e)
such that if a, b, c positive integers relatively prime with ¢ = a + b, then :

(315) ¢ < K(e).rad "¢ (abc)

where K is a constant depending only of e.




114 CHAPTER 5. A NEW APPROACH FOR THE PROOF OF THE abc CONJECTURE

L
We know that numerically, _O9C < 1629912 [2]. It concerned the best
Log(rad(abc))
example given by E. Reyssat [2]:
(316) 2+ 319109 = 23° = ¢ < rad"**°'2(abc)

A conjecture was proposed that ¢ < rad®(abc) [3]. In 2012, A. Nitaj [4] proposed
the following conjecture:

Conjecture 24. — Let a, b, c be positive integers relatively prime with ¢ =
a+ b, then:

(317) ¢ < rad"%(abc)

(318) abe < rad**?(abc)

In the following, we assume that the conjecture ¢ < rad'%3(abc) is true. In 2004,
Alan Baker [1], [5] proposed the explicit version of the abc conjecture namely:

Conjecture 25. — Let a, b, c be positive integers relatively prime with ¢ =
a—+ b, then:
6 _(LogR)¥
319 < -R————
1) ¢ B w!
with R = rad(abc) and w denote the number of distinct prime factors of abe.

A proof of the conjecture written by the author is under review [6]. In the
following, we assume also that the above conjecture is true, I will give an elementary
proof of the abc conjecture by verifying the below inequality:

§R(L09R)‘”

- < < K(e)R'*e

(320) c<

L w
with an adequate choice of the constant K(e). Let we denote o = gR(OgR)

w7
we have remarked from some numerical examples (see below) that ¢ < a — ¢ when
w = 10 and R not very large. With our choice, ¢ will be very very small comparing

to K (e)R'*e.
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5.2. The Proof of the abc conjecture

L € w
Proof. — : Let A = M, and € €]0,0.63[, we obtain:
w!
. L 2 400 L k
RE = eLo9R" =1 4 Log(R) + (OgéR)) A+ Y 09 (Log(RY)"
’ k=w+1
’ & (Log(Ro))*
A=po1- Yy LlOR
k=1,7w

- io Log(Rﬁ))

k=1,#w

(Log(R))”
w!

1
. R(l_

(321) A=

):Re(l—B)>0,0<B<1:>

=R(1-B)>0

We begin from the Baker’s formula below :

 6pLogR)” 6, 1 (cLogR)” 6 R (Log(I¥))
5 w! 5 ¥ w! 5 ew w!

(Log(E))“

w!

Using the term from (321f), the equation above becomes :

(322)

6 R £ @
c< 5wRe(l—B)/<\1.2ee(€4)RlJrE = our choice of the constant K(e) = 1.2@6(64)
€

We recall the following proposition [4]:

Proposition 26. — Let ¢ — K (€) the application verifying the abc conjec-
ture, then:

(323) lime_oK(€) = 400

The chosen constant K (e) verifies the proposition above. Now, is the following

1
? R
61 —~ (64>

24 -——(1-RB 1.2¢¢
(324) = (1= B) <12

inequality true? :

Supposing that :

oo () (&)

E—w(l—B)>ge .= 1> (1—-DB) > "¢
Asw>4d=—=w=4w"+7r,0<r <4,0 > 1, we write “.¢e e/o"
E4
w e/t i ee(l/> r eeX

T T X
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where X = }4 and 1 < X. Or we know that X¢' < ¥ = X% < ¢ .
- If € € [0.1,0.63], we obtain ¢ > 0.001 and eX > 8.8¢ + 4342, it follows that

e(e%l)

(&

€. > 1 and we obtain a contradiction and the inequality ([324) is true.
- Now we consider 0 < € < 0.1, when ¢ — 0%, K(¢) — 400 and the inequality
(324) becomes +o0o0 < +o0o and the abc conjecture is true.

- For e very small €]0,0.10], ¢ becomes very large, then 8.8¢ + 4342 < ¢ and
X

1 < £ .¢", it follows a contradiction, then the equation (324)) is true.

o
(4)°

Finally, the choice of the constant K(¢) = 1.2¢“ " is acceptable for e €]0,0.63[.

As we assume that the conjecture ¢ < RI*063 is true, we adopt K(e) = 1.2 for

€ > 0.63, and the abc conjecture is true for all € > 0.

The proof of the abc conjecture is finished.

Q.E.D

We give below some numerical examples.

5.3. Examples

5.3.1. Example 1. of Eric Reyssat

We give here the example of Eric Reyssat [1], it is given by:
(325) 310 % 109 + 2 = 235 = 6436343

a= 39109 = u, = 3° = 19683 and rad(a) = 3 x 109,
b=2= pp =1 and rad(b) = 2,
c = 23° = 6436343 = rad(c) = 23. Then rad(abc) = 2 x 3 x 109 x 23 = 15042.
6 _(LogR)¥

w=4— o= 5R(05,) — 6437590.238 > 6436343 = ¢, B = 0.86 < w = 4;
a—c=1247238.

e=0.5= ew.ee( ) =9.446e+ 109 >1= (1-B) < 1.
1

4
e=00l = & =¢* =10"° < () then (1 - B) < 1.

o=
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5.3.2. Example 2. of Nitaj
See [4]:
a=11'6.132.79 = 613474843 408 551 921 511 = rad(a) = 11.13.79
b= 724123113 = 2477678 547239 = rad(b) = 7.41.311
c = 2.33.5%3.953 = 613474 845886 230 468 750 = rad(c) = 2.3.5.953

rad(abc) = 2.3.5.7.11.13.41.79.311.953 = 28 828 335646 110
w
w=10= a= gR(LOQ‘R) = 7794478289809 729132 015.590 >
w!
613474 845886 230468 750 = ¢, B = 0.9927 < (w =10); « — ¢ =
7181003 443923198663 265.590 ~ 11.71c

€=0.5= e =€l = 0.009765625 < eV/() = (1 — B) < 1.
€=0.001 = e =10 =10730 1/(e) = 10!2 = 1010 > 1 = (1 - B) < 1.

5.4. Conclusion

Assuming ¢ < R"93 is true, and the explicit abc conjecture of Alan Baker true, we
can announce the important theorem:

Theorem 27. — Assuming ¢ < R is true and the explicit abc conjecture
of Alan Baker true, then the abc conjecture is true:

For each € > 0, there exists K(¢) such that if a,b, ¢ positive integers relatively
prime with ¢ = a + b, then :

(326) ¢ < K(e).rad *¢(abc)

o=

(4

where K is a constant depending only of €. For e €]0,0.63[, K (€) = 1.2¢¢
and K(e) = 1.2 if € > 0.63.
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CHAPTER 6

A NOVEL PROOF OF THE abc CONJECTURE: IT
IS EASY AS ABC!

Abstract. — 1In this paper, we consider the abc conjecture. Assuming that the
conjecture ¢ < rad%3(abe) is true, we give the proof that the abc conjecture is true.
The paper is under reviewing.

This paper is dedicated to the memory of my Father who taught me
arithmetic,
To my wife Wahida, my daughter Sinda and my son Mohamed
Mazen

6.1. Introduction and notations

Let a be a positive integer, a = []; a;", a; prime integers and «; > 1 positive integers.
We call radical of a the integer []; a; noted by rad(a). Then a is written as:

(327) a=]]a =rad(a).[] afi~t

We denote:

(328) o = I_Ia?i_1 = a = pg.rad(a)

The abc conjecture was proposed independently in 1985 by David Masser of the
University of Basel and Joseph (Esterlé of Pierre et Marie Curie University (Paris
6) [1]. It describes the distribution of the prime factors of two integers with those
of its sum. The definition of the abc conjecture is given below:

Conjecture 28. — (abc Conjecture): For each € > 0, there exists K (e)
such that if a, b, c positive integers relatively prime with ¢ = a + b, then :

(329) ¢ < K(e).rad "¢ (abc)

where K is a constant depending only of e.




122 CHAPTER 6. A NOVEL PROOF OF THE abc CONJECTURE: IT IS EASY AS ABC!

L
We know that numerically, _HO9C 1629912 [2]. It concerned the best
Log(rad(abc))
example given by E. Reyssat [2]:
(330) 2+ 319109 = 23° = ¢ < rad"**'2(abc)

A conjecture was proposed that ¢ < rad?(abc) [3]. In 2012, A. Nitaj [4] proposed
the following conjecture:

Conjecture 29. — Let a, b, c be positive integers relatively prime with ¢ =
a+b, then:

(331) ¢ < rad"®(abc)

(332) abe < rad**(abc)

In the following, we assume that the conjecture giving by the equation
is true that constitutes the key to obtain the proof of the abc conjecture and we
consider the cases ¢ > R because the abc conjecture is verified if ¢ < R. For our
proof, we proceed by contradiction of the abc conjecture, for € €]0.,0.63].

6.2. The Proof of the abc conjecture

Proof. —

6.2.1. Trivial Case ¢ > (0.63 = ¢p).

In this case, we choose K (€) = e and let a, b, ¢ be positive integers, relatively prime,
with ¢ = a +b,1 < b < a,R = rad(abc), then ¢ < R < K(¢).R'** = ¢ <
K (€).R'™¢ and the abc conjecture is true.

6.2.2. Case: 0 < € < (0.63 = €).

We recall the following proposition [4]:

Proposition 30. — Let ¢ —» K (€) the application verifying the abc conjec-
ture, then:

(333) lime—0K (€) = 400

We suppose that the abc conjecture is false, then it exists € €]0, ¢ and for all
parameter K’ = K'(¢') > 0 it exists at least one triplet (a’,¥’,c) so d',b',¢ be
positive integers relatively prime with ¢/ = a’ + 1 and ¢ verifies :

(334) d>K'().R"
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From the proposition cited above, it follows that lim._,oK'(¢) < +oo, we can
suppose that K'(€) is an increasing parameter for e €]0, €.

As the parameter K’ is arbitrary, we choose K'(¢) = 662, it is an increasing param-
eter. Let :

(335) Yy (€) = €2 + (14 €)LogR' — Logc e €]0, €]
About the function Y./, we have:

lime—eo Yo (€) = 6(2) + Log(R™9/d) =X >0, asc< R
lime—0Yw(€) = —Log(c'/R') <0, as R<c

The function Y. (e€) represents a parabola and it is an increasing function for e €
10, €0], then the equation Y. (¢) = 0 has one root that we denote €, it follows the
equation :

CI

(336) TR = =

Discussion about the equation (336]) above:

We recall the following definition:

Definition 31. — The number & is called algebraic number if there is at
least one polynomial:

(337) lx)=lo+lhz+ - F+lnpx™, L,#0

with integral coefficients such that I(§) = 0, and it is called transcendental if
no such polynomial exists.

We consider the equation (336) :

(338) ¢ =K'()R""T = O HMe eE,?R'g,1

! R rad(a'b)
i) - We suppose that ¢, = 3, is an algebraic number then 8y = ¢’> and a; = R’ are
also algebraic numbers. We obtain:

d [y 7 prel 8
(339) = md(; = IR1 = e .af!

From the theorem (see theorem 3, page 196 in [5]):

Theorem 32. — eﬁoafl . aﬁ" is transcendental for any nonzero algebraic
numbers o, ..., 0, 50y, On-
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we deduce that the right member eﬁo.o/fl of is transcendental, but the term

%
rad(a'd’)
the abe conjecture is false on € €]0, eg[. It follows that the abc conjecture is true on
e €]0, o[, then for all € > 0.

is an algebraic number, then the contradiction and the hypothesis that

ii) - We suppose that €} is transcendental, then ¢’ % is transcendental. If not, ¢ % is
an algebraic number, it verifies:

2(m—1)

l(x) = lgme'fm +0x e'imfl + lo(m-1)€'] +e 126/% +0xe1+1lp=0

From the definition (337)) and the equation above, €] is also an algebraic number,
then the contradiction.

As R’ > 0 is an algebraic number, we know that LogR’ is transcendental. We rewrite
the equation (336) as:

4 €2 prey €'?+¢ LogR'
(340) E = € R = e 1
By the theorem of Hermite (page 45, [5]) e is transcendental. Let z = €3 4¢; LogR' >
0:

- As z # 0, if z is an algebraic number it follows that e* is transcendental by
the theorem of Lindemann (page 51, [5]), it follows the contradiction with ¢//R’ an
algebraic number. Then the hypothesis that the abc conjecture is false on € €]0, €|
is not true. It follows that the abc conjecture is true on € €]0, €[, then for all € > 0.

- Now we suppose that z # 0 is transcendental. We write e* as:

+oo _n 2 3 N
NP 2oy iy
e_nzz:ln!_1+z+2+3!+ +N!+T(z)

SN
and r(z) < N for N very large

Then :
RN+ RNN"YD 4 . L RNIz+ NI(R' —)=0
It follows that z is an algebraic number = the contradiction avec z transcendental.

Then the hypothesis that the abe conjecture is false on e €]0,¢[ is not true. It
follows that the abe conjecture is true on e €]0, o[, then for all € > 0.

The proof of the abc conjecture is finished. Assuming ¢ < Rt is true, we obtain
that Ve > 0, 3K (e) > 0, if ¢ = a + b with a, b, ¢ positive integers relatively coprime,
then :

(341) ¢ < K(e).rad " (abc)
and the constant K (¢) depends only of e.
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Q.E.D
Ouf, end of the mystery!
O

6.3. Conclusion

Assuming ¢ < Rt is true, we have given an elementary proof of the abc conjecture.

We can announce the important theorem:

Theorem 33. — Assuming c < R is true, the abc conjecture is true:
For each ¢ > 0, there exists K(e) > 0 such that if a,b,c positive integers
relatively prime with c = a + b, then:

(342) ¢ < K(€).rad **(abc)

where K is a constant depending of €.
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CHAPTER 7

THE EXPLICIT abc A. BAKER’S CONJECTURE
— ¢ < R? TRUE

Abstract. — In this paper, we assume that the explicit abc conjecture of Alan
Baker (2004) is true, we give the proof that ¢ < rad?(abe) is true, it is one of the
keys to resolve the mystery of the abc conjecture. Some numerical examples are
given.

The paper is under reviewing.

To the memory of my Father who taught me arithmetic
To my wife Wahida, my daughter Sinda and my son Mohamed
Mazen
To Prof. A. Nitaj for his work on the abc conjecture

7.1. Introduction and notations

Let a be a positive integer, a = []; a;", a; prime integers and «; > 1 positive integers.
We call radical of a the integer []; a; noted by rad(a). Then a is written as:

(343) a= H ai’ = rad(a). H afi~t

We denote:

(344) fa = Ha?i_l = a = pg.rad(a)

The abc conjecture was proposed independently in 1985 by David Masser of the
University of Basel and Joseph (Esterlé of Pierre et Marie Curie University (Paris
6) [1]. It describes the distribution of the prime factors of two integers with those
of its sum. The definition of the abc conjecture is given below:
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Conjecture 34. — (abc Conjecture): For each € > 0, there exists K (e)
such that if a,b, c positive integers relatively prime with ¢ = a + b, then :

(345) ¢ < K(€).rad *¢(abc)

where K is a constant depending only of .

L
We know that numerically, e < 1.629912 [2]. It concerned the best
Log(rad(abc))
example given by E. Reyssat [2]:
(346) 2+ 319109 = 23° = ¢ < rad"**°'2(abc)

A conjecture was proposed that ¢ < rad?(abc) [3]. In 2004, Alan Baker [1], [4]
proposed the explicit version of the abc conjecture namely:

Conjecture 35. — Let a,b, c be positive integers relatively prime with ¢ =
a+0b, then:

6 _(LogR)¥
347 < -R——
(347) ¢ ) w!
with R = rad(abc) and w = w(abc) the number of distinct prime factors of
abc.

In the following, we assume that the conjecture of Alan Barker is true, I will give
an elementary proof of the conjecture ¢ < rad?(abc) that constitutes one key to
resolve the open abc conjecture. For our proof, we proceed by contradiction of the
abc conjecture. We give also some numerical examples.

7.2. The Proof of the ¢ < R? Conjecture

Proof. — : Let one triplet (a, b, ¢) of positive integers relatively prime with ¢ = a+b
and :

6 _(LogR)¥“

¢ < S plLogR)®
5 w!
LogR)¥
Let A = (Oj!), rad(a H a;,rad(b) = H b;j, and ¢ = H ¢, then w =
i=1,1 j=1,J 1=1,L

I+ J+ L. we obtain:

w <K (LogR = Z Loga; + Z Logb; + Z Logc;)
i=1,1 j=1,J =1,L

We can write R as:

R I (LoaR)®
(348) R—eLogR—1+LogR+g+”'+A+ Z (OZ')

k=w+1
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As

LogR)"  (LogR)"!
(Log) < (LogR) for n < LogR and w < LogR, it follows :

n! (n+1)!
_ n,n<LogR k
(LogR)? (LogR)“~' ™" (LogR)
A <14 LogR+ 229700 (. (20970 A9
2! (w—1)! k:%;_l k!
5
I propose that A < éR’ then:
6 (LogR)“ 6 6_5 9
349 -R——~——— =-RA<-R.-R— R
(349) CS VT 57 =56 =

5
If not, A > ER’ we write R = 14+ LogR+ A+r, r > 0, then A > 5+5LogR+5r, but
for large R, we have w < LogR, A < LogR < 5logR, we obtain a contradiction. It
follows ¢ < R?.

The proof of ¢ < R? conjecture is finished.

Q.E.D

We give below some numerical examples.

7.3. Examples

7.3.1. Example 1. of Eric Reyssat

We give here the example of Eric Reyssat [1], it is given by:
(350) 310 % 109 4 2 = 23° = 6436 343

a=3'109 = u, = 3? = 19683 and rad(a) = 3 x 109,
b=2= pup=1and rad(b) = 2,
c = 235 = 6436343 = rad(c) = 23. Then R = rad(abc) = 2 x 3 x 109 x 23 =
15042 = R? = 226261 764.

LogR 6
w:4:>A:(0i]'):356.64,R2>5R

A 5)
6436 343). = ~ 0.06 < i 0.83.

(LogR)“

= 6437590.238 > (¢ =
w!
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7.3.2. Example 2. of Nitaj

See [5]:
a=1116.132.79 = 613474843408 551921511 = rad(a) = 11.13.79
b= 724123113 = 2477678 547239 = rad(b) = 7.41.311
c = 2.3%.523.953 = 613 474 845 886 230 468 750 = rad(c) = 2.3.5.953
R = rad(abc) = 2.3.5.7.11.13.41.79.311.953 = 28 828 335 646 110
— R? =831072936 124 776471 158 132100 > (c = 613 474 845 886 230 468 750)
w=10= A= (Lolg(fw = 225312992.556 =
R? > ER(LOZ@J = 7794478289809 729132 015,590 > (c = 613 474 845 886 230 468 750),
;} = 7.815e — 6 < % =0.83

7.3.3. Example 3.

The example is of Ralf Bonse, see [2] :
25434.182587.2802983.85813163 + 21°.377.11.173 = 5°6.245983
a = 2543*.182587.2802983.85813163
b=2153711.173
c = 5%6.245983
R = rad(abc) = 2.3.5.11.173.2543.182587.245983.2802983.85813163
R = 1.5683959920004546031461002610848¢ + 33 —>
R? = 2.4598659877230900595045886864952¢ + 66

10
w=10= A= (LolgO}‘%) =1875772681108.203 —
6 _(LogR)“
R% > 5R(Og') = 3.5303452259448631166310839830891¢ + 45 >
w!

A
¢ = 3.4136998783296235160378273576498¢ + 44, 7= 1.196e — 21 < % =0.83

7.4. Conclusion

Assuming that the explicit abc conjecture is true, we have given an elementary proof
that the ¢ < R? conjecture holds. We can announce the important theorem:

Theorem 36. — Assuming the explicit abc conjecture of Alan Baker is true,
then the ¢ < R? conjecture is true.
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