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MY PROOFS OF CONJECTURES ON NUMBER
THEORY −V ersion 1. (May 2025)

Abdelmajid BEN HADJ SALEM

Abstract. — In this booklet, I present my proofs of open conjectures on the theory
of numbers. It concerns the following conjectures:

- The Riemann Hypothesis.
- Beal’s conjecture.
- The conjecture c < rad1.63(abc).
- The explicit abc conjecture of Alan Baker.
- Two proofs of the abc conjecture.
- The conjecture c < rad2(abc).

**********************************************

Résumé (Mes Démonstrations de Conjectures de la Théorie des Nombres,
mai 2025)

Dans ce fascicule, je présente mes démonstrations des conjectures ouvertes de la
théorie des nombres. Elles concernent les conjectures suivantes:

- L’hypothèse de Riemann.
- La conjecture de Beal.
- La conjecture c < rad1.63(abc).
- L’explicite conjecture abc d’Alan Baker.
- La conjecture abc (deux démonstrations).
- La conjecture c < rad2(abc).
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CHAPTER 1

THE RIEMANN HYPOTHESIS IS TRUE: THE
END OF THE MYSTERY

Abstract. — In 1859, Georg Friedrich Bernhard Riemann had announced the
following conjecture, called Riemann Hypothesis : The nontrivial roots (zeros)
s = σ + it of the zeta function, defined by:

ζ(s) =
+∞∑
n=1

1
ns

, for ℜ(s) > 1

have real part σ = 1
2 . In this note, I give the proof that σ = 1

2 using an equivalent
statement of the Riemann Hypothesis: the Dirichlet η function.

The paper is under reviewing.

This paper is dedicated to the memory of my Father who taught me
arithmetic,

To my wife Wahida, my daughter Sinda and my son Mohamed
Mazen

’I feel that these aren’t the right techniques to solve the Riemann
hypothesis itself, it’s going to need some big idea from somewhere else.’

James Maynard (07/15/2024)[1]

1.1. Introduction

In 1859, G.F.B. Riemann had announced the following conjecture [2] known Rie-
mann Hypothesis:
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Conjecture 1. — Let ζ(s) be the complex function of the complex variable
s = σ + it defined by the analytic continuation of the function:

ζ1(s) =
+∞∑
n=1

1
ns

, for ℜ(s) = σ > 1

over the whole complex plane, with the exception of s = 1. Then the nontrivial
zeros of ζ(s) = 0 are written as :

s = 1
2 + it

In this paper, our idea is to start from an equivalent statement of the Riemann
Hypothesis, namely the one concerning the Dirichlet η function. The latter is related
to Riemann’s ζ function where we do not need to manipulate any expression of ζ(s)
in the critical band 0 < ℜ(s) < 1. In our calculations, we will use the definition of
the limit of real sequences. We arrive to give the proof that σ = 1

2 .

1.1.1. The function zeta(s)

We denote s = σ + it the complex variable of C. For ℜ(s) = σ > 1, let ζ1 be the
function defined by :

ζ1(s) =
+∞∑
n=1

1
ns

, for ℜ(s) = σ > 1

We know that with the previous definition, the function ζ1 is an analytical function
of s. Denote by ζ(s) the function obtained by the analytic continuation of ζ1(s)
to the whole complex plane, minus the point s = 1, then we recall the following
theorem [3]:

Theorem 2. — The function ζ(s) satisfies the following :
1. ζ(s) has no zero for ℜ(s) > 1;
2. the only pole of ζ(s) is at s = 1; it has residue 1 and is simple;
3. ζ(s) has trivial zeros at s = −2, −4, . . .;
4. the nontrivial zeros lie inside the region 0 ≤ ℜ(s) ≤ 1 (called the critical
strip) and are symmetric about both the vertical line ℜ(s) = 1

2 and the real
axis ℑ(s) = 0.

The vertical line ℜ(s) = 1
2 is called the critical line.
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For our proof, we will use the function presented by G.H. Hardy [4] namely
Dirichlet eta function [3]:

η(s) =
+∞∑
n=1

(−1)n−1

ns
= (1 − 21−s)ζ(s)

The function eta is convergent for all s ∈ C with ℜ(s) > 0 [3].

We have also the theorem (see page 16, [4]):

Theorem 3. — For all t ∈ R, ζ(1 + it) ̸= 0.

So, we take the critical strip as the region defined as 0 < ℜ(s) < 1.

1.1.2. A Equivalent statement to the Riemann Hypothesis

Among the equivalent statements to the Riemann Hypothesis is that of the Dirichlet
eta function which is stated as follows [3]:

Equivalence 4. — The Riemann Hypothesis is equivalent to the statement
that all zeros of the Dirichlet eta function :

(1) η(s) =
+∞∑
n=1

(−1)n−1

ns
= (1 − 21−s)ζ(s), σ > 1

that fall in the critical strip 0 < ℜ(s) < 1 lie on the critical line ℜ(s) = 1
2 .

The series (1) is convergent, and represents (1 − 21−s)ζ(s) for ℜ(s) = σ > 0 ([4],
pages 20-21). We can rewrite:

(2) η(s) =
+∞∑
n=1

(−1)n−1

ns
= (1 − 21−s)ζ(s), ℜ(s) = σ > 0

η(s) is a complex number, it can be written as :

(3) η(s) = ρ.eiα =⇒ ρ2 = η(s).η(s)

and η(s) = 0 ⇐⇒ ρ = 0.

1.2. Preliminaries of the proof of the zeros of η(s) are on ℜ(s) = 1/2

Proof. — We denote s = σ + it with 0 < σ < 1. We consider one zero of η(s) that
falls in critical strip and we denote it s = β + iγ, then we obtain 0 < β < 1 and
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η(s) = 0 ⇐⇒ (1 − 21−s)ζ(s) = 0. We verify easily the two propositions:

s is one zero of η(s) that falls in the critical strip, is also one zero of

ζ(s) in the critical strip(4)

Conversely, if s is a zero of ζ(s) in the critical strip, let ζ(s) = 0 =⇒ η(s) =
(1 − 21−s)ζ(s) = 0, then s is also one zero of η(s) in the critical strip. We can write:

s is one zero of ζ(s) that falls in the critical strip, is also one zero of

η(s) in the critical strip(5)

Let us write the function η:

η(s) =
+∞∑
n=1

(−1)n−1

ns
=

+∞∑
n=1

(−1)n−1e−sLogn =
+∞∑
n=1

(−1)n−1e−(σ+it)Logn =

=
+∞∑
n=1

(−1)n−1e−σLogn.e−itLogn

=
+∞∑
n=1

(−1)n−1e−σLogn(cos(tLogn) − isin(tLogn))

The function η is convergent for all s ∈ C with ℜ(s) > 0, but not absolutely
convergent. We definite the sequence of functions ((ηn)n∈N∗(s)) as:

ηn(s) =
n∑
k=1

(−1)k−1

ks
=

n∑
k=1

(−1)k−1 cos(tLogk)
kσ

− i
n∑
k=1

(−1)k−1 sin(tLogk)
kσ

with s = σ + it and t ̸= 0.

Let s = β + iγ with 0 < β < 1 be one zero of the function eta, then :
+∞∑
n=1

(−1)n−1

ns
= 0

or:

∀ϵ′ > 0 ∃n0, ∀N > n0,

∣∣∣∣∣
N∑
n=1

(−1)n−1

ns

∣∣∣∣∣ < ϵ′

It follows that we can write limn−→+∞ηn(s) = 0 = η(s). We obtain:

limn−→+∞

n∑
k=1

(−1)k−1 cos(γLogk)
kβ

= 0

limn−→+∞

n∑
k=1

(−1)k−1 sin(γLogk)
kβ

= 0

Using the definition of the limit of a sequence, we can write:

∀ϵ1 > 0 ∃nr, ∀N > nr, | ℜ(η(s)N ) |< ϵ1 =⇒ ℜ2(η(s)N ) < ϵ1
2(6)

∀ϵ2 > 0 ∃ni, ∀N > ni, | ℑ(η(s)N ) |< ϵ2 =⇒ ℑ2(η(s)N ) < ϵ2
2(7)
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Then:

0 <
N∑
k=1

cos2(γLogk)
k2β + 2

N∑
k,k′=1;k ̸=k′

(−1)k+k′
cos(γLogk).cos(γLogk′)

kβk′β < ϵ2
1(8)

0 <
N∑
k=1

sin2(γLogk)
k2β + 2

N∑
k,k′=1;k ̸=k′

(−1)k+k′
sin(γLogk).sin(γLogk′)

kβk′β < ϵ2
2(9)

Taking ϵ = ϵ1 = ϵ2 and N > max(nr, ni), we get by making the sum member to
member of the last two inequalities:

(10) 0 <
N∑
k=1

1
k2β + 2

N∑
k,k′=1;k ̸=k′

(−1)k+k′ cos(γLog(k/k′))
kγk′β < 2ϵ2

In detail, we rewrite the above equation (10) as:

(11) 0 <
N∑
k=1

1
k2β + 2

k=N−1∑
k=1

(−1)k

kβ

 k′=N∑
k′=2,k′>k

(−1)k′ cos(γLog(k/k′))
k′β

 < 2ϵ2

We denote:

(12) SN (β, γ) =
k=N−1∑
k=1

(−1)k

kβ

 k′=N∑
k′=2,k′>k

(−1)k′ cos(γLog(k/k′))
k′β


We can write the above equation as :

(13) 0 < ρ2
N < 2ϵ2

or ρ(s) = 0.

1.3. Case 0 < ℜ(s) < 1/2

Suppose there exists s = σ + it one zero of η(s) or η(s) = 0 =⇒ ρ2(s) = 0 with
0 < σ < 1

2 =⇒ s lies inside the critical band. We write the equation (10):

0 <
N∑
k=1

1
k2σ + 2

N∑
k,k′=1;k ̸=k′

(−1)k+k′ cos(tLog(k/k′))
kσk′σ < 2ϵ2

or:

(14) −1
2

N∑
k=1

1
k2σ <

N∑
k,k′=1;k ̸=k′

(−1)k+k′ cos(tLog(k/k′))
kσk′σ < ϵ2 − 1

2

N∑
k=1

1
k2σ
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But 2σ < 1, it follows that limN−→+∞

N∑
k=1

1
k2σ −→ +∞ and then, we obtain :

(15)
+∞∑

k,k′=1;k ̸=k′

(−1)k+k′ cos(tLog(k/k′))
kσk′σ = −∞

1.4. Case ℜ(s) = 1/2

We suppose that σ = 1
2 . Let’s start by recalling Hardy’s theorem (1914) ([3], page

24):

Theorem 5. — There are infinitely many zeros of ζ(s) on the critical line.

From the propositions (4-5), it follows the proposition :

Proposition 6. — There are infinitely many zeros of η(s) on the critical
line.

Let sj = 1
2 + itj one of the zeros of the function η(s) on the critical line, so

η(sj) = 0. The equation (10) is written for sj :

0 <
N∑
k=1

1
k

+ 2
N∑

k,k′=1;k ̸=k′

(−1)k+k′ cos(tjLog(k/k′))√
k
√

k′
< 2ϵ2

or:

(16) −1
2

N∑
k=1

1
k

<
N∑

k,k′=1;k ̸=k′

(−1)k+k′ cos(tjLog(k/k′))√
k
√

k′
< ϵ2 − 1

2

N∑
k=1

1
k

If N −→ +∞, the series
N∑
k=1

1
k

is divergent and becomes infinite. then:

+∞∑
k=1

1
k

≤ 2ϵ2 − 2
+∞∑

k,k′=1;k ̸=k′

(−1)k+k′ cos(tjLog(k/k′))√
k
√

k′

Hence, we obtain the following result:

(17) limN−→+∞

N∑
k,k′=1;k ̸=k′

(−1)k+k′ cos(tjLog(k/k′))√
k
√

k′
= −∞
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if not, we will have a contradiction with the fact that :

limN−→+∞

N∑
k=1

(−1)k−1 1
ksj

= 0 ⇐⇒ η(s) is convergent for sj = 1
2 + itj

1.5. Case 1/2 < ℜ(s) < 1

Let s = σ+it be the zero of η(s) in 0 < ℜ(s) < 1
2 , object of the section 1.3. From the

proposition (4), ζ(s) = 0. According to point 4 of theorem 2, the complex number
s′ = 1 − σ + it = σ′ + it′ with σ′ = 1 − σ, t′ = t and 1

2 < σ′ < 1 verifies ζ(s′) = 0, so
s′ is also a zero of the function ζ(s) in the band 1

2 < ℜ(s) < 1, it follows from the
proposition (5) that η(s′) = 0 =⇒ ρ(s′) = 0. By applying (10), we get:

0 <
N∑
k=1

1
k2σ′ + 2

N∑
k,k′=1;k ̸=k′

(−1)k+k′ cos(t′Log(k/k′))
kσ′k′σ′ < 2ϵ2

(18) −1
2

N∑
k=1

1
k2σ′ <

N∑
k,k′=1;k ̸=k′

(−1)k+k′ cos(t′Log(k/k′))
kσ′k′σ′ < ϵ2 − 1

2

N∑
k=1

1
k2σ′

As 0 < σ < 1
2 =⇒ 2 > 2σ′ = 2(1−σ) > 1, then the series

∑N
k=1

1
k2σ′ is convergent

to a positive constant not null C(σ′). As 1/k2 < 1/k2σ′ for all k > 0, then :

0 < ζ(2) = π2

6 =
+∞∑
k=1

1
k2 ≤

+∞∑
k=1

1
k2σ′ = C(σ′) = ζ1(2σ′) = ζ(2σ′)

From the equation (18), it follows that :

(19)
+∞∑

k,k′=1;k ̸=k′

(−1)k+k′ cos(t′Log(k/k′))
kσ′k′σ′ = −C(σ′)

2 = −ζ(2σ′)
2 > −∞

1.5.0.1. Case t = 0

We suppose that t = 0 =⇒ t′ = 0. We known the following proposition:

Proposition 7. — For all s = σ real with 0 < σ < 1, η(s) > 0 and ζ(s) < 0.

We deduce the contradiction with the hypothesis s′ = σ′ is a zero of η(s) and:

(20) The equation (19) is false for the case t′ = t = 0.
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1.5.0.2. Case t′ = t ̸= 0

We suppose that t′ ̸= 0. Let s′ = σ′ + it′ = 1 − σ + it a zero of η(s), we have:

(21)
+∞∑

k,k′=1;k ̸=k′

(−1)k+k′ cos(t′Log(k/k′))
kσ′k′σ′ = −C(σ′)

2 = −ζ(2σ′)
2 > −∞

the left member of the equation (21) above is finite and depends of σ′ and t′, but
the right member is a function only of σ′ equal to −ζ(2σ′)/2.

We recall the following theorem (see page 140, [4]):

Theorem 8. —

(22) limT−→+∞
1
T

∫ T

1
| ζ(σ” + iτ) |2 dτ = ζ(2σ”) (σ” >

1
2)

Let t0 so that t0 ≥ 1. As the integral of the left member of the above equation is
convergent, the equation (108) can be written as:

limT−→+∞
1
T

∫ T

t0
|ζ(σ” + iτ)|2dτ = ζ(2σ”)

and ζ(2σ”) is independent of any t0 then in particular for t0 = t′. As σ” is any
σ” > 1/2, I choose σ” = σ′ and t0 = t′, it follows that ζ(2σ′) does not depend of
t′ so that s′ = σ′ + it′ is a root of η. Hence, the contradiction with equation (19).
Then the equation (21) is false.

(23) It follows that the equation (21) is false for the case t′ ̸= 0.

It follows that the equation (19) is false and η(s′) does not vanish for σ′ ∈]1/2, 1[.

From (20-23), we conclude that the function η(s) has no zeros for all s′ = σ′ + it′

with σ′ ∈]1/2, 1[, it follows that the case of the section (1.3) above concerning
the case 0 < ℜ(s) <

1
2 is false too. Then, the function η(s) has all its zeros on

the critical line σ = 1
2 . From the equivalent statement (343), it follows that the

Riemann hypothesis is verified.

We therefore announce the important theorem as follows:

Theorem 9. — The Riemann Hypothesis is true:
All nontrivial zeros of the function ζ(s) with s = σ + it lie on the vertical line
ℜ(s) = 1

2 .
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CHAPTER 2

A COMPLETE PROOF OF BEAL’S CONJECTURE

Abstract. — In 1997, Andrew Beal announced the following conjecture: Let
A, B, C, m, n, and l be positive integers with m, n, l > 2. If Am + Bn = C l then
A, B, and C have a common factor. We begin to construct the polynomial P (x) =
(x − Am)(x − Bn)(x + C l) = x3 − px + q with p, q integers depending on Am, Bn and
C l. We resolve x3 − px + q = 0 and we obtain the three roots x1, x2, x3 as functions
of p and a parameter θ. Since Am, Bn, −C l are the only roots of x3 − px + q = 0, we
discuss the conditions that x1, x2, x3 are integers and have or do have not a common
factor. Three numerical examples are given.

The paper is under reviewing.

To the memory of my Father who taught me arithmetic, To my wife
Wahida, my daughter Sinda and my son Mohamed Mazen

2.1. Introduction

In 1997, Andrew Beal [1] announced the following conjecture :

Conjecture 10. — Let A, B, C, m, n, and l be positive integers with m, n, l >

2. If:
(24) Am + Bn = C l

then A, B, and C have a common factor.

The purpose of this paper is to give a complete proof of Beal’s conjecture. Our idea
is to construct a polynomial P (x) of order three having as roots Am, Bn and −C l

with the condition (24). We obtain P (x) = x3 − px + q where p, q are depending
of Am, Bn and C l. Then we express Am, Bn, −C l the roots of P (x) = 0 in function
of p and a parameter θ that depends of the A, B, C. The calculations give that
A2m = 4p

3 cos2 θ

3 . As A2m is an integer, it follows that cos2 θ

3 must be written as a

b
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where a, b are two positive coprime integers. Beside the trivial cases, there are two
main hypothesis to study:

- the first hypothesis is: 3 | a and b | 4p,
- the second hypothesis is: 3 | p and b | 4p.

We discuss the conditions of divisibility of p, a, b so that the expression of A2m

is an integer. Depending of each individual case, we obtain that A, B, C have or
do have not a common factor. Our proof of the conjecture contains many cases
to study. there are many cases where we use elementary number theory and some
cases need more research to obtain finally the solution.

The paper is organized as follows. In section 1, it is an introduction of the
paper. The trivial case, where Am = Bn, is studied in section 2. The preliminaries
needed for the proof are given in section 3 where we consider the polynomial
P (x) = (x − Am)(x − Bn)(x + C l) = x3 − px + q. The section 4 is the preamble
of the proof of the main theorem. Section 5 treats the cases of the first hypothesis
3 | a and b | 4p. We study the cases of the second hypothesis 3 | p and b | 4p in sec-
tion 6. Finally, we present three numerical examples and the conclusion in section 7.

In 1997, Andrew Beal [1] announced the following conjecture :

Conjecture 11. — Let A, B, C, m, n, and l be positive integers with m, n, l >

2. If:
(25) Am + Bn = C l

then A, B, and C have a common factor.

2.2. Trivial Case

We consider the trivial case when Am = Bn. The equation (25) becomes:

(26) 2Am = C l

then 2 | C l =⇒ 2 | C =⇒ C = 2q.C1 with q ≥ 1, 2 ∤ C1 and 2Am = 2qlC l
1 =⇒ Am =

2ql−1C l
1. As l > 2, q ≥ 1, then 2 | Am =⇒ 2 | A =⇒ A = 2rA1 with r ≥ 1 and

2 ∤ A1. The equation (26),becomes:

(27) 2 × 2rmAm
1 = 2qlC l

1

As 2 ∤ A1 and 2 ∤ C1, we obtain the first condition :

(28) there exists two positive integers r, q with r.q ≥ 1 so that ql = mr + 1

Then from (27):

(29) Am
1 = C l

1
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2.2.1. Case 1 A1 = 1 =⇒ C1 = 1

Using the condition (28) above, we obtain 2.(2r)m = (2q)l and the Beal conjecture
is verified.

2.2.2. Case 2 A1 > 1 =⇒ C1 > 1

From the fundamental theorem of the arithmetic, we can write:

A1 = aα1
1 . . . aαI

I , a1 < a2 < · · · < aI =⇒ Am
1 = amα1

1 . . . amαI
I(30)

C1 = cβ1
1 . . . cβJ

J , c1 < c2 < · · · < cJ =⇒ C l
1 = clβ1

1 . . . clβJ
J(31)

where ai (respectively cj) are distinct positive prime numbers and αi (respectively
βj) are integers > 0.

From (29) and using the uniqueness of the factorization of Am
1 and C l

1, we obtain
necessary:

(32)


I = J

ai = ci, i = 1, 2, . . . , I

mαi = lβi

As one ai | Am =⇒ ai | Bm =⇒ ai | B and in this case, the Beal conjecture is verified.

We suppose in the following that Am > Bn.

2.3. Preliminaries

Let m, n, l ∈ N∗ > 2 and A, B, C ∈ N∗ such:

(33) Am + Bn = C l

We call:

P (x) = (x − Am)(x − Bn)(x + C l) = x3 − x2(Am + Bn − C l)
+x[AmBn − C l(Am + Bn)] + C lAmBn(34)

Using the equation (33), P (x) can be written as:

(35) P (x) = x3 + x[AmBn − (Am + Bn)2] + AmBn(Am + Bn)

We introduce the notations:

p = (Am + Bn)2 − AmBn = A2m + AmBn + B2n

q = AmBn(Am + Bn)

As Am ̸= Bn, we have p > (Am − Bn)2 > 0. Equation (35) becomes:

P (x) = x3 − px + q
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Using the equation (34), P (x) = 0 has three different real roots : Am, Bn and −C l.

Now, let us resolve the equation:

(36) P (x) = x3 − px + q = 0

To resolve (36) let:
x = u + v

Then P (x) = 0 gives:

(37) P (x) = P (u+v) = (u+v)3−p(u+v)+q = 0 =⇒ u3+v3+(u+v)(3uv−p)+q = 0

To determine u and v, we obtain the conditions:

u3 + v3 = −q

uv = p/3 > 0

Then u3 and v3 are solutions of the second order equation:

(38) X2 + qX + p3/27 = 0

Its discriminant ∆ is written as :

∆ = q2 − 4p3/27 = 27q2 − 4p3

27 = ∆̄
27

Let:

∆̄ = 27q2 − 4p3 = 27(AmBn(Am + Bn))2 − 4[(Am + Bn)2 − AmBn]3

= 27A2mB2n(Am + Bn)2 − 4[(Am + Bn)2 − AmBn]3(39)

Denoting :

α = AmBn > 0
β = (Am + Bn)2

we can write (39) as:

(40) ∆̄ = 27α2β − 4(β − α)3

As α ̸= 0, we can also rewrite (40) as :

∆̄ = α3
(

27β

α
− 4

(
β

α
− 1

)3)
We call t the parameter :

t = β

α

∆̄ becomes :
∆̄ = α3(27t − 4(t − 1)3)

Let us calling :
y = y(t) = 27t − 4(t − 1)3
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Since α > 0, the sign of ∆̄ is also the sign of y(t). Let us study the sign of y. We
obtain y′(t):

y′(t) = y′ = 3(1 + 2t)(5 − 2t)
y′ = 0 =⇒ t1 = −1/2 and t2 = 5/2, then the table of variations of y is given below:

Figure 1. The table of variations

The table of the variations of the function y shows that y < 0 for t > 4. In our case,
we are interested for t > 0. For t = 4 we obtain y(4) = 0 and for t ∈]0, 4[=⇒ y > 0.
As we have t = β

α > 4 as Am ̸= Bn:

(Am − Bn)2 > 0 =⇒ β = (Am + Bn)2 > 4α = 4AmBn

Then y < 0 =⇒ ∆̄ < 0 =⇒ ∆ < 0. Then, the equation (38) does not have real
solutions u3 and v3. Let us find the solutions u and v with x = u + v is a positive
or a negative real and u.v = p/3.

2.3.1. Expressions of the roots

Proof. — The solutions of (38) are:

X1 = −q + i
√

−∆
2

X2 = X1 = −q − i
√

−∆
2

We may resolve:

u3 = −q + i
√

−∆
2

v3 = −q − i
√

−∆
2

Writing X1 in the form:
X1 = ρeiθ
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with:

ρ =
√

q2 − ∆
2 =

p
√

p

3
√

3

and sinθ =
√

−∆
2ρ

> 0

cosθ = − q

2ρ
< 0

Then θ [2π] ∈ ] + π

2 , +π[, let:

π

2 < θ < +π ⇒ π

6 <
θ

3 <
π

3 ⇒ 1
2 < cos

θ

3 <

√
3

2(41)

and:

(42) 1
4 < cos2 θ

3 <
3
4

hence the expression of X2:

(43) X2 = ρe−iθ

Let:

u = reiψ(44)

and j = −1 + i
√

3
2 = ei

2π
3(45)

j2 = ei
4π
3 = −1 + i

√
3

2 = j̄(46)

j is a complex cubic root of the unity ⇐⇒ j3 = 1. Then, the solutions u and v are:

u1 = reiψ1 = 3
√

ρei
θ
3(47)

u2 = reiψ2 = 3
√

ρjei
θ
3 = 3

√
ρei

θ+2π
3(48)

u3 = reiψ3 = 3
√

ρj2ei
θ
3 = 3

√
ρei

4π
3 e+i θ

3 = 3
√

ρei
θ+4π

3(49)

and similarly:

v1 = re−iψ1 = 3
√

ρe−i θ
3(50)

v2 = re−iψ2 = 3
√

ρj2e−i θ
3 = 3

√
ρei

4π
3 e−i θ

3 = 3
√

ρei
4π−θ

3(51)

v3 = re−iψ3 = 3
√

ρje−i θ
3 = 3

√
ρei

2π−θ
3(52)

We may now choose uk and vh so that uk + vh will be real. In this case, we have
necessary :

v1 = u1(53)
v2 = u2(54)
v3 = u3(55)
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We obtain as real solutions of the equation (37):

x1 = u1 + v1 = 2 3
√

ρcos
θ

3 > 0(56)

x2 = u2 + v2 = 2 3
√

ρcos θ+2π
3 = − 3

√
ρ
(
cos θ3 +

√
3sin θ

3

)
< 0(57)

x3 = u3 + v3 = 2 3
√

ρcos θ+4π
3 = 3

√
ρ
(
−cos θ3 +

√
3sin θ

3

)
> 0(58)

We compare the expressions of x1 and x3, we obtain:

2 3
√

pcos θ3

?︷︸︸︷
> 3

√
p
(
−cos θ3 +

√
3sin θ

3

)
3cos θ3

?︷︸︸︷
>

√
3sin θ

3(59)

As θ

3 ∈ ] + π

6 , +π

3 [, then sin
θ

3 and cos
θ

3 are > 0. Taking the square of the two
members of the last equation, we get:

(60) 1
4 < cos2 θ

3

which is true since θ

3 ∈ ] + π

6 , +π

3 [ then x1 > x3. As Am, Bn and −C l are the only
real solutions of (36), we consider, as Am is supposed great than Bn, the expressions:

(61)



Am = x1 = u1 + v1 = 2 3
√

ρcos
θ

3

Bn = x3 = u3 + v3 = 2 3
√

ρcos
θ + 4π

3 = 3
√

ρ

(
−cos

θ

3 +
√

3sin
θ

3

)

−C l = x2 = u2 + v2 = 2 3
√

ρcos
θ + 2π

3 = − 3
√

ρ

(
cos

θ

3 +
√

3sin
θ

3

)

2.4. Preamble of the Proof of the Main Theorem

Theorem 12. — Let A, B, C, m, n, and l be positive integers with m, n, l > 2.
If:
(62) Am + Bn = C l

then A, B, and C have a common factor.

Proof. — Am = 2 3
√

ρcos
θ

3 is an integer ⇒ A2m = 4 3
√

ρ2cos2 θ

3 is also an integer. But
:

(63) 3
√

ρ2 = p

3
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Then:

(64) A2m = 4 3
√

ρ2cos2 θ

3 = 4p

3 .cos2 θ

3 = p.
4
3 .cos2 θ

3

As A2m is an integer and p is an integer, then cos2 θ

3 must be written under the
form:

(65) cos2 θ

3 = 1
b

or cos2 θ

3 = a

b

with b ∈ N∗; for the last condition a ∈ N∗ and a, b coprime.

Notations: In the following of the paper, the scalars a, b, ..., z, α, β, ..., A, B, C, ...

and ∆, Φ, ... represent positive integers except the parameters θ, ρ, or others cited
in the text, are reals.

2.4.1. Case cos2 θ

3 = 1
b

We obtain:

(66) A2m = p.
4
3 .cos2 θ

3 = 4.p

3.b

As 1
4 < cos2 θ

3 <
3
4 ⇒ 1

4 <
1
b

<
3
4 ⇒ b < 4 < 3b ⇒ b = 1, 2, 3.

2.4.1.1. b = 1

b = 1 ⇒ 4 < 3 which is impossible.

2.4.1.2. b = 2

b = 2 ⇒ A2m = p.
4
3 .

1
2 = 2.p

3 ⇒ 3 | p ⇒ p = 3p′ with p′ ̸= 1 because 3 ≪ p, we
obtain:

A2m = (Am)2 = 2p

3 = 2.p′ =⇒ 2 | p′ =⇒ p′ = 2αp2
1

with 2 ∤ p1, α + 1 = 2β

Am = 2βp1(67)

BnC l = 3
√

ρ2
(

3 − 4cos2 θ

3

)
= p′ = 2αp2

1(68)

From the equation (67), it follows that 2 | Am =⇒ A = 2iA1, i ≥ 1 and 2 ∤ A1.
Then, we have β = i.m = im. The equation (68) implies that 2 | (BnC l) =⇒ 2 | Bn

or 2 | C l.
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2.4.1.2.1. Case 2 | Bn: — - If 2 | Bn =⇒ 2 | B =⇒ B = 2jB1 with 2 ∤ B1. The
expression of BnC l becomes:

Bn
1 C l = 22im−1−jnp2

1

- If 2im − 1 − jn ≥ 1, 2 | C l =⇒ 2 | C according to C l = 2imAm
1 + 2jnBn

1 and the
conjecture (34) is verified.
- If 2im − 1 − jn ≤ 0 =⇒ 2 ∤ C l, then the contradiction with C l = 2imAm

1 + 2jnBn
1 .

2.4.1.2.2. Case 2 | C l: — If 2 | C l: with the same method used above, we obtain
the identical results.

2.4.1.3. b = 3

b = 3 ⇒ A2m = p.
4
3 .

1
3 = 4p

9 ⇒ 9 | p ⇒ p = 9p′ with p′ ̸= 1, as 9 ≪ p then
A2m = 4p′. If p′ is prime, it is impossible. We suppose that p′ is not a prime, as
m ≥ 3, it follows that 2 | p′, then 2 | Am. But BnC l = 5p′ and 2 | (BnC l). Using
the same method for the case b = 2, we obtain the identical results.

2.4.2. Case a > 1, cos2 θ

3 = a

b

We have:

(69) cos2 θ

3 = a

b
; A2m = p.

4
3 .cos2 θ

3 = 4.p.a

3.b

where a, b verify one of the two conditions:

(70) {3 | a and b | 4p} or {3 | p and b | 4p}

and using the equation (42), we obtain a third condition:

(71) b < 4a < 3b

For these conditions, A2m = 4 3
√

ρ2cos2 θ
3 = 4p

3 .cos2 θ

3 is an integer.

Let us study the conditions given by the equation (70) in the following two sections.

2.5. Hypothesis : {3 | a and b | 4p}

We obtain :

(72) 3 | a =⇒ ∃a′ ∈ N∗ / a = 3a′
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2.5.1. Case b = 2 and 3 | a

A2m is written as:

(73) A2m = 4p

3 .cos2 θ

3 = 4p

3 .
a

b
= 4p

3 .
a

2 = 2.p.a

3
Using the equation (72), A2m becomes :

(74) A2m = 2.p.3a′

3 = 2.p.a′

but cos2 θ

3 = a

b
= 3a′

2 > 1 which is impossible, then b ̸= 2.

2.5.2. Case b = 4 and 3 | a

A2m is written :

A2m = 4.p

3 cos2 θ

3 = 4.p

3 .
a

b
= 4.p

3 .
a

4 = p.a

3 = p.3a′

3 = p.a′(75)

and cos2 θ

3 = a

b
= 3.a′

4 <

(√
3

2

)2

= 3
4 =⇒ a′ < 1(76)

which is impossible. Then the case b = 4 is impossible.

2.5.3. Case b = p and 3 | a

We have :

(77) cos2 θ

3 = a

b
= 3a′

p

and:

A2m = 4p

3 .cos2 θ

3 = 4p

3 .
3a′

p
= 4a′ = (Am)2(78)

∃a” / a′ = a”2(79)
and BnC l = p − A2m = b − 4a′ = b − 4a”2(80)

The calculation of AmBn gives :

AmBn = p.

√
3

3 sin
2θ

3 − 2a′

or AmBn + 2a′ = p.

√
3

3 sin
2θ

3(81)

The left member of (81) is an integer and p also, then 2
√

3
3 sin

2θ

3 is written under
the form :

(82) 2
√

3
3 sin

2θ

3 = k1
k2

where k1, k2 are two coprime integers and k2 | p =⇒ p = b = k2.k3, k3 ∈ N∗.
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2.5.3.1. We suppose that k3 ̸= 1

We obtain :

(83) Am(Am + 2Bn) = k1.k3

Let µ be a prime integer with µ | k3, then µ | b and µ | Am(Am + 2Bn) =⇒ µ | Am

or µ | (Am + 2Bn).

** A-1-1- If µ | Am =⇒ µ | A and µ | A2m, but A2m = 4a′ =⇒ µ | 4a′ =⇒ (µ = 2,
but 2 | a′) or (µ | a′). Then µ | a it follows the contradiction with a, b coprime.

** A-1-2- If µ | (Am + 2Bn) =⇒ µ ∤ Am and µ ∤ 2Bn then µ ̸= 2 and µ ∤ Bn. We
write µ | (Am + 2Bn) as:

(84) Am + 2Bn = µ.t′

It follows :

Am + Bn = µt′ − Bn =⇒ A2m + B2n + 2AmBn = µ2t′2 − 2t′µBn + B2n

Using the expression of p:

(85) p = t′2µ2 − 2t′Bnµ + Bn(Bn − Am)

As p = b = k2.k3 and µ | k3 then µ | b =⇒ ∃µ′ and b = µµ′, so we can write:

(86) µ′µ = µ(µt′2 − 2t′Bn) + Bn(Bn − Am)

From the last equation, we obtain µ | Bn(Bn − Am) =⇒ µ | Bn or µ | (Bn − Am).

** A-1-2-1- If µ | Bn which is in contradiction with µ ∤ Bn.

** A-1-2-2- If µ | (Bn − Am) and using that µ | (Am + 2Bn), we arrive to :

(87) µ | 3Bn


µ | Bn

or

µ = 3

** A-1-2-2-1- If µ | Bn =⇒ µ | B, it is the contradiction with µ ∤ B cited above.

** A-1-2-2-2- If µ = 3, then 3 | b, but 3 | a then the contradiction with a, b coprime.
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2.5.3.2. We assume now k3 = 1

Then :

A2m + 2AmBn = k1(88)
b = k2(89)

2
√

3
3 sin

2θ

3 = k1
b

(90)

Taking the square of the last equation, we obtain:
4
3sin2 2θ

3 = k2
1

b2

16
3 sin2 θ

3cos2 θ

3 = k2
1

b2

16
3 sin2 θ

3 .
3a′

b
= k2

1
b2

Finally:

(91) 42a′(p − a) = k2
1

but a′ = a”2, then p − a is a square. Let:

(92) λ2 = p − a = b − a = b − 3a”2 =⇒ λ2 + 3a”2 = b

The equation (91) becomes:

(93) 42a”2λ2 = k2
1 =⇒ k1 = 4a”λ

taking the positive root, but k1 = Am(Am + 2Bn) = 2a”(Am + 2Bn), then :

(94) Am + 2Bn = 2λ =⇒ λ = a” + Bn

** A-2-1- As Am = 2a” =⇒ 2 | Am =⇒ 2 | A =⇒ A = 2iA1, with i ≥ 1 and
2 ∤ A1, then Am = 2a” = 2imAm

1 =⇒ a” = 2im−1Am
1 , but im ≥ 3 =⇒ 4 | a”. As

λ = a” + Bn, taking its square, we obtain λ2 = a”2 + 2a”.Bn + B2n =⇒ λ2 ≡
B2n(mod 4) =⇒ λ2 ≡ B2n ≡ 0(mod 4) or λ2 ≡ B2n ≡ 1(mod 4).

** A-2-1-1- We suppose that λ2 ≡ B2n ≡ 0(mod 4) =⇒ 4 | λ2 =⇒ 2 | (b − a). But
2 | a because a = 3a′ = 3a”2 = 3 × 22(im−1)A2m

1 and im ≥ 3. Then 2 | b, it follows
the contradiction with a, b coprime.

** A-2-1-2- We suppose now that λ2 ≡ B2n ≡ 1(mod4). As Am = 2im−1Am
1

and im − 1 ≥ 2, then Am ≡ 0(mod4). As B2n ≡ 1(mod4), then Bn verifies
Bn ≡ 1(mod 4) or Bn ≡ 3(mod 4) which gives for the two cases BnC l ≡ 1(mod 4).

We have also p = b = A2m + AmBn + B2n = 4a′ + Bn.C l = 4a”2 + BnC l =⇒
BnC l = λ2 −a”2 = Bn.C l, then λ, a” ∈ N∗ are solutions of the Diophantine equation
:

(95) x2 − y2 = N
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with N = BnC l > 0. Let Q(N) be the number of the solutions of (95) and τ(N)
is the number of suitable factorization of N , then we announce the following result
concerning the solutions of the equation (95) (see theorem 27.3 in [2]):

- If N ≡ 2(mod 4), then Q(N) = 0.
- If N ≡ 1 or N ≡ 3(mod 4), then Q(N) = [τ(N)/2].
- If N ≡ 0(mod 4), then Q(N) = [τ(N/4)/2].
[x] is the integral part of x for which [x] ≤ x < [x] + 1.

In our case, we have N = Bn.C l ≡ 1(mod 4), then Q(N) = [τ(N)/2]. As λ, a” is
a couple of solutions of the Diophantine equation (95), then ∃ d, d′ positive integers
with d > d′ and N = d.d′ so that :

d + d′ = 2λ(96)
d − d′ = 2a”(97)

** A-2-1-2-1- As C l > Bn, we take d = C l and d′ = Bn. It follows:

C l + Bn = 2λ = Am + 2Bn(98)
C l − Bn = 2a” = Am(99)

Then the case d = C l and d′ = Bn gives a priory no contradictions.

** A-2-1-2-2- Now, we consider the case d = BnC1 and d′ = 1. We rewrite the
equations (96-97):

BnC l + 1 = 2λ(100)
BnC l − 1 = 2a”(101)

We obtain 1 = λ − a”, but from (94), we have λ = a” + Bn, it follows Bn = 1 and
C l − Am = 1, we know [4] that the only positive solution of the last equation is
C = 3, A = 2, m = 3 and l = 2 < 3, then the contradiction.

** A-2-1-2-3- Now, we consider the case d = clr−1
1 C l

1 where c1 is a prime integer with
c1 ∤ C1 and C = cr1C1, r ≥ 1. It follows that d′ = c1.Bn. We rewrite the equations
(96-97):

clr−1
1 C l

1 + c1.Bn = 2λ(102)
clr−1

1 C l
1 − c1.Bn = 2a”(103)

As l ≥ 3, from the last two equations above, it follows that c1 | (2λ) and c1 | (2a”).
Then c1 = 2, or c1 | λ and c1 | a”.

** A-2-1-2-3-1- We suppose c1 = 2. As 2 | Am and 2 | C l because l ≥ 3, it follows
2 | Bn, then 2 | (p = b). Then the contradiction with a, b coprime.
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** A-2-1-2-3-2- We suppose c1 ̸= 2 and c1 | a” and c1 | λ. c1 | a” =⇒ c1 | a and
c1 | (Am = 2a”). Bn = C l − Am =⇒ c1 | Bn. It follows that c1 | (p = b). Then the
contradiction with a, b coprime.

The other cases of the expressions of d and d′ with d, d′ not coprime so that
N = BnC l = d.d′ give also contradictions.

** A-2-1-2-4- Now, let C = cr1C1 with c1 a prime, r ≥ 1 and c1 ∤ C1, we consider the
case d = C l

1 and d′ = crl1 Bn so that d > d′. We rewrite the equations (96-97):

C l
1 + crl1 Bn = 2λ(104)

C l
1 − crl1 Bn = 2a”(105)

We obtain crl1 Bn = λ − a” = Bn =⇒ crl1 = 1, then the contradiction.

** A-2-1-2-5- Now, let C = cr1C1 with c1 a prime, r ≥ 1 and c1 ∤ C1, we consider the
case d = C l

1Bn and d′ = crl1 so that d > d′. We rewrite the equations (96-97):

C l
1Bl + crl1 = 2λ(106)

C l
1Bl − crl1 = 2a”(107)

We obtain crl1 = λ − a” = Bn =⇒ c1 | Bn, then c1 | Am = 2a”. If c1 = 2, the
contradiction with BnC l ≡ 1(mod 4). Then c1 | a” =⇒ c1 | a =⇒ c1 | (p = b), it
follows a, b are not coprime, then the contradiction.

Cases like d′ < C l a divisor of C l or d′ < Bl a divisor of Bn with d′ < d and
d.d′ = N = BnC l give contradictions.

** A-2-1-2-6- Now, we consider the case d = b1.C l where b1 is a prime integer with
b1 ∤ B1 and B = br1B1, r ≥ 1. It follows that d′ = bnr−1

1 Bn
1 . We rewrite the equations

(96-97):

b1C l + bnr−1
1 Bn

1 = 2λ(108)
b1C l − bnr−1

1 Bn
1 = 2a”(109)

As n ≥ 3, from the last two equations above, it follows that b1 | 2λ and b1 | (2a”).
Then b1 = 2, or b1 | λ and b1 | a”.

** A-2-1-2-6-1- We suppose b1 = 2 =⇒ 2 | Bn. As 2 | (Am = 2a” =⇒ 2 | a” =⇒ 2 | a,
but 2 | Bn and 2 | Am then 2 | (p = b). It follows the contradiction with a, b coprime.

** A-2-1-2-6-2- We suppose b1 ̸= 2, then b1 | λ and b1 | a” =⇒ b1 | Am and
b1 | a” =⇒ b1 | a, but b1 | Bn and b1 | Am then b1 | (p = b). It follows the
contradiction with a, b coprime.
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The other cases of the expressions of d and d′ with d, d′ not coprime and d > d′

so that N = C lBm = d.d′ give also contradictions.

Finally, from the cases studied in the above paragraph A-2-1-2, we have found
one suitable factorization of N that gives a priory no contradictions, it is the case
N = Bn.C l = d.d′ with d = C l, d′ = Bn but 1 ≪ τ(N), it follows the contradiction
with Q(N) = [τ(N)/2] ≤ 1. We conclude that the case A-2-1-2 is to reject.

Hence, the case k3 = 1 is impossible.

Let us verify the condition (71) given by b < 4a < 3b. In our case, the condition
becomes :

(110) p < 3A2m < 3p with p = A2m + B2n + AmBn

and 3A2m < 3p =⇒ A2m < p that is verified. If :

p < 3A2m =⇒ 2A2m − AmBn − B2n
?︷︸︸︷
> 0

Studying the sign of the polynomial Q(Y ) = 2Y 2 − BnY − B2n and taking
Y = Am > Bn, the condition 2A2m − AmBn − B2n > 0 is verified, then the
condition b < 4a < 3b is true.

In the following of the paper, we verify easily that the condition b < 4a < 3b implies
to verify that Am > Bn which is true.

2.5.4. Case b | p ⇒ p = b.p′, p′ > 1, b ̸= 2, b ̸= 4 and 3 | a

(111) A2m = 4.p

3 .
a

b
= 4.b.p′.3.a′

3.b
= 4.p′a′

We calculate BnC l:

(112) BnC l = 3
√

ρ2
(

3sin2 θ

3 − cos2 θ

3

)
= 3
√

ρ2
(

3 − 4cos2 θ

3

)
but 3

√
ρ2 = p

3 , using cos2 θ

3 = 3.a′

b
, we obtain:

(113) BnC l = 3
√

ρ2
(

3 − 4cos2 θ

3

)
= p

3

(
3 − 43.a′

b

)
= p.

(
1 − 4.a′

b

)
= p′(b − 4a′)

As p = b.p′, and p′ > 1, so we have :

BnC l = p′(b − 4a′)(114)
and A2m = 4.p′.a′(115)

** B-1- We suppose that p′ is prime, then A2m = 4a′p′ = (Am)2 =⇒ p′ | a′. But
BnC l = p′(b − 4a′) =⇒ p′ | Bn or p′ | C l.
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** B-1-1- If p′ | Bn =⇒ p′ | B =⇒ B = p′B1 with B1 ∈ N∗. Hence :
p′n−1Bn

1 C l = b − 4a′. But n > 2 ⇒ (n − 1) > 1 and p′ | a′, then p′ | b =⇒ a and b

are not coprime, then the contradiction.

** B-1-2- If p′ | C l =⇒ p′ | C. The same method used above, we obtain the same
results.

** B-2- We consider that p′ is not a prime integer.

** B-2-1- p′, a are supposed coprime: A2m = 4a′p′ =⇒ Am = 2a”.p1 with a′ = a”2

and p′ = p2
1, then a”, p1 are also coprime. As Am = 2a”.p1 then 2 | a” or 2 | p1.

** B-2-1-1- 2 | a”, then 2 ∤ p1. But p′ = p2
1.

** B-2-1-1-1- If p1 is prime, it is impossible with Am = 2a”.p1.

** B-2-1-1-2- We suppose that p1 is not prime, we can write it as p1 = ωm =⇒ p′ =
ω2m, then: BnC l = ω2m(b − 4a′).

** B-2-1-1-2-1- If ω is prime, it is different of 2, then ω | (BnC l) =⇒ ω | Bn or ω | C l.

** B-2-1-1-2-1-1- If ω | Bn =⇒ ω | B =⇒ B = ωjB1 with ω ∤ B1, then
Bn

1 .C l = ω2m−nj(b − 4a′).

** B-2-1-1-2-1-1-1- If 2m−n.j = 0, we obtain Bn
1 .C l = b−4a′. As C l = Am+Bn =⇒

ω | C l =⇒ ω | C, and ω | (b − 4a′). But ω ̸= 2 and ω is coprime with a′ then
coprime with a, then ω ∤ b. The conjecture (34) is verified.

** B-2-1-1-2-1-1-2- If 2m − nj ≥ 1, in this case with the same method, we obtain
ω | C l =⇒ ω | C and ω | (b − 4a′) and ω ∤ a and ω ∤ b. The conjecture (34) is
verified.

** B-2-1-1-2-1-1-3- If 2m − nj < 0 =⇒ ωn.j−2mBn
1 .C l = b − 4a′. As ω | C

using C l = Am + Bn then C = ωh.C1 =⇒ ωn.j−2m+h.lBn
1 .C l

1 = b − 4a′. If
n.j − 2m + h.l < 0 =⇒ ω | Bn

1 C l
1, it follows the contradiction that ω ∤ B1 or ω ∤ C1.

Then if n.j − 2m + h.l > 0 and ω | (b − 4a′) with ω, a, b coprime and the conjecture
(34) is verified.

** B-2-1-1-2-1-2- We obtain the same results if ω | C l.
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** B-2-1-1-2-2- Now, p′ = ω2m and ω not prime, we write ω = ωf1 .Ω with ω1 prime
∤ Ω and f ≥ 1 an integer, and ω1 | A. Then BnC l = ω2f.m

1 Ω2m(b − 4a′) =⇒ ω1 |
(BnC l) =⇒ ω1 | Bn or ω1 | C l.

** B-2-1-1-2-2-1- If ω1 | Bn =⇒ ω1 | B =⇒ B = ωj1B1 with ω1 ∤ B1, then
Bn

1 .C l = ω2mf−nj
1 Ω2m(b − 4a′):

** B-2-1-1-2-2-1-1- If 2f.m − n.j = 0, we obtain Bn
1 .C l = Ω2m(b − 4a′). As

C l = Am + Bn =⇒ ω1 | C l =⇒ ω1 | C =⇒ ω1 | (b − 4a′). But ω1 ̸= 2 and ω1 is
coprime with a′, then coprime with a, we deduce ω1 ∤ b. Then the conjecture (34)
is verified.

** B-2-1-1-2-2-1-2- If 2f.m − n.j ≥ 1, we have ω1 | C l =⇒ ω1 | C =⇒ ω1 | (b − 4a′)
and ω1 ∤ a and ω1 ∤ b. The conjecture (34) is verified.

** B-2-1-1-2-2-1-3- If 2f.m − n.j < 0 =⇒ ωn.j−2m.f
1 Bn

1 .C l = Ω2m(b − 4a′). As ω1 | C

using C l = Am + Bn, then C = ωh1 .C1 =⇒ ωn.j−2m.f+h.lBn
1 .C l

1 = Ω2m(b − 4a′). If
n.j − 2m.f + h.l < 0 =⇒ ω1 | Bn

1 C l
1, it follows the contradiction with ω1 ∤ B1 and

ω1 ∤ C1. Then if n.j − 2m.f + h.l > 0 and ω1 | (b − 4a′) with ω1, a, b coprime and
the conjecture (34) is verified.

** B-2-1-1-2-2-2- We obtain the same results if ω1 | C l.

** B-2-1-2- If 2 | p1, then 2 | p1 =⇒ 2 ∤ a′ =⇒ 2 ∤ a. But p′ = p2
1.

** B-2-1-2-1- If p1 = 2, we obtain Am = 4a” =⇒ 2 | a” as m ≥ 3, then the
contradiction with a, b coprime.

** B-2-1-2-2- We suppose that p1 is not prime and 2 | p1, as Am = 2a”p1, p1 is writ-
ten as p1 = 2m−1ωm =⇒ p′ = 22m−2ω2m. It follows BnC l = 22m−2ω2m(b − 4a′) =⇒
2 | Bn or 2 | C l.

** B-2-1-2-2-1- If 2 | Bn =⇒ 2 | B, as 2 | A, then 2 | C. From BnC l =
22m−2ω2m(b − 4a′), it follows if 2 | (b − 4a′) =⇒ 2 | b but as 2 ∤ a′, there is no
contradiction with a, b coprime and the conjecture (34) is verified.

** B-2-1-2-2-2- If 2 | C l, using the same method as above, we obtain the identical
results.
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** B-2-2- p′, a′ are supposed not coprime. Let ω be a prime integer so that ω | a′

and ω | p′.

** B-2-2-1- We suppose firstly ω = 3. As A2m = 4a′p′ =⇒ 3 | A, but 3 | p′ =⇒ 3 | p,
as p = A2m + B2n + AmBn =⇒ 3 | B2n =⇒ 3 | B, then 3 | C l =⇒ 3 | C. We
write A = 3iA1, B = 3jB1, C = 3hC1 and 3 coprime with A1, B1 and C1 and p =
32imA2m

1 +32njB2n
1 +3im+jnAm

1 Bn
1 = 3k.g with k = min(2im, 2jn, im+jn) and 3 ∤ g.

We have also (ω = 3) | a and (ω = 3) | p′ that gives a = 3αa1 = 3a′ =⇒ a′ = 3α−1a1,
3 ∤ a1 and p′ = 3µp1, 3 ∤ p1 with A2m = 4a′p′ = 32imA2m

1 = 4 × 3α−1+µ.a1.p1 =⇒
α + µ − 1 = 2im. As p = bp′ = b.3µp1 = 3µ.b.p1. The exponent of the term 3 of
p is k, the exponent of the term 3 of the left member of the last equation is µ. If
3 | b it is a contradiction with a, b coprime. Then, we suppose that 3 ∤ b, and the
equality of the exponents: min(2im, 2jn, im + jn) = µ, recall that α + µ − 1 = 2im.
But BnC l = p′(b − 4a′) that gives 3(nj+hl)Bn

1 C l
1 = 3µp1(b − 4 × 3(α−1)a1). We have

also Am + Bn = C l gives 3imAm
1 + 3jnBn

1 = 3hlC l
1. Let ϵ = min(im, jn), we have

ϵ = hl = min(im, jn). Then, we obtain the conditions:

k = min(2im, 2jn, im + jn) = µ(116)
α + µ − 1 = 2im(117)

ϵ = hl = min(im, jn)(118)
3(nj+hl)Bn

1 C l
1 = 3µp1(b − 4 × 3(α−1)a1)(119)

** B-2-2-1-1- α = 1 =⇒ a = 3a1 = 3a′ and 3 ∤ a1, the equation (117) becomes:

µ = 2im

and the first equation (116) is written as:

k = min(2im, 2jn, im + jn) = 2im

- If k = 2im, then 2im ≤ 2jn =⇒ im ≤ jn =⇒ hl = im, and (119) gives µ = 2im =
nj +hl = im+nj =⇒ im = jn = hl. Hence 3 | A, 3 | B and 3 | C and the conjecture
(34) is verified.
- If k = 2jn =⇒ 2jn = 2im =⇒ im = jn = hl. Hence 3 | A, 3 | B and 3 | C and the
conjecture (34) is verified.
- If k = im + jn = 2im =⇒ im = jn =⇒ ϵ = hl = im = jn case that is seen above
and we deduce that 3 | A, 3 | B and 3 | C, and the conjecture (34) is verified.

** B-2-2-1-2- α > 1 =⇒ α ≥ 2 and a′ = 3α−1a1.
- If k = 2im =⇒ 2im = µ, but µ = 2im + 1 − α that is impossible.
- If k = 2jn = µ =⇒ 2jn = 2im + 1 − α. We obtain 2jn < 2im =⇒ jn < im =⇒

2jn < im + jn, k = 2jn is just the minimum of (2im, 2jn, im + jn). We obtain
jn = hl < im and the equation (119) becomes:

Bn
1 C l

1 = p1(b − 4 × 3(α−1)a1)
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The conjecture (34) is verified.

- If k = im + jn ≤ 2im =⇒ jn ≤ im and k = im + jn ≤ 2jn =⇒ im ≤ jn =⇒
im = jn =⇒ k = im + jn = 2im = µ but µ = 2im + 1 − α that is impossible.

- If k = im + jn < 2im =⇒ jn < im and 2jn < im + jn = k that is a
contradiction with k = min(2im, 2jn, im + jn).

** B-2-2-2- We suppose that ω ̸= 3. We write a = ωαa1 with ω ∤ a1 and p′ = ωµp1
with ω ∤ p1. As A2m = 4a′p′ = 4ωα+µ.a1.p1 =⇒ ω | A =⇒ A = ωiA1, ω ∤ A1. But
BnC l = p′(b − 4a′) = ωµp1(b − 4a′) =⇒ ω | BnC l =⇒ ω | Bn or ω | C l.

** B-2-2-2-1- ω | Bn =⇒ ω | B =⇒ B = ωjB1 and ω ∤ B1. From Am + Bn =
C l =⇒ ω | C l =⇒ ω | C. As p = bp′ = ωµbp1 = ωk(ω2im−kA2m

1 + ω2jn−kB2n
1 +

ωim+jn−kAm
1 Bn

1 ) with k = min(2im, 2jn, im + jn). Then :
- If µ = k, then ω ∤ b and the conjecture (34) is verified.
- If k > µ, then ω | b, but ω | a we deduce the contradiction with a, b coprime.
- If k < µ, it follows from :

ωµbp1 = ωk(ω2im−kA2m
1 + ω2jn−kB2n

1 + ωim+jn−kAm
1 Bn

1 )

that ω | A1 or ω | B1 that is a contradiction with the hypothesis.

** B-2-2-2-2- If ω | C l =⇒ ω | C =⇒ C = ωhC1 with ω ∤ C1. From Am + Bn =
C l =⇒ ω | (C l − Am) =⇒ ω | B. Then, we obtain the same results as B-2-2-2-1-
above.

2.5.5. Case b = 2p and 3 | a

We have :

cos2 θ

3 = a

b
= 3a′

2p
=⇒ A2m = 4p.a

3b
= 4p

3 .
3a′

2p
= 2a′ = (Am)2 =⇒ 2 | a′ =⇒ 2 | a

Then 2 | a and 2 | b that is a contradiction with a, b coprime.

2.5.6. Case b = 4p and 3 | a

We have :

cos2 θ

3 = a

b
= 3a′

4p
=⇒ A2m = 4p.a

3b
= 4p

3 .
3a′

4p
= a′ = (Am)2 = a”2

with Am = a”
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Let us calculate AmBn, we obtain:

AmBn = p
√

3
3 .sin

2θ

3 − 2p

3 cos2 θ

3 = p
√

3
3 .sin

2θ

3 − a′

2 =⇒

AmBn + A2m

2 = p
√

3
3 .sin

2θ

3
Let:

(120) A2m + 2AmBn = 2p
√

3
3 sin

2θ

3

The left member of (120) is an integer and p is an integer, then 2
√

3
3 sin

2θ

3 will be
written as :

2
√

3
3 sin

2θ

3 = k1
k2

where k1, k2 are two integers coprime and k2 | p =⇒ p = k2.k3.

** C-1- Firstly, we suppose that k3 ̸= 1. Then :

A2m + 2AmBn = k3.k1

Let µ be a prime integer and µ | k3, then µ | Am(Am + 2Bn) =⇒ µ | Am or
µ | (Am + 2Bn).

** C-1-1- If µ | (Am = a”) =⇒ µ | (a”2 = a′) =⇒ µ | (3a′ = a). As
µ | k3 =⇒ µ | p =⇒ µ | (4p = b), then the contradiction with a, b coprime.

** C-1-2- If µ | (Am + 2Bn) =⇒ µ ∤ Am and µ ∤ 2Bn, then:

(121) µ ̸= 2 and µ ∤ Bn

µ | (Am + 2Bn), we write:
Am + 2Bn = µ.t′

Then:

Am + Bn = µt′ − Bn =⇒ A2m + B2n + 2AmBn = µ2t′2 − 2t′µBn + B2n

=⇒ p = t′2µ2 − 2t′Bnµ + Bn(Bn − Am)

As b = 4p = 4k2.k3 and µ | k3 then µ | b =⇒ ∃µ′ so that b = µ.µ′, we obtain:

µ′.µ = µ(4µt′2 − 8t′Bn) + 4Bn(Bn − Am)

The last equation implies µ | 4Bn(Bn−Am), but µ ̸= 2 then µ | Bn or µ | (Bn−Am).

** C-1-1-1- If µ | Bn =⇒ then the contradiction with (121).
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** C-1-1-2- If µ | (Bn − Am) and using µ | (Am + 2Bn), we have :

µ | 3Bn =⇒


µ | Bn

or

µ = 3
** C-1-1-2-1- If µ | Bn then the contradiction with (121).

** C-1-1-2-2- If µ = 3, then 3 | b, but 3 | a then the contradiction with a, b coprime.

** C-2- We assume now that k3 = 1, then:

A2m + 2AmBn = k1(122)
p = k2

2
√

3
3 sin

2θ

3 = k1
p

We take the square of the last equation, we obtain :
4
3sin2 2θ

3 = k2
1

p2

16
3 sin2 θ

3cos2 θ

3 = k2
1

p2

16
3 sin2 θ

3 .
3a′

b
= k2

1
p2

Finally:

(123) a′(4p − 3a′) = k2
1

but a′ = a”2, then 4p − 3a′ is a square. Let :

λ2 = 4p − 3a′ = 4p − a = b − a

The equation (123) becomes :

(124) a”2λ2 = k2
1 =⇒ k1 = a”λ

taking the positive root. Using (122), we have:

k1 = Am(Am + 2Bn) = a”(Am + 2Bn)

Then :
Am + 2Bn = λ

Now, we consider that b − a = λ2 =⇒ λ2 + 3a”2 = b, then the couple (λ, a”) is a
solution of the Diophantine equation:

(125) X2 + 3Y 2 = b

with X = λ and Y = a”. But using one theorem on the solutions of the equation
given by (125), b is written under the form (see theorem 37.4 in [3]):

b = 22s × 3t.pt11 · · · ptgg q2s1
1 · · · q2sr

r
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where pi are prime integers so that pi ≡ 1(mod 6), the qj are also prime integers so
that qj ≡ 5(mod 6). Then, as b = 4p :

- If t ≥ 1 =⇒ 3 | b, but 3 | a, then the contradiction with a, b coprime.

** C-2-2-1- Hence, we suppose that p is written under the form:

p = pt11 · · · ptgg q2s1
1 · · · q2sr

r

with pi ≡ 1(mod 6) and qj ≡ 5(mod 6). Finally, we obtain that :

(126) p ≡ 1(mod 6)

We will verify if this condition does not give contradictions.

We will present the table of the value modulo 6 of p = A2m + AmBn + B2n in
function of the values of Am, Bn(mod 6). We obtain the table below:

Table 1. Table of p (mod 6)
Am , Bn 0 1 2 3 4 5

0 0 1 4 3 4 1
1 1 3 1 1 3 1
2 4 1 0 1 4 3
3 3 1 1 3 1 1
4 4 3 4 1 0 1
5 1 1 3 1 1 3

** C-2-2-1-1- Case Am ≡ 0(mod 6) =⇒ 2 | (Am = a”) =⇒ 2 | (a′ = a”2) =⇒ 2 | a,
but 2 | b, then the contradiction with a, b coprime. All the cases of the first line of
the table 1 are to reject.

** C-2-2-1-2- Case Am ≡ 1(mod 6) and Bn ≡ 0(mod 6), then 2 | Bn =⇒ Bn = 2B′

and p is written as p = (Am + B′)2 + 3B′2 with (p, 3) = 1, if not 3 | p, then 3 | b,
but 3 | a, then the contradiction with a, b coprime. Hence, the pair (Am + B′, B′)
verifies the equation:

(127) (Am + B′)2 + 3B′2 = p

that we can write it as:

(128) (Am + B′)2 − B′2 = p − 4B′2 = A2m + B2n + AmBn − B2n = C lAm = N

Then (Am + B′, B′) is a solution of the Diophantine equation:

(129) x2 − y2 = N
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where N = C lAm ≡ 1(mod 6). Let Q(N) be the number of the solutions of (129)
and τ(N) is the number of suitable factorization of N , then we recall the following
result concerning the solutions of the equation (129) (see theorem 27.3 in [2]):

- If N ≡ 2(mod 4), then Q(N) = 0.
- If N ≡ 1 or N ≡ 3(mod 4), then Q(N) = [τ(N)/2].
- If N ≡ 0(mod 4), then Q(N) = [τ(N/4)/2].
As N = C lAm ≡ 1(mod6) =⇒ N is odd, the cases Q(N) = 0 and

Q(N) = [τ(N/4)/2] are rejected, then N ≡ 1 or N ≡ 3(mod4), it follows
Q(N) = [τ(N)/2].

As Am + B′, B′ is a couple of solutions of the Diophantine equation (129), then
∃ d, d′ positive integers with d > d′ and N = d.d′ so that :

d + d′ = 2(Am + B′)(130)
d − d′ = 2B′ = Bn(131)

We will use the same method used for the paragraph above A-2-1-2-.

** C-2-2-1-2-1- As C l > Am, we take d = C l and d′ = Am. It follows:

C l + Am = 2(Am + B′) = 2Am + Bn

C l − Am = Bn = 2B′

Then the case d = C l and d′ = Am gives a priory no contradictions.

** C-2-2-1-2-2- Now, we consider the case d = C lAm and d′ = 1. We rewrite the
equations (130-131):

C lAm + 1 = 2(Am + B′)(132)
C lAm − 1 = 2B′(133)

We obtain 1 = Am, it follows C l − Bn = 1, we know [4] that the only positive solu-
tion of the last equation is C = 3, B = 2, n = 3 and l = 2 < 3, then the contradiction.

** C-2-2-1-2-3- Now, we consider the case d = clr−1
1 C l

1 where c1 is a prime integer
with c1 ∤ C1 and C = cr1C1, r ≥ 1. It follows that d′ = c1.Am. We rewrite the
equations (130-131):

clr−1
1 C l

1 + c1.Am = 2(Am + B′)(134)
clr−1

1 C l
1 − c1.Am = 2B′ = Bn(135)

As l ≥ 3, from the last two equations above, it follows that c1 | 2(Am + B′) and
c1 | (2B′). Then c1 = 2, or c1 | (Am + B′) and c1 | B′.

** C-2-2-1-2-3-1- We suppose c1 = 2. As l ≥ 3, from the equation (135) it follows
that 2 | Bn, then 2 | (Am = a”) =⇒ 2 | (a”2 = a′) =⇒ 2 | (a = 3a′), but b = 4p (see
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2.5.6), then the contradiction with a, b coprime.

** C-2-2-1-2-3-2- We suppose c1 ̸= 2, then c1 | (Am + B′) and c1 | B′. It
follows c1 | Am and c1 | (Bn = 2B′) =⇒ c1 | p =⇒ c1 | b = 4p. From
c1 | (Am = a”) =⇒ c1 | (a”2 = a′) =⇒ c1 | (a = 3a′), then the contradiction with
a, b coprime.

The other cases of the expressions of d and d′ with d, d′ not coprime and d > d′

so that N = C lAm = d.d′ give also contradictions.

** C-2-2-1-2-4- Now, we consider the case d = a1.C l where a1 is a prime integer
with a1 ∤ A1 and A = ar1A1, r ≥ 1. It follows that d′ = amr−1

1 Am
1 . We rewrite the

equations (130-131):

a1C l + amr−1
1 Am

1 = 2(Am + B′)(136)
a1C l − amr−1

1 Am
1 = 2B′ = Bn(137)

As m ≥ 3, from the last two equations above, it follows that a1 | 2(Am + B′) and
a1 | (2B′). Then a1 = 2, or a1 | (Am + B′) and a1 | B′.

** C-2-2-1-2-4-1- We suppose a1 = 2 =⇒ 2 | (Am = a′′) =⇒ a1 | (a′′2 = a′) =⇒ a1 |
(a = 3a′). But b = 4p, then the contradiction with a, b coprime.

** C-2-2-1-2-4-2- We suppose a1 ̸= 2, then a1 | (Am + B′) and a1 | B′. It follows
a1 | Am and a1 | (Bn = 2B′) =⇒ a1 | p =⇒ a1 | b = 4p. From a1 | (Am = a′′) =⇒
a1 | (a′′2 = a′) =⇒ a1 | (a = 3a′), then the contradiction with a, b coprime.

The other cases of the expressions of d and d′ with d, d′ not coprime and d > d′

so that N = C lAm = d.d′ give also contradictions.

** C-2-2-1-2-5- Now, let C = cr1C1 with c1 a prime, r ≥ 1 and c1 ∤ C1, we consider
the case d = C l

1 and d′ = crl1 Am so that d > d′. We rewrite the equations (130-131):

C l
1 + crl1 Am = 2(Am + B′)(138)
C l

1 − crl1 Am = 2B′ = Bn(139)

We obtain crl1 Am = Am =⇒ crl1 = 1, then the contradiction.

** C-2-2-1-2-6- Now, let C = cr1C1 with c1 a prime, r ≥ 1 and c1 ∤ C1, we consider
the case d = C l

1Am and d′ = crl1 so that d > d′. We rewrite the equations (130-131):

C l
1Am + crl1 = 2(Am + B′)(140)
C l

1Am − crl1 = 2B′ = Bn(141)

We obtain crl1 = Am =⇒ c1 | Am, then c1 | Am = a” =⇒ c1 | (a”2 = a′) =⇒ c1 |
(a = 3a′). As c1 | C and c1 | Am =⇒ c1 | Bn, it follows c1 | (p = b), then the
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contradiction with a, b coprime.

The other cases of the expressions of d and d′ with d, d′ coprime and d > d′ so
that N = C lAm = d.d′ give also contradictions.

Finally, from the cases studied in the above paragraph C-2-2-1-2, we have found
one suitable factorization of N that gives a priory no contradictions, it is the case
N = C l.Am, but 1 ≪ τ(N), it follows the contradiction with Q(N) = [τ(N)/2] ≤ 1.
We conclude that the case Am ≡ 1(mod 6) and Bn ≡ 0(mod 6) of the paragraph
C-2-2-1-2 is to reject.

** C-2-2-1-3- Case Am ≡ 1(mod6) and Bn ≡ 2(mod6), then Bn is even, see
C-2-2-1-2-.

** C-2-2-1-4- Case Am ≡ 1(mod 6) and Bn ≡ 3(mod 6), then 3 | Bn =⇒ Bn = 3B′.
As p = A2m + AmBn + B2n =⇒ p ≡ 5(mod 6) ̸=≡ 1(mod 6) (see (126)), then the
contradiction and the case C-2-2-1-4- is to reject.

** C-2-2-1-5- Case Am ≡ 1(mod 6) and Bn ≡ 5(mod 6), then C l ≡ 0(mod 6) =⇒
2 | C l, see C-2-2-1-2-.

** C-2-2-1-6- Case Am ≡ 2(mod6) =⇒ 2 | a” =⇒ 2 | a, but 2 | b, then the
contradiction with a, b coprime.

** C-2-2-1-7- Case Am ≡ 3(mod 6) and Bn ≡ 1(mod 6), then C l ≡ 4(mod 6) =⇒
2 | C l =⇒ C l = 2C ′, and C is even, see C-2-2-1-2-.

** C-2-2-1-8- Case Am ≡ 3(mod6) and Bn ≡ 2(mod6), then Bn is even, see
C-2-2-1-2-.

** C-2-2-1-9- Case Am ≡ 3(mod6) and Bn ≡ 4(mod6), then Bn is even, see
C-2-2-1-2-.

** C-2-2-1-10- Case Am ≡ 3(mod 6) and Bn ≡ 5(mod 6), then C l ≡ 2(mod 6) =⇒
2 | C l, and C is even, see C-2-2-1-2-.

** C-2-2-1-11- Case Am ≡ 4(mod6) =⇒ 2 | a” =⇒ 2 | a, but 2 | b, then the
contradiction with a, b coprime.

** C-2-2-1-12- Case Am ≡ 5(mod6) and Bn ≡ 0(mod6), then Bn is even, see
C-2-2-1-2-.
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** C-2-2-1-13- Case Am ≡ 5(mod 6) and Bn ≡ 1(mod 6), then C l ≡ 0(mod 6) =⇒
2 | C l, C is even, see C-2-2-1-2-.

** C-2-2-1-14- Case Am ≡ 5(mod 6) and Bn ≡ 3(mod 6), then C l ≡ 2(mod 6) =⇒
2 | C l =⇒ C l = 2C ′, C is even, C-2-2-1-2-.

** C-2-2-1-15- Case Am ≡ 5(mod6) and Bn ≡ 4(mod6), then Bn is even, see
C-2-2-1-2-.

We have achieved the study all the cases of the table 1 giving contradictions.

Then the case k3 = 1 is impossible.

2.5.7. Case 3 | a and b = 2p′, b ̸= 2 with p′ | p

3 | a =⇒ a = 3a′, b = 2p′ with p = k.p′, then:

A2m = 4.p

3 .
a

b
= 4.k.p′.3.a′

6p′ = 2.k.a′

We calculate BnC l:

BnC l = 3
√

ρ2
(

3sin2 θ

3 − cos2 θ

3

)
= 3
√

ρ2
(

3 − 4cos2 θ

3

)

but 3
√

ρ2 = p

3 , then using cos2 θ

3 = 3.a′

b
:

BnC l = 3
√

ρ2
(

3 − 4cos2 θ

3

)
= p

3

(
3 − 43.a′

b

)
= p.

(
1 − 4.a′

b

)
= k(p′ − 2a′)

As p = b.p′, and p′ > 1, then we have:

BnC l = k(p′ − 2a′)(142)
and A2m = 2k.a′(143)

** D-1- We suppose that k is prime.

** D-1-1- If k = 2, then we have p = 2p′ = b =⇒ 2 | b, but A2m = 4a′ = (Am)2 =⇒
Am = 2a” with a′ = a”2, then 2 | a” =⇒ 2 | (a = 3a”2), it follows the contradiction
with a, b coprime.

** D-1-2- We suppose k ̸= 2. From A2m = 2k.a′ = (Am)2 =⇒ k | a′ and
2 | a′ =⇒ a′ = 2.k.a”2 =⇒ Am = 2.k.a”. Then k | Am =⇒ k | A =⇒ A = ki.A1
with i ≥ 1 and k ∤ A1. kimAm

1 = 2ka” =⇒ 2a” = kim−1Am
1 . From

BnC l = k(p′ − 2a′) =⇒ k | (BnC l) =⇒ k | Bn or k | C l.
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** D-1-2-1- We suppose that k | Bn =⇒ k | B =⇒ B = kj .B1 with j ≥ 1 and k ∤ B1.
It follows knj−1Bn

1 C l = p′ − 2a′ = p′ − 4ka”2. As n ≥ 3 =⇒ nj − 1 ≥ 2, then k | p′

but k ̸= 2 =⇒ k | (2p′ = b), but k | a′ =⇒ k | (3a′ = a). It follows the contradiction
with a, b coprime.

** D-1-2-2- If k | C l we obtain the identical results.

** D-2- We suppose that k is not prime. Let ω be an integer prime so that k = ωs.k1,
with s ≥ 1, ω ∤ k1. The equations (142-143) become:

BnC l = ωs.k1(p′ − 2a′)
and A2m = 2ωs.k1.a′

** D-2-1- We suppose that ω = 2, then we have the equations:

A2m = 2s+1.k1.a′(144)
BnC l = 2s.k1(p′ − 2a′)(145)

** D-2-1-1- Case: 2 | a′ =⇒ 2 | a, but 2 | b, then the contradiction with a, b coprime.

** D-2-1-2- Case: 2 ∤ a′. As 2 ∤ k1, the equation (144) gives 2 | A2m =⇒ A = 2iA1,
with i ≥ 1 and 2 ∤ A1. It follows that 2im = s + 1.

** D-2-1-2-1- We suppose that 2 ∤ (p′ − 2a′) =⇒ 2 ∤ p′. From the equation (145), we
obtain that 2 | BnC l =⇒ 2 | Bn or 2 | C l.

** D-2-1-2-1-1- We suppose that 2 | Bn =⇒ 2 | B =⇒ B = 2jB1 with 2 ∤ B1 and
j ≥ 1, then Bn

1 C l = 2s−jnk1(p′ − 2a′):
- If s − jn ≥ 1, then 2 | C l =⇒ 2 | C, and no contradiction with C l = 2imAm

1 +
2jnBn

1 , and the conjecture (34) is verified.
- If s − jn ≤ 0, from Bn

1 C l = 2s−jnk1(p′ − 2a′) =⇒ 2 ∤ C l, then the contradiction
with C l = 2imAm

1 + 2jnBn
1 =⇒ 2 | C l.

** D-2-1-2-1-2- Using the same method of the proof above, we obtain the identical
results if 2 | C l.

** D-2-1-2-2- We suppose now that 2 | (p′ − 2a′) =⇒ p′ − 2a′ = 2µ.Ω, with µ ≥ 1
and 2 ∤ Ω. We recall that 2 ∤ a′. The equation (145) is written as:

BnC l = 2s+µ.k1.Ω

This last equation implies that 2 | (BnC l) =⇒ 2 | Bn or 2 | C l.

** D-2-1-2-2-1- We suppose that 2 | Bn =⇒ 2 | B =⇒ B = 2jB1 with j ≥ 1 and
2 ∤ B1. Then Bn

1 C l = 2s+µ−jn.k1.Ω:
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- If s + µ − jn ≥ 1, then 2 | C l =⇒ 2 | C, no contradiction with C l = 2imAm
1 +

2jnBn
1 , and the conjecture (34) is verified.

- If s + µ − jn ≤ 0, from Bn
1 C l = 2s+µ−jnk1.Ω =⇒ 2 ∤ C l, then contradiction with

C l = 2imAm
1 + 2jnBn

1 =⇒ 2 | C l.

** D-2-1-2-2-2- We obtain the identical results if 2 | C l.

** D-2-2- We suppose that ω ̸= 2. We have then the equations:

A2m = 2ωs.k1.a′(146)
BnC l = ωs.k1.(p′ − 2a′)(147)

As ω ̸= 2, from the equation (146), we have 2 | (k1.a′). If 2 | a′ =⇒ 2 | a, but 2 | b,
then the contradiction with a, b coprime.

** D-2-2-1- Case: 2 ∤ a′ and 2 | k1 =⇒ k1 = 2µ.Ω with µ ≥ 1 and 2 ∤ Ω. From the
equation (146), we have 2 | A2m =⇒ 2 | A =⇒ A = 2iA1 with i ≥ 1 and 2 ∤ A1, then
2im = 1 + µ. The equation (147) becomes:

(148) BnC l = ωs.2µ.Ω.(p′ − 2a′)

From the equation (148), we obtain 2 | (BnC l) =⇒ 2 | Bn or 2 | C l.

** D-2-2-1-1- We suppose that 2 | Bn =⇒ 2 | B =⇒ B = 2jB1, with j ∈ N∗ and
2 ∤ B1.

** D-2-2-1-1-1- We suppose that 2 ∤ (p′ − 2a′), then we have Bn
1 C l = ωs2µ−jnΩ(p′ −

2a′):
- If µ − jn ≥ 1 =⇒ 2 | C l =⇒ 2 | C, no contradiction with C l = 2imAm

1 + 2jnBn
1

and the conjecture (34) is verified.
- If µ − jn ≤ 0 =⇒ 2 ∤ C l then the contradiction with C l = 2imAm

1 + 2jnBn
1 .

** D-2-2-1-1-2- We suppose that 2 | (p′ − 2a′) =⇒ p′ − 2a′ = 2α.P , with α ∈ N∗ and
2 ∤ P . It follows that Bn

1 C l = ωs2µ+α−jnΩ.P :
- If µ+α−jn ≥ 1 =⇒ 2 | C l =⇒ 2 | C, no contradiction with C l = 2imAm

1 +2jnBn
1

and the conjecture (34) is verified.
- If µ + α − jn ≤ 0 =⇒ 2 ∤ C l then the contradiction with C l = 2imAm

1 + 2jnBn
1 .

** D-2-2-1-2- We suppose now that 2 | Cn =⇒ 2 | C. Using the same method
described above, we obtain the identical results.
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2.5.8. Case 3 | a and b = 4p′, b ̸= 4 with p′ | p

3 | a =⇒ a = 3a′, b = 4p′ with p = k.p′, k ̸= 1 if not b = 4p this case has been
studied (see paragraph 2.5.6), then we have :

A2m = 4.p

3 .
a

b
= 4.k.p′.3.a′

12p′ = k.a′

We calculate BnC l:

BnC l = 3
√

ρ2
(

3sin2 θ

3 − cos2 θ

3

)
= 3
√

ρ2
(

3 − 4cos2 θ

3

)

but 3
√

ρ2 = p

3 , then using cos2 θ

3 = 3.a′

b
:

BnC l = 3
√

ρ2
(

3 − 4cos2 θ

3

)
= p

3

(
3 − 43.a′

b

)
= p.

(
1 − 4.a′

b

)
= k(p′ − a′)

As p = b.p′, and p′ > 1, we have :

BnC l = k(p′ − a′)(149)
and A2m = k.a′(150)

** E-1- We suppose that k is prime. From A2m = k.a′ = (Am)2 =⇒ k | a′ and
a′ = k.a”2 =⇒ Am = k.a”. Then k | Am =⇒ k | A =⇒ A = ki.A1 with i ≥ 1
and k ∤ A1. kmiAm

1 = ka” =⇒ a” = kmi−1Am
1 . From BnC l = k(p′ − a′) =⇒ k |

(BnC l) =⇒ k | Bn or k | C l.

** E-1-1- We suppose that k | Bn =⇒ k | B =⇒ B = kj .B1 with j ≥ 1 and k ∤ B1.
Then kn.j−1Bn

1 C l = p′ − a′. As n.j − 1 ≥ 2 =⇒ k | (p′ − a′). But k | a′ =⇒ k | a,
then k | p′ =⇒ k | (4p′ = b) and we arrive to the contradiction that a, b are coprime.

** E-1-2- We suppose that k | C l, using the same method with the above hypothesis
k | Bn, we obtain the identical results.

** E-2- We suppose that k is not prime.

** E-2-1- We take k = 4 =⇒ p = 4p′ = b, it is the case 2.5.3 studied above.

** E-2-2- We suppose that k ≥ 6 not prime. Let ω be a prime so that k = ωs.k1,
with s ≥ 1, ω ∤ k1. The equations (149-150) become:

BnC l = ωs.k1(p′ − a′)(151)
and A2m = ωs.k1.a′(152)

** E-2-2-1- We suppose that ω = 2.
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** E-2-2-1-1- If 2 | a′ =⇒ 2 | (3a′ = a), but 2 | (4p′ = b), then the contradiction
with a, b coprime.

** E-2-2-1-2- We consider that 2 ∤ a′. From the equation (152), it follows that
2 | A2m =⇒ 2 | A =⇒ A = 2iA1 with 2 ∤ A1 and:

BnC l = 2sk1(p′ − a′)

** E-2-2-1-2-1- We suppose that 2 ∤ (p′ − a′), from the above expression, we have
2 | (BnC l) =⇒ 2 | Bn or 2 | C l.

** E-2-2-1-2-1-1- If 2 | Bn =⇒ 2 | B =⇒ B = 2jB1 with 2 ∤ B1. Then Bn
1 C l =

22im−jnk1(p′ − a′):
- If 2im−jn ≥ 1 =⇒ 2 | C l =⇒ 2 | C, no contradiction with C l = 2imAm

1 +2jnBn
1

and the conjecture (34) is verified.
- If 2im−jn ≤ 0 =⇒ 2 ∤ C l, then the contradiction with C l = 2imAm

1 +2jnBn
1 =⇒

2 | C l.

** E-2-2-1-2-1-2- If 2 | C l =⇒ 2 | C, using the same method described above, we
obtain the identical results.

** E-2-2-1-2-2- We suppose that 2 | (p′ − a′). As 2 ∤ a′ =⇒ 2 ∤ p′, 2 | (p′ − a′) =⇒
p′ − a′ = 2α.P with α ≥ 1 and 2 ∤ P . The equation (151) is written as :

(153) BnC l = 2s+αk1.P = 22im+αk1.P

then 2 | (BnC l) =⇒ 2 | Bn or 2 | C l.

** E-2-2-1-2-2-1- We suppose that 2 | Bn =⇒ 2 | B =⇒ B = 2jB1, with 2 ∤ B1. The
equation (153) becomes Bn

1 C l = 22im+α−jnk1P :
- If 2im + α − jn ≥ 1 =⇒ 2 | C l =⇒ 2 | C, no contradiction with C l =

2imAm
1 + 2jnBn

1 and the conjecture (34) is verified.
- If 2im + α − jn ≤ 0 =⇒ 2 ∤ C l, then the contradiction with C l =

2imAm
1 + 2jnBn

1 =⇒ 2 | C l.

** E-2-2-1-2-2-2- We suppose that 2 | C l =⇒ 2 | C. Using the same method
described above, we obtain the identical results.

** E-2-2-2- We suppose that ω ̸= 2. We recall the equations:

A2m = ωs.k1.a′(154)
BnC l = ωs.k1(p′ − a′)(155)
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** E-2-2-2-1- We suppose that ω, a′ are coprime, then ω ∤ a′. From the equation
(154), we have ω | A2m =⇒ ω | A =⇒ A = ωiA1 with ω ∤ A1 and s = 2im.

** E-2-2-2-1-1- We suppose that ω ∤ (p′ − a′). From the equation (155) above, we
have ω | (BnC l) =⇒ ω | Bn or ω | C l.

** E-2-2-2-1-1-1- If ω | Bn =⇒ ω | B =⇒ B = ωjB1 with ω ∤ B1. Then Bn
1 C l =

22im−jnk1(p′ − a′):
- If 2im−jn ≥ 1 =⇒ ω | C l =⇒ ω | C, no contradiction with C l = ωimAm

1 +ωjnBn
1

and the conjecture (34) is verified.
- If 2im−jn ≤ 0 =⇒ ω ∤ C l, then the contradiction with C l = ωimAm

1 +ωjnBn
1 =⇒

ω | C l.

** E-2-2-2-1-1-2- If ω | C l =⇒ ω | C, using the same method described above, we
obtain the identical results.

** E-2-2-2-1-2- We suppose that ω | (p′ − a′) =⇒ ω ∤ p′ as ω and a′ are coprime.
ω | (p′ − a′) =⇒ p′ − a′ = ωα.P with α ≥ 1 and ω ∤ P . The equation (155) becomes :

(156) BnC l = ωs+αk1.P = ω2im+αk1.P

then ω | (BnC l) =⇒ ω | Bn or ω | C l.

** E-2-2-2-1-2-1- We suppose that ω | Bn =⇒ ω | B =⇒ B = ωjB1, with ω ∤ B1.
The equation (156) is written as Bn

1 C l = 22im+α−jnk1P :
- If 2im + α − jn ≥ 1 =⇒ ω | C l =⇒ ω | C, no contradiction with C l =

ωimAm
1 + ωjnBn

1 and the conjecture (34) is verified.
- If 2im + α − jn ≤ 0 =⇒ ω ∤ C l, then the contradiction with C l =

ωimAm
1 + ωjnBn

1 =⇒ ω | C l.

** E-2-2-2-1-2-2- We suppose that ω | C l =⇒ ω | C, using the same method
described above, we obtain the identical results.

** E-2-2-2-2- We suppose that ω, a′ are not coprime, then a′ = ωβ.a” with ω ∤ a”.
The equation (154) becomes:

A2m = ωsk1a′ = ωs+βk1.a”

We have ω | A2m =⇒ ω | A =⇒ A = ωiA1 with ω ∤ A1 and s + β = 2im.

** E-2-2-2-2-1- We suppose that ω ∤ (p′ − a′) =⇒ ω ∤ p′ =⇒ ω ∤ (b = 4p′). From the
equation (155), we obtain ω | (BnC l) =⇒ ω | Bn or ω | C l.
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** E-2-2-2-2-1-1- If ω | Bn =⇒ ω | B =⇒ B = ωjB1 with ω ∤ B1. Then Bn
1 C l =

2s−jnk1(p′ − a′):
- If s − jn ≥ 1 =⇒ ω | C l =⇒ ω | C, no contradiction with C l = ωimAm

1 + ωjnBn
1

and the conjecture (34) is verified.
- If s − jn ≤ 0 =⇒ ω ∤ C l, then the contradiction with C l = ωimAm

1 + ωjnBn
1 =⇒

ω | C l.

** E-2-2-2-2-1-2- If ω | C l =⇒ ω | C, using the same method described above, we
obtain the identical results.

** E-2-2-2-2-2- We suppose that ω | (p′−a′ = p′−ωβ.a”) =⇒ ω | p′ =⇒ ω | (4p′ = b),
but ω | a′ =⇒ ω | a. Then the contradiction with a, b coprime.

The study of the cases of 2.5.8 is achieved.

2.5.9. Case 3 | a and b | 4p

a = 3a′ and 4p = k1b. As A2m = 4p

3 cos2 θ

3 = 4p

3
3a′

b
= k1a′ and BnC l:

BnC l = 3
√

ρ2
(

3sin2 θ

3 − cos2 θ

3

)
= p

3

(
3 − 4cos2 θ

3

)
= p

3

(
3 − 43a′

b

)
= k1

4 (b − 4a′)

As BnC l is an integer, we must obtain 4 | k1, or 4 | (b − 4a′) or (2 | k1 and
2 | (b − 4a′)).
** F-1- If k1 = 1 ⇒ b = 4p : it is the case 2.5.6.

** F-2- If k1 = 4 ⇒ p = b : it is the case 2.5.3.

** F-3- If k1 = 2 and 2 | (b−4a′): in this case, we have A2m = 2a′ =⇒ 2 | a′ =⇒ 2 | a.
2 | (b − 4a′) =⇒ 2 | b then the contradiction with a, b coprime.

** F-4- If 2 | k1 and 2 | (b − 4a′): 2 | (b − 4a′) =⇒ b − 4a′ = 2αλ, α and λ ∈ N∗ ≥ 1
with 2 ∤ λ; 2 | k1 =⇒ k1 = 2tk′

1 with t ≥ 1 ∈ N∗ with 2 ∤ k′
1 and we have:

A2m = 2tk′
1a′(157)

BnC l = 2t+α−2k′
1λ(158)

From the equation (157), we have 2 | A2m =⇒ 2 | A =⇒ A = 2iA1, i ≥ 1 and 2 ∤ A1.
** F-4-1- We suppose that t = α = 1, then the equations (157-158) become :

A2m = 2k′
1a′(159)

BnC l = k′
1λ(160)
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From the equation (159) it follows that 2 | a′ =⇒ 2 | (a = 3a′). But
b = 4a′ + 2λ =⇒ 2 | b, then the contradiction with a, b coprime.

** F-4-2- We suppose that t + α − 2 ≥ 1 and we have the expressions:

A2m = 2tk′
1a′(161)

BnC l = 2t+α−2k′
1λ(162)

** F-4-2-1- We suppose that 2 | a′ =⇒ 2 | a, but b = 2αλ + 4a′ =⇒ 2 | b, then the
contradiction with a, b coprime.

** F-4-2-2- We suppose that 2 ∤ a′. From (161), we have 2 | A2m =⇒ 2 | A =⇒ A =
2iA1 and BnC l = 2t+α−2k′

1λ =⇒ 2 | BnC l =⇒ 2 | Bn or 2 | C l.

** F-4-2-2-1- We suppose that 2 | Bn. We have 2 | B =⇒ B = 2jB1, j ≥ 1 and
2 ∤ B1. The equation (162) becomes Bn

1 C l = 2t+α−2−jnk′
1λ:

- If t + α − 2 − jn > 0 =⇒ 2 | C l =⇒ 2 | C, no contradiction with C l =
2imAm

1 + 2jnBn
1 and the conjecture (34) is verified.

- If t + α − 2 − jn < 0 =⇒ 2 | k′
1λ, but 2 ∤ k′

1 and 2 ∤ λ. Then this case is
impossible.

- If t + α − 2 − jn = 0 =⇒ Bn
1 C l = k′

1λ =⇒ 2 ∤ C l then it is a contradiction with
C l = 2imAm

1 + 2jnBn
1 .

** F-4-2-2-2- We suppose that 2 | C l. We use the same method described above,
we obtain the identical results.

** F-5- We suppose that 4 | k1 with k1 > 4 ⇒ k1 = 4k′
2, we have :

A2m = 4k′
2a′(163)

BnC l = k′
2(b − 4a′)(164)

** F-5-1- We suppose that k′
2 is prime, from (163), we have k′

2 | a′. From (164),
k′

2 | (BnC l) =⇒ k′
2 | Bn or k′

2 | C l.

** F-5-1-1- We suppose that k′
2 | Bn =⇒ k′

2 | B =⇒ B = k′β
2 .B1 with β ≥ 1

and k′
2 ∤ B1. It follows that we have k′nβ−1

2 Bn
1 C l = b − 4a′ =⇒ k′

2 | b then the
contradiction with a, b coprime.

** F-5-1-2- We obtain identical results if we suppose that k′
2 | C l.

** F-5-2- We suppose that k′
2 is not prime.

** F-5-2-1- We suppose that k′
2 and a′ are coprime. From (163), k′

2 can be
written under the form k′

2 = q2j
1 .q2

2 and q1 ∤ q2 and q1 prime. We have
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A2m = 4q2j
1 .q2

2a′ =⇒ q1 | A and BnC l = q2j
1 .q2

2(b − 4a′) =⇒ q1 | Bn or q1 | C l.

** F-5-2-1-1- We suppose that q1 | Bn =⇒ q1 | B =⇒ B = qf1 .B1 with q1 ∤ B1. We
obtain Bn

1 C l = q2j−fn
1 q2

2(b − 4a′):
- If 2j − f.n ≥ 1 =⇒ q1 | C l =⇒ q1 | C but C l = Am + Bn gives also q1 | C and the
conjecture (34) is verified.
- If 2j − f.n = 0, we have Bn

1 C l = q2
2(b − 4a′), but C l = Am + Bn gives q1 | C,

then q1 | (b − 4a′). As q1 and a′ are coprime, then q1 ∤ b, and the conjecture (34) is
verified.
- If 2j − f.n < 0 =⇒ q1 | (b − 4a′) =⇒ q1 ∤ b because a′ is coprime with q1, and
C l = Am + Bn gives q1 | C, and the conjecture (34) is verified.

** F-5-2-1-2- We obtain identical results if we suppose that q1 | C l.

** F-5-2-2- We suppose that k′
2, a′ are not coprime. Let q1 be a prime so that

q1 | k′
2 and q1 | a′. We write k′

2 under the form qj1.q2 with j ≥ 1, q1 ∤ q2. From
A2m = 4k′

2a′ =⇒ q1 | A2m =⇒ q1 | A. Then from BnC l = qj1q2(b − 4a′), it follows
that q1 | (BnC l) =⇒ q1 | Bn or q1 | C l.

** F-5-2-2-1- We suppose that q1 | Bn =⇒ q1 | B =⇒ B = qβ1 .B1 with β ≥ 1 and
q1 ∤ B1. Then, we have qnβ1 Bn

1 C l = qj1q2(b − 4a′) =⇒ Bn
1 C l = qj−nβ1 q2(b − 4a′).

- If j − nβ ≥ 1, then q1 | C l =⇒ q1 | C, but C l = Am + Bn gives q1 | C, then the
conjecture (34) is verified.
- If j − nβ = 0, we obtain Bn

1 C l = q2(b − 4a′), but C l = Am + Bn gives q1 | C, then
q1 | (b − 4a′) =⇒ q1 | b because q1 | a′ =⇒ q1 | a, then the contradiction with a, b

coprime.
- If j − nβ < 0 =⇒ q1 | (b − 4a′) =⇒ q1 | b, because q1 | a′ =⇒ q1 | a, then the
contradiction with a, b coprime.

** F-5-2-2-2- We obtain identical results if we suppose that q1 | C l.

** F-6- If 4 ∤ (b−4a′) and 4 ∤ k1 it is impossible. We suppose that 4 | (b−4a′) ⇒ 4 | b,
and b − 4a′ = 4t.g , t ≥ 1 with 4 ∤ g, then we have :

A2m = k1a′

BnC l = k1.4t−1.g

** F-6-1- We suppose that k1 is prime. From A2m = k1a′ we deduce easily that
k1 | a′. From BnC l = k1.4t−1.g we obtain that k1 | (BnC l) =⇒ k1 | Bn or k1 | C l.

** F-6-1-1- We suppose that k1 | Bn =⇒ k1 | B =⇒ B = kj1.B1 with j > 0 and
k1 ∤ B1, then kn.j1 Bn

1 C l = k1.4t−1.g =⇒ kn.j−1
1 Bn

1 C l = 4t−1.g. But n ≥ 3 and
j ≥ 1, then n.j − 1 ≥ 2. We deduce as k1 ̸= 2 that k1 | g =⇒ k1 | (b − 4a′), but
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k1 | a′ =⇒ k1 | b, then the contradiction with a, b coprime.

** F-6-1-2- We obtain identical results if we suppose that k1 | C l.

** F-6-2- We suppose that k1 is not prime ̸= 4, (k1 = 4 see case F-2, above) with
4 ∤ k1.

** F-6-2-1- If k1 = 2k′ with k′ odd > 1. Then A2m = 2k′a′ =⇒ 2 | a′ =⇒ 2 | a, as
4 | b it follows the contradiction with a, b coprime.

** F-6-2-2- We suppose that k1 is odd with k1 and a′ coprime. We write k1 under
the form k1 = qj1.q2 with q1 ∤ q2, q1 prime and j ≥ 1. BnC l = qj1.q24t−1g =⇒ q1 | Bn

or q1 | C l.

** F-6-2-2-1- We suppose that q1 | Bn =⇒ q1 | B =⇒ B = qf1 .B1 with q1 ∤ B1. We
obtain Bn

1 C l = qj−f.n1 q24t−1g.
- If j − f.n ≥ 1 =⇒ q1 | C l =⇒ q1 | C, but C l = Am + Bn gives also q1 | C and the
conjecture (34) is verified.
- If j − f.n = 0, we have Bn

1 C l = q24t−1g, but C l = Am + Bn gives q1 | C, then
q1 | (b−4a′). As q1 and a′ are coprime then q1 ∤ b and the conjecture (34) is verified.
- If j − f.n < 0 =⇒ q1 | (b − 4a′) =⇒ q1 ∤ b because q1, a′ are primes. C l = Am + Bn

gives q1 | C and the conjecture (34) is verified.

** F-6-2-2-2- We obtain identical results if we suppose that q1 | C l.

** F-6-2-3- We suppose that k1 and a′ are not coprime. Let q1 be a prime so
that q1 | k1 and q1 | a′. We write k1 under the form qj1.q2 with q1 ∤ q2. From
A2m = k1a′ =⇒ q1 | A2m =⇒ q1 | A. From BnC l = qj1q2(b − 4a′), it follows that
q1 | (BnC l) =⇒ q1 | Bn or q1 | C l.

** F-6-2-3-1- We suppose that q1 | Bn =⇒ q1 | B =⇒ B = qβ1 .B1 with β ≥ 1 and
q1 ∤ B1. Then we have qnβ1 Bn

1 C l = qj1q2(b − 4a′) =⇒ Bn
1 C l = qj−nβ1 q2(b − 4a′):

- If j − nβ ≥ 1, then q1 | C l =⇒ q1 | C, but C l = Am + Bn gives q1 | C, and the
conjecture (34) is verified.

- If j−nβ = 0, we obtain Bn
1 C l = q2(b−4a′), but q1 | A and q1 | B then q1 | C and

we obtain q1 | (b − 4a′) =⇒ q1 | b because q1 | a′ =⇒ q1 | a, then the contradiction
with a, b coprime.

- If j − nβ < 0 =⇒ q1 | (b − 4a′) =⇒ q1 | b, then the contradiction with a, b

coprime.

** F-6-2-3-2- We obtain identical results as above if we suppose that q1 | C l.
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2.6. Hypothèse: {3 | p and b | 4p}

2.6.1. Case b = 2 and 3 | p

3 | p ⇒ p = 3p′ with p′ ̸= 1 because 3 ≪ p, and b = 2, we obtain:

A2m = 4p.a

3b
= 4.3p′.a

3b
= 4.p′.a

2 = 2.p′.a

As:
1
4 < cos2 θ

3 = a

b
= a

2 <
3
4 ⇒ 1 < 2a < 3 ⇒ a = 1 =⇒ cos2 θ

3 = 1
2

but this case was studied (see case 2.4.1.2).

2.6.2. Case b = 4 and 3 | p

we have 3 | p =⇒ p = 3p′ with p′ ∈ N∗, it follows :

A2m = 4p.a

3b
= 4.3p′.a

3 × 4 = p′.a

and:
1
4 < cos2 θ

3 = a

b
= a

4 <
3
4 ⇒ 1 < a < 3 ⇒ a = 2

as a, b are coprime, then the case b = 4 and 3 | p is impossible.

2.6.3. Case: b ̸= 2, b ̸= 4, b ̸= 3, b | p and 3 | p

As 3 | p, then p = 3p′ and :

A2m = 4p

3 cos2 θ

3 = 4p

3
a

b
= 4 × 3p′

3
a

b
= 4p′a

b

We consider the case: b | p′ =⇒ p′ = bp” and p” ̸= 1 (If p” = 1, then p = 3b, see
paragraph 2.6.8 Case k′ = 1). Finally, we obtain:

A2m = 4bp”a

b
= 4ap” ; BnC l = p”.(3b − 4a)

** G-1- We suppose that p” is prime, then A2m = 4ap” = (Am)2 =⇒ p” | a. But
BnC l = p”(3b − 4a) =⇒ p” | Bn or p” | C l.

** G-1-1- If p” | Bn =⇒ p” | B =⇒ B = p”B1 with B1 ∈ N∗. Then
p”n−1Bn

1 C l = 3b−4a. As n > 2, then (n−1) > 1 and p” | a, then p” | 3b =⇒ p” = 3
or p” | b.

** G-1-1-1- If p” = 3 =⇒ 3 | a, with a that we write as a = 3a′2, but
Am = 6a′ =⇒ 3 | Am =⇒ 3 | A =⇒ A = 3A1, then 3m−1Am

1 = 2a′ =⇒ 3 |
a′ =⇒ a′ = 3a”. As p”n−1Bn

1 C l = 3n−1Bn
1 C l = 3b − 4a =⇒ 3n−2Bn

1 C l = b − 36a”2.
As n > 2 =⇒ n − 2 ≥ 1, then 3 | b and the contradiction with a, b coprime.
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** G-1-1-2- We suppose that p” | b, as p” | a, then the contradiction with a, b

coprime.

** G-1-2- If we suppose p” | C l, we obtain identical results (contradictions).

** G-2- We consider now that p” is not prime.

** G-2-1- p”, a coprime: A2m = 4ap” =⇒ Am = 2a′.p1 with a = a′2 and p” = p2
1,

then a′, p1 are also coprime. As Am = 2a′.p1, then 2 | a′ or 2 | p1.

** G-2-1-1- We suppose that 2 | a′, then 2 | a′ =⇒ 2 ∤ p1, but p” = p2
1.

** G-2-1-1-1- If p1 is prime, it is impossible with Am = 2a′.p1.

** G-2-1-1-2- We suppose that p1 is not prime so we can write p1 = ωm =⇒ p” =
ω2m. Then BnC l = ω2m(3b − 4a).

** G-2-1-1-2-1- If ω is prime, ω ̸= 2, then ω | (BnC l) =⇒ ω | Bn or ω | C l.

** G-2-1-1-2-1-1- If ω | Bn =⇒ ω | B =⇒ B = ωjB1 with ω ∤ B1, then
Bn

1 .C l = ω2m−nj(3b − 4a).

** G-2-1-1-2-1-1-1- If 2m − n.j = 0, we obtain Bn
1 .C l = 3b − 4a. As C l =

Am + Bn =⇒ ω | C l =⇒ ω | C, and ω | (3b − 4a). But ω ̸= 2 and ω, a′ are coprime,
then ω, a are coprime, it follows ω ∤ (3b), then ω ̸= 3 and ω ∤ b, the conjecture (34)
is verified.

** G-2-1-1-2-1-1-2- If 2m − nj ≥ 1, using the method as above, we obtain
ω | C l =⇒ ω | C and ω | (3b−4a) and ω ∤ a and ω ̸= 3 and ω ∤ b, then the conjecture
(34) is verified.

** G-2-1-1-2-1-1-3- If 2m − nj < 0 =⇒ ωn.j−2mBn
1 .C l = 3b − 4a. From

Am + Bn = C l =⇒ ω | C l =⇒ ω | C, then C = ωh.C1, with ω ∤ C1, we ob-
tain ωn.j−2m+h.lBn

1 .C l
1 = 3b − 4a. If n.j − 2m + h.l < 0 =⇒ ω | Bn

1 C l
1 then the

contradiction with ω ∤ B1 or ω ∤ C1. It follows n.j − 2m + h.l > 0 and ω | (3b − 4a)
with ω, a, b coprime and the conjecture is verified.

** G-2-1-1-2-1-2- Using the same method above, we obtain identical results if ω | C l.

** G-2-1-1-2-2- We suppose that p” = ω2m and ω is not prime. We write ω = ωf1 .Ω
with ω1 prime ∤ Ω, f ≥ 1, and ω1 | A. Then BnC l = ω2f.m

1 Ω2m(3b − 4a) =⇒ ω1 |
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(BnC l) =⇒ ω1 | Bn or ω1 | C l.

** G-2-1-1-2-2-1- If ω1 | Bn =⇒ ω1 | B =⇒ B = ωj1B1 with ω1 ∤ B1, then
Bn

1 .C l = ω2.m−nj
1 Ω2m(3b − 4a):

** G-2-1-1-2-2-1-1- If 2f.m − n.j = 0, we obtain Bn
1 .C l = Ω2m(3b − 4a). As

C l = Am + Bn =⇒ ω1 | C l =⇒ ω1 | C, and ω1 | (3b − 4a). But ω1 ̸= 2 and ω1, a′ are
coprime, then ω, a are coprime, it follows ω1 ∤ (3b), then ω1 ̸= 3 and ω1 ∤ b, and the
conjecture (34) is verified.

** G-2-1-1-2-2-1-2- If 2f.m − n.j ≥ 1, we have ω1 | C l =⇒ ω1 | C and ω1 | (3b − 4a)
and ω1 ∤ a and ω1 ̸= 3 and ω1 ∤ b, it follows that the conjecture (34) is verified.

** G-2-1-1-2-2-1-3- If 2f.m−n.j < 0 =⇒ ωn.j−2m.f
1 Bn

1 .C l = Ω2m(3b−4a). As ω1 | C

using C l = Am + Bn, then C = ωh1 .C1 =⇒ ωn.j−2m.f+h.lBn
1 .C l

1 = Ω2m(3b − 4a).
If n.j − 2m.f + h.l < 0 =⇒ ω1 | Bn

1 C l
1, then the contradiction with ω1 ∤ B1 and

ω1 ∤ C1. Then if n.j − 2m.f + h.l > 0 and ω1 | (3b − 4a) with ω1, a, b coprime and
the conjecture (34) is verified.

** G-2-1-1-2-2-2- Using the same method above, we obtain identical results if ω1 | C l.

** G-2-1-2- We suppose that 2 | p1: then 2 | p1 =⇒ 2 ∤ a′ =⇒ 2 ∤ a, but p” = p2
1.

** G-2-1-2-1- We suppose that p1 = 2, we obtain Am = 4a′ =⇒ 2 | a′, then the
contradiction with a, b coprime.

** G-2-1-2-2- We suppose that p1 is not prime and 2 | p1. As Am = 2a′p1, p1 can
written as p1 = 2m−1ωm =⇒ p” = 22m−2ω2m. Then BnC l = 22m−2ω2m(3b−4a) =⇒
2 | Bn or 2 | C l.

** G-2-1-2-2-1- We suppose that 2 | Bn =⇒ 2 | B. As 2 | A, then 2 | C.
From BnC l = 22m−2ω2m(3b − 4a) it follows that if 2 | (3b − 4a) =⇒ 2 | b but
as 2 ∤ a there is no contradiction with a, b coprime and the conjecture (34) is verified.

** G-2-1-2-2-2- We suppose that 2 | C l, using the same method above, we obtain
identical results.

** G-2-2- We suppose that p”, a are not coprime: let ω be a prime integer so that
ω | a and ω | p”.
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** G-2-2-1- We suppose that ω = 3. As A2m = 4ap” =⇒ 3 | A, but 3 | p. As
p = A2m + B2n + AmBn =⇒ 3 | B2n =⇒ 3 | B, then 3 | C l =⇒ 3 | C. We
write A = 3iA1, B = 3jB1, C = 3hC1 with 3 coprime with A1, B1 and C1 and
p = 32imA2m

1 +32njB2n
1 +3im+jnAm

1 Bn
1 = 3k.g with k = min(2im, 2jn, im+ jn) and

3 ∤ g. We have also (ω = 3) | a and (ω = 3) | p” that gives a = 3αa1, 3 ∤ a1 and
p” = 3µp1, 3 ∤ p1 with A2m = 4ap” = 32imA2m

1 = 4 × 3α+µ.a1.p1 =⇒ α + µ = 2im.
As p = 3p′ = 3b.p” = 3b.3µp1 = 3µ+1.b.p1, the exponent of the factor 3 of p is k,
the exponent of the factor 3 of the left member of the last equation is µ + 1 added
of the exponent β of 3 of the term b, with β ≥ 0, let min(2im, 2jn, im + jn) =
µ + 1 + β and we recall that α + µ = 2im. But BnC l = p”(3b − 4a), we obtain
3(nj+hl)Bn

1 C l
1 = 3µ+1p1(b − 4 × 3(α−1)a1) = 3µ+1p1(3βb1 − 4 × 3(α−1)a1), 3 ∤ b1. We

have also Am + Bn = C l =⇒ 3imAm
1 + 3jnBn

1 = 3hlC l
1. We call ϵ = min(im, jn), we

have ϵ = hl = min(im, jn). We obtain the conditions:

k = min(2im, 2jn, im + jn) = µ + 1 + β(165)
α + µ = 2im(166)

ϵ = hl = min(im, jn)
3(nj+hl)Bn

1 C l
1 = 3µ+1p1(3βb1 − 4 × 3(α−1)a1)

** G-2-2-1-1- α = 1 =⇒ a = 3a1 and 3 ∤ a1, the equation (166) becomes:

1 + µ = 2im

and the first equation (165) is written as:

k = min(2im, 2jn, im + jn) = 2im + β

- If k = 2im =⇒ β = 0 then 3 ∤ b. We obtain 2im ≤ 2jn =⇒ im ≤ jn, and
2im ≤ im + jn =⇒ im ≤ jn. The third equation gives hl = im and the last
equation gives nj + hl = µ + 1 = 2im =⇒ im = nj, then im = nj = hl and
Bn

1 C l
1 = p1(b − 4a1). As a, b are coprime, the conjecture (34) is verified.

- If k = 2jn or k = im + jn, we obtain β = 0, im = jn = hl and
Bn

1 C l
1 = p1(b − 4a1). As a, b are coprime, the conjecture (34) is verified.

** G-2-2-1-2- α > 1 =⇒ α ≥ 2.
- If k = 2im =⇒ 2im = µ + 1 + β, but µ = 2im − α that gives α = 1 + β ≥ 2 =⇒

β ̸= 0 =⇒ 3 | b, but 3 | a then the contradiction with a, b coprime.
- If k = 2jn = µ + 1 + β ≤ 2im =⇒ µ + 1 + β ≤ µ + α =⇒ 1 + β ≤ α =⇒ β ≥ 1.

If β ≥ 1 =⇒ 3 | b but 3 | a, then the contradiction with a, b coprime.
- If k = im+jn =⇒ im+jn ≤ 2im =⇒ jn ≤ im, and im+jn ≤ 2jn =⇒ im ≤ jn,

then im = jn. As k = im + jn = 2im = 1 + µ + β and α + µ = 2im, we obtain
α = 1 + β ≥ 2 =⇒ β ≥ 1 =⇒ 3 | b, then the contradiction with a, b coprime.

** G-2-2-2- We suppose that ω ̸= 3. We write a = ωαa1 with ω ∤ a1 and p” = ωµp1
with ω ∤ p1. As A2m = 4ap” = 4ωα+µ.a1.p1 =⇒ ω | A =⇒ A = ωiA1, ω ∤ A1. But
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BnC l = p”(3b − 4a) = ωµp1(3b − 4a) =⇒ ω | BnC l =⇒ ω | Bn or ω | C l.

** G-2-2-2-1- We suppose that ω | Bn =⇒ ω | B =⇒ B = ωjB1 and ω ∤ B1.
From Am + Bn = C l =⇒ ω | C l =⇒ ω | C. As p = bp′ = 3bp” = 3ωµbp1 =
ωk(ω2im−kA2m

1 + ω2jn−kB2n
1 + ωim+jn−kAm

1 Bn
1 ) with k = min(2im, 2jn, im + jn).

Then:
- If k = µ, then ω ∤ b and the conjecture (34) is verified.
- If k > µ, then ω | b, but ω | a then the contradiction with a, b coprime.
- If k < µ, it follows from:

3ωµbp1 = ωk(ω2im−kA2m
1 + ω2jn−kB2n

1 + ωim+jn−kAm
1 Bn

1 )

that ω | A1 or ω | B1 then the contradiction with ω ∤ A1 or ω ∤ B1.

** G-2-2-2-2- If ω | C l =⇒ ω | C =⇒ C = ωhC1 with ω ∤ C1. From Am + Bn =
C l =⇒ ω | (C l − Am) =⇒ ω | B. Then, using the same method as for the case
G-2-2-2-1-, we obtain identical results.

2.6.4. Case b = 3 and 3 | p

As 3 | p =⇒ p = 3p′, We write :

A2m = 4p

3 cos2 θ

3 = 4p

3
a

b
= 4 × 3p′

3
a

3 = 4p′a

3

As A2m is an integer and a, b are coprime and cos2 θ

3 < 1 (see equation (41)), then
we have necessary 3 | p′ =⇒ p′ = 3p” with p” ̸= 1, if not p = 3p′ = 3 × 3p” = 9, but
9 ≪ (p = A2m + B2n + AmBn), the hypothesis p” = 1 is impossible, then p” > 1,
and we obtain:

A2m = 4p′a

3 = 4 × 3p”a

3 = 4p”a ; BnC l = p”.(9 − 4a)

As 1
4 < cos2 θ

3 = a

b
= a

3 <
3
4 =⇒ 3 < 4a < 9 =⇒ as a > 1, a = 2 and we obtain:

(167) A2m = 4p”a = 8p” ; BnC l = 3p”(9 − 4a)
3 = p”

The two last equations above imply that p” is not a prime. We can write p” as :
p” =

∏
i∈I pαi

i where pi are distinct primes, αi elements of N∗ and i ∈ I a finite set
of indexes. We can write also p” = pα1

1 .q1 with p1 ∤ q1. From (167), we have p1 | A

and p1 | BnC l =⇒ p1 | Bn or p1 | C l.

** H-1- We suppose that p1 | Bn =⇒ B = pβ1
1 .B1 with p1 ∤ B1 and β1 ≥ 1. Then,

we obtain Bn
1 C l = pα1−nβ1

1 .q1 with the following cases:
- If α1 − nβ1 ≥ 1 =⇒ p1 | C l =⇒ p1 | C, in accord with p1 | (C l = Am + Bn), it

follows that the conjecture (34) is verified.
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- If α1 − nβ1 = 0 =⇒ Bn
1 C l = q1 =⇒ p1 ∤ C l, it is a contradiction with p1 |

(Am − Bn) =⇒ p1 | C l. Then this case is impossible.
- If α1 − nβ1 < 0, we obtain pnβ1−α1

1 Bn
1 C l = q1 =⇒ p1 | q1, it is a contradiction

with p1 ∤ q1. Then this case is impossible.

** H-2- We suppose that p1 | C l, using the same method as for the case p1 | Bn, we
obtain identical results.

2.6.5. Case 3 | p and b = p

We have cos2 θ

3 = a

b
= a

p
and:

A2m = 4p

3 cos2 θ

3 = 4p

3 .
a

p
= 4a

3
As A2m is an integer, it implies that 3 | a, but 3 | p =⇒ 3 | b. As a and b are
coprime, then the contradiction and the case 3 | p and b = p is impossible.

2.6.6. Case 3 | p and b = 4p

3 | p =⇒ p = 3p′, p′ ̸= 1 because 3 ≪ p, then b = 4p = 12p′.

A2m = 4p

3 cos2 θ

3 = 4p

3
a

b
= a

3 =⇒ 3 | a

as A2m is an integer. But 3 | p =⇒ 3 | [(4p) = b], then the contradiction with a, b

coprime and the case b = 4p is impossible.

2.6.7. Case 3 | p and b = 2p

3 | p =⇒ p = 3p′, p′ ̸= 1 because 3 ≪ p, then b = 2p = 6p′.

A2m = 4p

3 cos2 θ

3 = 4p

3
a

b
= 2a

3 =⇒ 3 | a

as A2m is an integer. But 3 | p =⇒ 3 | (2p) =⇒ 3 | b, then the contradiction with
a, b coprime and the case b = 2p is impossible.

2.6.8. Case 3 | p and b ̸= 3 a divisor of p

We have b = p′ ̸= 3, and p is written as p = kp′ with 3 | k =⇒ k = 3k′ and :

A2m = 4p

3 cos2 θ

3 = 4p

3 .
a

b
= 4ak′

BnC l = p

3 .

(
3 − 4cos2 θ

3

)
= k′(3p′ − 4a) = k′(3b − 4a)

** I-1- k′ ̸= 1:
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** I-1-1- We suppose that k′ is prime, then A2m = 4ak′ = (Am)2 =⇒ k′ | a. But
BnC l = k′(3b − 4a) =⇒ k′ | Bn or k′ | C l.

** I-1-1-1- If k′ | Bn =⇒ k′ | B =⇒ B = k′B1 with B1 ∈ N∗. Then
k′n−1Bn

1 C l = 3b − 4a. As n > 2, then (n − 1) > 1 and k′ | a, then k′ | 3b =⇒ k′ = 3
or k′ | b.

** I-1-1-1-1- If k′ = 3 =⇒ 3 | a, with a that we can write it under the form
a = 3a′2. But Am = 6a′ =⇒ 3 | Am =⇒ 3 | A =⇒ A = 3A1 with A1 ∈ N∗. Then
3m−1Am

1 = 2a′ =⇒ 3 | a′ =⇒ a′ = 3a”. But k′n−1Bn
1 C l = 3n−1Bn

1 C l = 3b − 4a =⇒
3n−2Bn

1 C l = b − 36a”2. As n ≥ 3 =⇒ n − 2 ≥ 1, then 3 | b. Hence the contradiction
with a, b coprime.

** I-1-1-1-2- We suppose that k′ | b, but k′ | a, then the contradiction with a, b

coprime.

** I-1-1-2- We suppose that k′ | C l, using the same method as for the case k′ | Bn,
we obtain identical results.

** I-1-2- We consider that k′ is not a prime.

** I-1-2-1- We suppose that k′, a coprime: A2m = 4ak′ =⇒ Am = 2a′.p1 with
a = a′2 and k′ = p2

1, then a′, p1 are also coprime. As Am = 2a′.p1 then 2 | a′ or
2 | p1.

** I-1-2-1-1- We suppose that 2 | a′, then 2 | a′ =⇒ 2 ∤ p1, but k′ = p2
1.

** I-1-2-1-1-1- If p1 is prime, it is impossible with Am = 2a′.p1.

** I-1-2-1-1-2- We suppose that p1 is not prime and it can be written as
p1 = ωm =⇒ k′ = ω2m. Then BnC l = ω2m(3b − 4a).

** I-1-2-1-1-2-1- If ω is prime ̸= 2, then ω | (BnC l) =⇒ ω | Bn or ω | C l.

** I-1-2-1-1-2-1-1- If ω | Bn =⇒ ω | B =⇒ B = ωjB1 with ω ∤ B1, then Bn
1 .C l =

ω2m−nj(3b − 4a).
- If 2m − n.j = 0, we obtain Bn

1 .C l = 3b − 4a, as C l = Am + Bn =⇒ ω | C l =⇒
ω | C, and ω | (3b − 4a). But ω ̸= 2 and ω, a′ are coprime, then ω ∤ (3b) =⇒ ω ̸= 3
and ω ∤ b. Hence, the conjecture (34) is verified.

- If 2m−nj ≥ 1, using the same method, we have ω | C l =⇒ ω | C and ω | (3b−4a)
and ω ∤ a and ω ̸= 3 and ω ∤ b. Then the conjecture (34) is verified.
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- If 2m − nj < 0 =⇒ ωn.j−2mBn
1 .C l = 3b − 4a. As C l = Am + Bn =⇒ ω | C then

C = ωh.C1 =⇒ ωn.j−2m+h.lBn
1 .C l

1 = 3b − 4a. If n.j − 2m + h.l < 0 =⇒ ω | Bn
1 C l

1,
then the contradiction with ω ∤ B1 or ω ∤ C1. If n.j − 2m + h.l > 0 =⇒ ω | (3b − 4a)
with ω, a, b coprime, it implies that the conjecture (34) is verified.

** I-1-2-1-1-2-1-2- We suppose that ω | C l, using the same method as for the case
ω | Bn, we obtain identical results.

** I-1-2-1-1-2-2- Now k′ = ω2m and ω not a prime, we write ω = ωf1 .Ω with ω1 a
prime ∤ Ω and f ≥ 1 an integer, and ω1 | A, then BnC l = ω2f.m

1 Ω2m(3b − 4a) =⇒
ω1 | (BnC l) =⇒ ω1 | Bn or ω1 | C l.

** I-1-2-1-1-2-2-1- If ω1 | Bn =⇒ ω1 | B =⇒ B = ωj1B1 with ω1 ∤ B1, then
Bn

1 .C l = ω2.fm−nj
1 Ω2m(3b − 4a).

- If 2f.m − n.j = 0, we obtain Bn
1 .C l = Ω2m(3b − 4a). As C l = Am + Bn =⇒ ω1 |

C l =⇒ ω1 | C, and ω1 | (3b − 4a). But ω1 ̸= 2 and ω1, a′ are coprime, then ω, a are
coprime, then ω1 ∤ (3b) =⇒ ω1 ̸= 3 and ω1 ∤ b. Hence, the conjecture (34) is verified.

- If 2f.m − n.j ≥ 1, we have ω1 | C l =⇒ ω1 | C and ω1 | (3b − 4a) and ω1 ∤ a and
ω1 ̸= 3 and ω1 ∤ b, then the conjecture (34) is verified.

- If 2f.m − n.j < 0 =⇒ ωn.j−2m.f
1 Bn

1 .C l = Ω2m(3b − 4a). As C l = Am + Bn =⇒
ω1 | C , then C = ωh1 .C1 =⇒ ωn.j−2m.f+h.lBn

1 .C l
1 = Ω2m(3b − 4a). If

n.j − 2m.f + h.l < 0 =⇒ ω1 | Bn
1 C l

1, then the contradiction with ω1 ∤ B1
and ω1 ∤ C1. Then if n.j − 2m.f + h.l > 0 and ω1 | (3b − 4a) with ω1, a, b coprime,
then the conjecture (34) is verified.

** I-1-2-1-1-2-2-2- As in the case ω1 | Bn, we obtain identical results if ω1 | C l.

** I-1-2-1-2- If 2 | p1: then 2 | p1 =⇒ 2 ∤ a′ =⇒ 2 ∤ a, but k′ = p2
1.

** I-1-2-1-2-1- If p1 = 2, we obtain Am = 4a′ =⇒ 2 | a′, then the contradiction with
2 ∤ a′. Case to reject.

** I-1-2-1-2-2- We suppose that p1 is not prime and 2 | p1. As Am = 2a′p1,
p1 is written under the form p1 = 2m−1ωm =⇒ p2

1 = 22m−2ω2m. Then
BnC l = k′(3b − 4a) = 22m−2ω2m(3b − 4a) =⇒ 2 | Bn or 2 | C l.

** I-1-2-1-2-2-1- If 2 | Bn =⇒ 2 | B, as 2 | A =⇒ 2 | C. From BnC l =
22m−2ω2m(3b − 4a) it follows that if 2 | (3b − 4a) =⇒ 2 | b but as 2 ∤ a, there is no
contradiction with a, b coprime and the conjecture (34) is verified.
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** I-1-2-1-2-2-2- We obtain identical results as above if 2 | C l.

** I-1-2-2- We suppose that k′, a are not coprime: let ω be a prime integer so that
ω | a and ω | p2

1.

** I-1-2-2-1- We suppose that ω = 3. As A2m = 4ak′ =⇒ 3 | A, but 3 | p. As
p = A2m + B2n + AmBn =⇒ 3 | B2n =⇒ 3 | B, then 3 | C l =⇒ 3 | C. We
write A = 3iA1, B = 3jB1, C = 3hC1 with 3 coprime with A1, B1 and C1 and
p = 32imA2m

1 + 32njB2n
1 + 3im+jnAm

1 Bn
1 = 3s.g with s = min(2im, 2jn, im + jn) and

3 ∤ g. We have also (ω = 3) | a and (ω = 3) | k′ that give a = 3αa1, 3 ∤ a1 and
k′ = 3µp2, 3 ∤ p2 with A2m = 4ak′ = 32imA2m

1 = 4 × 3α+µ.a1.p2 =⇒ α + µ = 2im.
As p = 3p′ = 3b.k′ = 3b.3µp2 = 3µ+1.b.p2. The exponent of the factor 3 of p is s, the
exponent of the factor 3 of the left member of the last equation is µ+1 added of the
exponent β of 3 of the factor b, with β ≥ 0, let min(2im, 2jn, im + jn) = µ + 1 + β,
we recall that α + µ = 2im. But BnC l = k′(4b − 3a) that gives 3(nj+hl)Bn

1 C l
1 =

3µ+1p2(b − 4 × 3(α−1)a1) = 3µ+1p2(3βb1 − 4 × 3(α−1)a1), 3 ∤ b1. We have also
Am + Bn = C l that gives 3imAm

1 + 3jnBn
1 = 3hlC l

1. We call ϵ = min(im, jn), we
obtain ϵ = hl = min(im, jn). We have then the conditions:

s = min(2im, 2jn, im + jn) = µ + 1 + β(168)
α + µ = 2im(169)

ϵ = hl = min(im, jn)(170)
3(nj+hl)Bn

1 C l
1 = 3µ+1p2(3βb1 − 4 × 3(α−1)a1)(171)

** I-1-2-2-1-1- α = 1 =⇒ a = 3a1 and 3 ∤ a1, the equation (169) becomes:

1 + µ = 2im

and the first equation (168) is written as :

s = min(2im, 2jn, im + jn) = 2im + β

- If s = 2im =⇒ β = 0 =⇒ 3 ∤ b. We obtain 2im ≤ 2jn =⇒ im ≤ jn, and
2im ≤ im + jn =⇒ im ≤ jn. The third equation (170) gives hl = im. The last
equation (171) gives nj + hl = µ + 1 = 2im =⇒ im = jn, then im = jn = hl and
Bn

1 C l
1 = p2(b − 4a1). As a, b are coprime, the conjecture (34) is verified.

- If s = 2jn or s = im + jn, we obtain β = 0, im = jn = hl and
Bn

1 C l
1 = p2(b − 4a1). Then as a, b are coprime, the conjecture (34) is veri-

fied.

** I-1-2-2-1-2- α > 1 =⇒ α ≥ 2.
- If s = 2im =⇒ 2im = µ+1+β, but µ = 2im−α it gives α = 1+β ≥ 2 =⇒ β ̸=

0 =⇒ 3 | b, but 3 | a then the contradiction with a, b coprime and the conjecture
(34) is not verified.
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- If s = 2jn = µ + 1 + β ≤ 2im =⇒ µ + 1 + β ≤ µ + α =⇒ 1 + β ≤ α =⇒ β = 1. If
β = 1 =⇒ 3 | b but 3 | a, then the contradiction with a, b coprime and the conjecture
(34) is not verified.

- If s = im+jn =⇒ im+jn ≤ 2im =⇒ jn ≤ im, and im+jn ≤ 2jn =⇒ im ≤ jn,
then im = jn. As s = im + jn = 2im = 1 + µ + β and α + µ = 2im it gives
α = 1 + β ≥ 2 =⇒ β ≥ 1 =⇒ 3 | b, then the contradiction with a, b coprime and the
conjecture (34) is not verified.

** I-1-2-2-2- We suppose that ω ̸= 3. We write a = ωαa1 with ω ∤ a1 and k′ = ωµp2
with ω ∤ p2. As A2m = 4ak′ = 4ωα+µ.a1.p2 =⇒ ω | A =⇒ A = ωiA1, ω ∤ A1. But
BnC l = k′(3b − 4a) = ωµp2(3b − 4a) =⇒ ω | BnC l =⇒ ω | Bn or ω | C l.

** I-1-2-2-2-1- ω | Bn =⇒ ω | B =⇒ Bn = ωjB1 and ω ∤ B1. From Am + Bn =
C l =⇒ ω | C l =⇒ ω | C. As p = bp′ = 3bk′ = 3ωµbp2 = ωs(ω2im−sA2m

1 +
ω2jn−sB2n

1 + ωim+jn−sAm
1 Bn

1 ) with s = min(2im, 2jn, im + jn). Then:
- If s = µ, then ω ∤ b and the conjecture (34) is verified.
- If s > µ, then ω | b, but ω | a then the contradiction with a, b coprime and the

conjecture (34) is not verified.
- If s < µ, it follows from:

3ωµbp1 = ωs(ω2im−sA2m
1 + ω2jn−sB2n

1 + ωim+jn−sAm
1 Bn

1 )

that ω | A1 or ω | B1 that is the contradiction with the hypothesis and the
conjecture (34) is not verified.

** I-1-2-2-2-2- If ω | C l =⇒ ω | C =⇒ C = ωhC1 with ω ∤ C1. From
Am + Bn = C l =⇒ ω | (C l − Am) =⇒ ω | B. Then we obtain identical re-
sults as the case above I-1-2-2-2-1-.

** I-2- We suppose k′ = 1: then k′ = 1 =⇒ p = 3b, then we have A2m = 4a =
(2a′)2 =⇒ Am = 2a′, then a = a′2 is even and :

AmBn = 2 3
√

ρcos
θ

3 . 3
√

ρ

(√
3sin

θ

3 − cos
θ

3

)
= p

√
3

3 sin
2θ

3 − 2a

and we have also:

(172) A2m + 2AmBn = 2p
√

3
3 sin

2θ

3 = 2b
√

3sin
2θ

3

The left member of the equation (172) is a naturel number and also b, then 2
√

3sin
2θ

3
can be written under the form :

2
√

3sin
2θ

3 = k1
k2

where k1, k2 are two natural numbers coprime and k2 | b =⇒ b = k2.k3.
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** I-2-1- k′ = 1 and k3 ̸= 1: then A2m + 2AmBn = k3.k1. Let µ be a prime integer
so that µ | k3. If µ = 2 ⇒ 2 | b, but 2 | a, it is a contradiction with a, b coprime. We
suppose that µ ̸= 2 and µ | k3, then µ | Am(Am+2Bn) =⇒ µ | Am or µ | (Am+2Bn).

** I-2-1-1- µ | Am: If µ | Am =⇒ µ | A2m =⇒ µ | 4a =⇒ µ | a. As µ | k3 =⇒ µ | b,
the contradiction with a, b coprime.

** I-2-1-2- µ | (Am + 2Bn): If µ | (Am + 2Bn) =⇒ µ ∤ Am and µ ∤ 2Bn, then µ ̸= 2
and µ ∤ Bn. µ | (Am + 2Bn), we can write Am + 2Bn = µ.t′. It follows:

Am + Bn = µt′ − Bn =⇒ A2m + B2n + 2AmBn = µ2t′2 − 2t′µBn + B2n

Using the expression of p, we obtain:

p = t′2µ2 − 2t′Bnµ + Bn(Bn − Am)

As p = 3b = 3k2.k3 and µ | k3 then µ | p =⇒ p = µ.µ′, then we obtain:

µ′.µ = µ(µt′2 − 2t′Bn) + Bn(Bn − Am)

and µ | Bn(Bn − Am) =⇒ µ | Bn or µ | (Bn − Am).

** I-2-1-2-1- µ | Bn: If µ | Bn =⇒ µ | B, that is the contradiction with I-2-1-2-
above.

** I-2-1-2-2- µ | (Bn − Am): If µ | (Bn − Am) and using that µ | (Am + 2Bn), we
obtain :

µ | 3Bn =⇒


µ | Bn =⇒ µ | B

or

µ = 3
** I-2-1-2-2-1- µ | Bn: If µ | Bn =⇒ µ | B, that is the contradiction with I-2-1-2-
above.

** I-2-1-2-2-2- µ = 3: If µ = 3 =⇒ 3 | k3 =⇒ k3 = 3k′
3, and we have b = k2k3 =

3k2k′
3, it follows p = 3b = 9k2k′

3, then 9 | p, but p = (Am − Bn)2 + 3AmBn then:

9k2k′
3 − 3AmBn = (Am − Bn)2

that we write as:

(173) 3(3k2k′
3 − AmBn) = (Am − Bn)2

then:
3 | (3k2k′

3 − AmBn) =⇒ 3 | AmBn =⇒ 3 | Am or 3 | Bn

** I-2-1-2-2-2-1- 3 | Am: If 3 | Am =⇒ 3 | A and we have also 3 | A2m, but
A2m = 4a =⇒ 3 | 4a =⇒ 3 | a. As b = 3k2k′

3 then 3 | b, but a, b are coprime, then
the contradiction and 3 ∤ A.
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** I-2-1-2-2-2-2- 3 | Bm: If 3 | Bn =⇒ 3 | B, but the equation (173) implies
3 | (Am − Bn)2 =⇒ 3 | (Am − Bn) =⇒ 3 | Am =⇒ 3 | A. The last case above has
given that 3 ∤ A. Then the case 3 | Bm is to reject.

Finally the hypothesis k3 ̸= 1 is impossible.

** I-2-2- Now, we suppose that k3 = 1 =⇒ b = k2 and p = 3b = 3k2, then we have:

(174) 2
√

3sin
2θ

3 = k1
b

with k1, b coprime. We write (174) as :

4
√

3sin
θ

3cos
θ

3 = k1
b

Taking the square of the two members and replacing cos2 θ

3 by a

b
, we obtain:

3 × 42.a(b − a) = k2
1 =⇒ k2

1 = 3 × 42.a′2(b − a)

it implies that :

b − a = 3α2, α ∈ N∗ =⇒ b = a′2 + 3α2 =⇒ k1 = 12a′α

As:
k1 = 12a′α = Am(Am + 2Bn) =⇒ 3α = a′ + Bn

We consider now that 3 | (b − a) with b = a′2 + 3α2. The case α = 1 gives
a′ + Bn = 3 that is impossible. We suppose α > 1, the pair (a′, α) is a solution of
the Diophantine equation:

(175) X2 + 3Y 2 = b

with X = a′ and Y = α. But using a theorem on the solutions of the equation given
by (175), b is written as (see theorem in [2]):

b = 22s × 3t.pt11 · · · ptgg q2s1
1 · · · q2sr

r

where pi are prime numbers verifying pi ≡ 1(mod 6), the qj are also prime numbers
so that qj ≡ 5(mod 6), then :

- If s ≥ 1 =⇒ 2 | b, as 2 | a, then the contradiction with a, b coprime.
- If t ≥ 1 =⇒ 3 | b, but 3 | (b − a) =⇒ 3 | a, then the contradiction with a, b

coprime.

** I-2-2-1- We suppose that b is written as :

b = pt11 · · · ptgg q2s1
1 · · · q2sr

r
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with pi ≡ 1(mod 6) and qj ≡ 5(mod 6). Finally, we obtain that b ≡ 1(mod 6). We
will verify then this condition.

** I-2-2-1-1- We present the table below giving the value of Am + Bn = C l mod-
ulo 6 in function of the value of Am, Bn(mod 6). We obtain the table below after
retiring the lines (respectively the colones) of Am ≡ 0(mod 6) and Am ≡ 3(mod 6)
(respectively of Bn ≡ 0(mod 6) and Bn ≡ 3(mod 6)), they present cases with con-
tradictions:

Table 2. Table of Cl(mod 6)
Am , Bn 1 2 4 5

1 2 3 5 0
2 3 4 0 1
4 5 0 2 3
5 0 1 3 4

** I-2-2-1-1-1- For the case C l ≡ 0(mod6) and C l ≡ 3(mod6), we deduce that
3 | C l =⇒ 3 | C =⇒ C = 3hC1, with h ≥ 1 and 3 ∤ C1. It follows that
p − BnC l = 3b − 3lhC l

1Bn = A2m =⇒ 3 | (A2m = 4a) =⇒ 3 | a =⇒ 3 | b, then the
contradiction with a, b coprime.

** I-2-2-1-1-2- For the case C l ≡ 0(mod 6), C l ≡ 2(mod 6) and C l ≡ 4(mod 6), we
deduce that 2 | C l =⇒ 2 | C =⇒ C = 2hC1, with h ≥ 1 and 2 ∤ C1. It follows that
p = 3b = A2m + BnC l = 4a + 2lhC l

1Bn =⇒ 2 | 3b =⇒ 2 | b, then the contradiction
with a, b coprime.

** I-2-2-1-1-3- We consider the cases Am ≡ 1(mod 6) and Bn ≡ 4(mod 6) (respec-
tively Bn ≡ 2(mod 6)): then 2 | Bn =⇒ 2 | B =⇒ B = 2jB1 with j ≥ 1 and 2 ∤ B1.
It follows from 3b = A2m + BnC l = 4a + 2jnBn

1 C l that 2 | b, then the contradiction
with a, b coprime.

** I-2-2-1-1-4- We consider the case Am ≡ 5(mod 6) and Bn ≡ 2(mod 6): then
2 | Bn =⇒ 2 | B =⇒ B = 2jB1 with j ≥ 1 and 2 ∤ B1. It follows that
3b = A2m + BnC l = 4a + 2jnBn

1 C l, then 2 | b and we obtain the contradiction with
a, b coprime.

** I-2-2-1-1-5- We consider the case Am ≡ 2(mod 6) and Bn ≡ 5(mod 6): as Am ≡
2(mod 6) =⇒ Am ≡ 2(mod 3), then Am is not a square and also for Bn. Hence, we
can write Am and Bn as:

Am = a0.A2

Bn = b0B2
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where a0 (respectively b0) regroups the product of the prime numbers of Am with
exponent 1 (respectively of Bn) with not necessary (a0, A) = 1 and (b0, B) = 1.
We have also p = 3b = A2m + AmBn + B2n = (Am − Bn)2 + 3AmBn =⇒ 3 |
(b − AmBn) =⇒ AmBn ≡ b(mod3) but b = a + 3α2 =⇒ b ≡ a ≡ a′2(mod3),
then AmBn ≡ a′2(mod3). But Am ≡ 2(mod6) =⇒ 2a′ ≡ 2(mod6) =⇒
4a′2 ≡ 4(mod6) =⇒ a′2 ≡ 1(mod3). It follows that AmBn is a square, let
AmBn = N 2 = A2.B2.a0.b0. We call N 2

1 = a0.b0. Let p1 be a prime number so that
p1 | a0 =⇒ a0 = p1.a1 with p1 ∤ a1. p1 | N 2

1 =⇒ p1 | N1 =⇒ N1 = pt1N ′
1 with t ≥ 1

and p1 ∤ N ′
1, then p2t−1

1 N ′2
1 = a1.b0. As 2t ≥ 2 =⇒ 2t − 1 ≥ 1 =⇒ p1 | a1.b0 but

(p1, a1) = 1, then p1 | b0 =⇒ p1 | Bn =⇒ p1 | B. But p1 | (Am = 2a′), and p1 ̸= 2
because p1 | Bn and Bn is odd, then the contradiction. Hence, p1 | a′ =⇒ p1 | a. If
p1 = 3, from 3 | (b − a) =⇒ 3 | b then the contradiction with a, b coprime. Then
p1 > 3 a prime that divides Am and Bn, then p1 | (p = 3b) =⇒ p1 | b, it follows the
contradiction with a, b coprime, knowing that p = 3b ≡ 3(mod 6) and we choose
the case b ≡ 1(mod 6) of our interest.

** I-2-2-1-1-6- We consider the last case of the table above Am ≡ 4(mod 6) and
Bn ≡ 1(mod 6). We return to the equation (175) that b verifies :

b = X2 + 3Y 2(176)
with X = a′; Y = α

and 3α = a′ + Bn

But p = A2m + AmBn + B2n = 3b = 3(3α2 + a′2) =⇒ A2m + C lBn = 3a′2 + 9α2. As
A2m = (2a′)2 = 4a′2, we obtain:

9α2 − a′2 = C l.Bn

Then the pair (3α, a′) ∈ N∗ × N∗ is a solution of the Diophantine equation:

(177) x2 − y2 = N

where N = C l.Bm > 0.

Let Q(N) be the number of the solutions of (177) and τ(N) the number of ways to
write the factors of N , then we announce the following result concerning the number
of the solutions of (177) (see theorem 27.3 in [2]):

- If N ≡ 2(mod 4), then Q(N) = 0.
- If N ≡ 1 or N ≡ 3(mod 4), then Q(N) = [τ(N)/2].
- If N ≡ 0(mod 4), then Q(N) = [τ(N/4)/2].

As Am = 2a′, m ≥ 3 =⇒ Am ≡ 0(mod 4). Concerning Bn, for Bn ≡ 0(mod 4) or
Bn ≡ 2(mod 4), we find that 2 | Bn =⇒ 2 | α =⇒ 2 | b, then the contradiction with
a, b coprime.
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For the last case Bn ≡ 3(mod4) =⇒ C l ≡ 3(mod4) =⇒ N = BnC l ≡
1(mod 4) =⇒ Q(N) = [τ(N)/2].

As (3α, a′) is a couple of solutions of the Diophantine equation (177) and 3α > a′,
then ∃ d, d′ positive integers with d > d′ and N = d.d′ so that :

d + d′ = 6α(178)
d − d′ = 2a′(179)

We will use the same method used in the above paragraph A-2-1-2-

** I-2-2-1-1-6-1- As C l > Bn, we take d = C l and d′ = Bn. It follows:

C l + Bn = 6α = 2a′ + 2Bn = Am + 2Bn(180)
C l − Bn = 2a′ = Am(181)

Then the case d = C l and d′ = Bn gives a priory no contradictions.

** I-2-2-1-1-6-2- Now, we consider the case d = BnC l and d′ = 1. We rewrite the
equations (255-256):

BnC l + 1 = 6α(182)
BnC l − 1 = 2a′(183)

We obtain 1 = Bn, it follows C l − Am = 1, we know [4] that the only positive
solution of the last equation is C = 3, A = 2, m = 3 and l = 2 < 3, then the
contradiction.

** I-2-2-1-1-6-3- Now, we consider the case d = clr−1
1 C l

1 where c1 is a prime integer
with c1 ∤ C1 and C = cr1C1, r ≥ 1. It follows that d′ = c1.Bn. We rewrite the
equations (255-256):

clr−1
1 C l

1 + c1.Bn = 6α(184)
clr−1

1 C l
1 − c1.Bn = 2a′(185)

As l ≥ 3, from the last two equations above, it follows that c1 | (6α) and c1 | (2a′).
Then c1 = 2, or c1 = 3 and 3 | a′ or c1 ̸= 3 | α and c1 | a′.

** I-2-2-1-1-6-3-1- We suppose c1 = 2. As 2 | (Am = 2a′) ⇒ 2 | (a = a′2 and 2 | C l

because l ≥ 3, it follows 2 | Bn, then 2 | (p = 3b). Then the contradiction with a, b

coprime.

** I-2-2-1-1-6-3-2- We suppose c1 = 3 ⇒ c1 | 2a′ =⇒ c1 | a′ =⇒ c1 | (a = a′2). It
follows that (c1 = 3) | (b = a′2 + 3α2), then the contradiction with a, b coprime.
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** I-2-2-1-1-6-3-3- We suppose c1 ̸= 3 and c1 | 3α and c1 | a′. It follows that c1 | a

and c1 | (b = a′2 + 3α2, then the contradiction with a, b coprime.

The other cases of the expressions of d and d′ not coprime so that N = BnC l = d.d′

give also contradictions.

** I-2-2-1-1-6-4- Now, let C = cr1C1 with c1 a prime, r ≥ 1 and c1 ∤ C1, we consider
the case d = C l

1 and d′ = crl1 Bn so that d > d′. We rewrite the equations (255-256):

C l
1 + crl1 Bn = 6α(186)

C l
1 − crl1 Bn = 2a′(187)

We obtain crl1 Bn = Bn =⇒ crl1 = 1, then the contradiction.

** I-2-2-1-1-6-5- Now, let C = cr1C1 with c1 a prime, r ≥ 1 and c1 ∤ C1, we consider
the case d = C l

1Bn and d′ = crl1 so that d > d′. We rewrite the equations (255-256):

C l
1Bl + crl1 = 6α(188)

C l
1Bl − crl1 = 2a′(189)

We obtain crl1 = Bn =⇒ c1 | Bn, as c1 | C then c1 | Am = 2a′. If c1 = 2, the con-
tradiction with BnC l ≡ 1(mod 4). Then c1 | a′ =⇒ c1 | (a = a′2) =⇒ c1 | (p = b), it
follows a, b are not coprime, then the contradiction.

Cases like d′ < C l a divisor of C l or d′ < Bl a divisor of Bn with d′ < d and
d.d′ = N = BnC l give contradictions.

** I-2-2-1-1-6-6- Now, we consider the case d = b1.C l where b1 is a prime integer
with b1 ∤ B1 and B = br1B1, r ≥ 1. It follows that d′ = bnr−1

1 Bn
1 . We rewrite the

equations (255-256):

b1C l + bnr−1
1 Bn

1 = 6α(190)
b1C l − bnr−1

1 Bn
1 = 2a′(191)

As n ≥ 3, from the last two equations above, it follows that b1 | 6α and b1 | (2a′).
Then b1 = 2, or b1 | α and b1 | a′ or b1 = 3 and 3 | a′.

** I-2-2-1-1-6-6-1- We suppose b1 = 2 =⇒ 2 | Bn. As 2 | (Am = 2a′ =⇒ 2 | a′ =⇒
2 | a, but 2 | Bn and 2 | Am then 2 | (p = 3b). It follows the contradiction with a, b

coprime.

** I-2-2-1-1-6-6-2- We suppose b1 ̸= 2, 3, then b1 | α and b1 | a′ =⇒ b1 | (a = a′2),
then b1 | (b = 3α2 + a′2), it follows the contradiction with a, b coprime.
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** I-2-2-1-1-6-6-3- We suppose b1 = 3 =⇒ 3 | 6α, and 3 | (Am = 2a′) =⇒ 3 | (a =
a′2), then 3 | (b = 3α2 + a′2), it follows the contradiction with a, b coprime.

The other cases of the expressions of d and d′ with d, d′ not coprime and d > d′

so that N = C lBm = d.d′ give also contradictions.

Finally, from the cases studied in the above paragraph I-2-2-1-1-6-, we have found
one suitable factorization of N that gives a priory no contradictions, it is the case
N = Bn.C l = d.d′ with d = C l, d′ = Bn but 1 ≪ τ(N), it follows the contradiction
with Q(N) = [τ(N)/2] ≤ 1. The last case Am ≡ 4(mod 6) and Bn ≡ 1(mod 6)
gives contradictions.

It follows that the condition 3 | (b − a) is a contradiction.

The study of the case 2.6.8 is achieved.

2.6.9. Case 3 | p and b | 4p

The following cases have been soon studied:
* 3 | p, b = 2 =⇒ b | 4p: case 2.6.1,
* 3 | p, b = 4 =⇒ b | 4p: case 2.6.2,
* 3 | p =⇒ p = 3p′, b | p′ =⇒ p′ = bp”, p” ̸= 1: case 2.6.3,
* 3 | p, b = 3 =⇒ b | 4p: case 2.6.4,
* 3 | p =⇒ p = 3p′, b = p′ =⇒ b | 4p: case 2.6.8.

** J-1- Particular case: b = 12. In fact 3 | p =⇒ p = 3p′ and 4p = 12p′. Taking
b = 12, we have b | 4p. But b < 4a < 3b, that gives 12 < 4a < 36 =⇒ 3 < a < 9. As
2 | b and 3 | b, the possible values of a are 5 and 7.

** J-1-1- a = 5 and b = 12 =⇒ 4p = 12p′ = bp′. But A2m = 4p

3 .
a

b
= 5bp′

3b
= 5p′

3 =⇒
3 | p′ =⇒ p′ = 3p” with p” ∈ N∗, then p = 9p”, we obtain the expressions:

A2m = 5p”(192)

BnC l = p

3

(
3 − 4cos2 θ

3

)
= 4p”(193)

As n, l ≥ 3, we deduce from the equation (193) that 2 | p” =⇒ p” = 2αp1 with α ≥ 1
and 2 ∤ p1. Then (192) becomes: A2m = 5p” = 5 × 2αp1 =⇒ 2 | A =⇒ A = 2iA1,
i ≥ 1 and 2 ∤ A1. We have also BnC l = 2α+2p1 =⇒ 2 | Bn or 2 | C l.

** J-1-1-1- We suppose that 2 | Bn =⇒ B = 2jB1, j ≥ 1 and 2 ∤ B1. We obtain
Bn

1 C l = 2α+2−jnp1:
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- If α + 2 − jn > 0 =⇒ 2 | C l, there is no contradiction with C l = 2imAm
1 +

2jnBn
1 =⇒ 2 | C l and the conjecture (34) is verified.

- If α + 2 − jn = 0 =⇒ Bn
1 C l = p1. From C=2imAm

1 + 2jnBn
1 =⇒ 2 | C l that

implies that 2 | p1, then the contradiction with 2 ∤ p1.
- If α + 2 − jn < 0 =⇒ 2jn−α−2Bn

1 C l = p1, it implies that 2 | p1, then the
contradiction as above.
** J-1-1-2- We suppose that 2 | C l, using the same method above, we obtain the
identical results.

** J-1-2- We suppose that a = 7 and b = 12 =⇒ 4p = 12p′ = bp′. But A2m =
4p

3 .
a

b
= 12p′

3 .
7
12 = 7p′

3 =⇒ 3 | p′ =⇒ p = 9p”, we obtain:

A2m = 7p”

BnC l = p

3

(
3 − 4cos2 θ

3

)
= 2p”

The last equation implies that 2 | BnC l. Using the same method as for the case
J-1-1- above, we obtain the identical results.

We study now the general case. As 3 | p ⇒ p = 3p′ and b | 4p ⇒ ∃k1 ∈ N∗ and
4p = 12p′ = k1b.

** J-2- k1 = 1 : If k1 = 1 then b = 12p′, (p′ ̸= 1, if not p = 3 ≪ A2m+B2n+AmBn).

But A2m = 4p

3 .cos2 θ

3 = 12p′

3
a

b
= 4p′.a

12p′ = a

3 ⇒ 3 | a because A2m is a natural
number, then the contradiction with a, b coprime.

** J-3- k1 = 3 : If k1 = 3, then b = 4p′ and A2m = 4p

3 .cos2 θ

3 = k1.a

3 = a = (Am)2 =

a′2 =⇒ Am = a′. The term AmBn gives AmBn = p
√

3
3 sin

2θ

3 − a

2 , then:

(194) A2m + 2AmBn = 2p
√

3
3 sin

2θ

3 = 2p′√3sin
2θ

3

The left member of (194) is an integer number and also p′, then 2
√

3sin
2θ

3 can be
written under the form:

2
√

3sin
2θ

3 = k2
k3

where k2, k3 are two integer numbers and are coprime and k3 | p′ =⇒ p′ = k3.k4.

** J-3-1- k4 ̸= 1 : We suppose that k4 ̸= 1, then:

(195) A2m + 2AmBn = k2.k4



66 CHAPTER 2. A COMPLETE PROOF OF BEAL’S CONJECTURE

Let µ be a prime number so that µ | k4, then µ | Am(Am + 2Bn) =⇒ µ | Am or
µ | (Am + 2Bn).

** J-3-1-1- µ | Am : If µ | Am =⇒ µ | A2m =⇒ µ | a. As µ | k4 =⇒ µ | p′ ⇒ µ |
(4p′ = b). But a, b are coprime, then the contradiction.

** J-3-1-2- µ | (Am + 2Bn) : If µ | (Am + 2Bn) =⇒ µ ∤ Am and µ ∤ 2Bn, then µ ̸= 2
and µ ∤ Bn. µ | (Am + 2Bn), we can write Am + 2Bn = µ.t′. It follows:

Am + Bn = µt′ − Bn =⇒ A2m + B2n + 2AmBn = µ2t′2 − 2t′µBn + B2n

Using the expression of p, we obtain p = t′2µ2 − 2t′Bnµ + Bn(Bn − Am). As p = 3p′

and µ | p′ ⇒ µ | (3p′) ⇒ µ | p, we can write : ∃µ′ and p = µµ′, then we arrive to:

µ′.µ = µ(µt′2 − 2t′Bn) + Bn(Bn − Am)

and µ | Bn(Bn − Am) =⇒ µ | Bn or µ | (Bn − Am).

** J-3-1-2-1- µ | Bn : If µ | Bn =⇒ µ | B, it is in contradiction with J-3-1-2-.

** J-3-1-2-2- µ | (Bn − Am) : If µ | (Bn − Am) and using µ | (Am + 2Bn), we obtain
:

µ | 3Bn =⇒


µ | Bn

or

µ = 3

** J-3-1-2-2-1- µ | Bn : If µ | Bn =⇒ µ | B, it is in contradiction with J-3-1-2-.

** J-3-1-2-2-2- µ = 3 : If µ = 3 =⇒ 3 | k4 =⇒ k4 = 3k′
4, and we have p′ = k3k4 =

3k3k′
4, it follows that p = 3p′ = 9k3k′

4, then 9 | p, but p = (Am − Bn)2 + 3AmBn,
then we obtain:

9k3k′
4 − 3AmBn = (Am − Bn)2

that we write : 3(3k3k′
4 − AmBn) = (Am − Bn)2, then : 3 | (3k3k′

4 − AmBn) =⇒
3 | AmBn =⇒ 3 | Am or 3 | Bn.

** J-3-1-2-2-2-1- 3 | Am : If 3 | Am =⇒ 3 | A2m ⇒ 3 | a, but 3 | p′ ⇒ 3 | (4p′) ⇒ 3 | b,
then the contradiction with a, b coprime and 3 ∤ A.

** J-3-1-2-2-2-2- 3 | Bn : If 3 | Bn but Am = µt′ − 2Bn = 3t′ − 2Bn =⇒ 3 | Am, it
is in contradiction with 3 ∤ A.

Then the hypothesis k4 ̸= 1 is impossible.
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** J-3-2- k4 = 1: We suppose now that k4 = 1 =⇒ p′ = k3k4 = k3. Then we have:

(196) 2
√

3sin
2θ

3 = k2
p′

with k2, p′ coprime, we write (196) as :

4
√

3sin
θ

3cos
θ

3 = k2
p′

Taking the square of the two members and replacing cos2 θ

3 by a

b
and b = 4p′, we

obtain:

3.a(b − a) = k2
2

As A2m = a = a′2, it implies that :

3 | (b − a), and b − a = b − a′2 = 3α2

As k2 = Am(Am + 2Bn) following the equation (195) and that 3 | k2 =⇒ 3 |
Am(Am + 2Bn) =⇒ 3 | Am or 3 | (Am + 2Bn).

** J-3-2-1- 3 | Am: If 3 | Am =⇒ 3 | A2m =⇒ 3 | a, but 3 | (b − a) =⇒ 3 | b, then
the contradiction with a, b coprime.

** J-3-2-2- 3 | (Am + 2Bn) =⇒ 3 ∤ Am and 3 ∤ Bn. As k2
2 = 9aα2 = 9a′2α2 =⇒ k2 =

3a′α = Am(Am + 2Bn), then :

(197) 3α = Am + 2Bn

As b can be written under the form b = a′2 + 3α2, then the pair (a′, α) is a solution
of the Diophantine equation:

(198) x2 + 3y2 = b

As b = 4p′, then :

** J-3-2-2-1- If x, y are even, then 2 | a′ =⇒ 2 | a, it is a contradiction with a, b

coprime.

** J-3-2-2-2- If x, y are odd, then a′, α are odd, it implies Am = a′ ≡ 1(mod 4) or
Am ≡ 3(mod 4). If u, v verify (198), then b = u2 + 3v2, with u ̸= a′ and v ̸= α,
then u, v do not verify (197): 3v ̸= u + 2Bn, if not, u = 3v − 2Bn =⇒ b =
(3v − 2Bn)2 + 3v2 = a′2 + 3α2, the resolution of the obtained equation of second
degree in v gives the positive root v1 = α, then u = 3v − 2Bn = 3α − 2Bn = a′,
then the uniqueness of the representation of b by the equation (198).
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** J-3-2-2-2-1- We suppose that Am ≡ 1(mod 4) and Bn ≡ 0(mod 4), then Bn is
even and Bn = 2B′. The expression of p becomes:

p = a′2 + 2a′B′ + 4B′2 = (a′ + B′)2 + 3B′2 = 3p′ =⇒ 3 | (a′ + B′) =⇒ a′ + B′ = 3B”
p′ = B′2 + 3B”2 =⇒ b = 4p′ = (2B′)2 + 3(2B”)2 = a′2 + 3α2

as b has an unique representation, it follows 2B′ = Bn = a′ = Am, then the
contradiction with Am > Bn.

** J-3-2-2-2-2- We suppose that Am ≡ 1(mod 4) and Bn ≡ 1(mod 4), then C l is
even and C l = 2C ′. The expression of p becomes:

p = C2l − C lBn + B2n = 4C ′2 − 2C ′Bn + B2n = (C ′ − Bn)2 + 3C ′2 = 3p′

=⇒ 3 | (C ′ − Bn) =⇒ C ′ − Bn = 3C”
p′ = C ′2 + 3C”2 =⇒ b = 4p′ = (2C ′)2 + 3(2C”)2 = a′2 + 3α2

as b has an unique representation, it follows 2C ′ = C l = a′ = Am, then the
contradiction.

** J-3-2-2-2-3- We suppose that Am ≡ 1(mod 4) and Bn ≡ 2(mod 4), then Bn is
even, see J-3-2-2-2-1-.

** J-3-2-2-2-4- We suppose that Am ≡ 1(mod 4) and Bn ≡ 3(mod 4), then C l is
even, see J-3-2-2-2-2-.

** J-3-2-2-2-5- We suppose that Am ≡ 3(mod 4) and Bn ≡ 0(mod 4), then Bn is
even, see J-3-2-2-2-1-.

** J-3-2-2-2-6- We suppose that Am ≡ 3(mod 4) and Bn ≡ 1(mod 4), then C l is
even, see J-3-2-2-2-2-.

** J-3-2-2-2-7- We suppose that Am ≡ 3(mod 4) and Bn ≡ 2(mod 4), then Bn is
even, see J-3-2-2-2-1-.

** J-3-2-2-2-8- We suppose that Am ≡ 3(mod 4) and Bn ≡ 3(mod 4), then C l is
even, see J-3-2-2-2-2-.

We have achieved the study of the case J-3-2-2- . It gives contradictions.

** J-4- We suppose that k1 ̸= 3 and 3 | k1 =⇒ k1 = 3k′
1 with k′

1 ̸= 1, then
4p = 12p′ = k1b = 3k′

1b ⇒ 4p′ = k′
1b. A2m can be written as A2m = 4p

3 cos2 θ

3 =
3k′

1b

3
a

b
= k′

1a and BnC l = p

3

(
3 − 4cos2 θ

3

)
= k′

1
4 (3b − 4a). As BnC l is an integer
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number, we must have 4 | (3b − 4a) or 4 | k′
1 or [2 | k′

1 and 2 | (3b − 4a)].

** J-4-1- We suppose that 4 | (3b − 4a).

** J-4-1-1- We suppose that 3b − 4a = 4 =⇒ 4 | b =⇒ 2 | b. Then, we have:

A2m = k′
1a

BnC l = k′
1

** J-4-1-1-1- If k′
1 is prime, from BnC l = k′

1, it is impossible.

** J-4-1-1-2- We suppose that k′
1 > 1 is not prime. Let ω be a prime number so

that ω | k′
1.

** J-4-1-1-2-1- We suppose that k′
1 = ωs, with s ≥ 6. Then we have :

A2m = ωs.a(199)
BnC l = ωs(200)

** J-4-1-1-2-1-1- We suppose that ω = 2. If a, k′
1 are not coprime , then 2 | a, as

2 | b, it is the contradiction with a, b coprime.

** J-4-1-1-2-1-2- We suppose ω = 2 and a, k′
1 are coprime, then 2 ∤ a. From

(200), we deduce that B = C = 2 and n + l = s, and A2m = 2s.a, but
Am = 2l−2n =⇒ A2m = (2l−2n)2 = 22l+22n−2(2l+n) = 22l+22n−2×2s = 2s.a =⇒
22l + 22n = 2s(a + 2). If l = n, we obtain a = 0 then the contradiction. If l ̸= n, as
Am = 2l − 2n > 0 =⇒ n < l =⇒ 2n < s, then 22n(1 + 22l−2n − 2s+1−2n) = 2n2l.a.
We call l = n + n1 =⇒ 1 + 22l−2n − 2s+1−2n = 2n1 .a, but the left member is odd and
the right member is even, then the contradiction. Then the case ω = 2 is impossible.

** J-4-1-1-2-1-3- We suppose that k′
1 = ωs with ω ̸= 2:

** J-4-1-1-2-1-3-1- Suppose that a, k′
1 are not coprime, then ω | a =⇒ a = ωt.a1 and

t ∤ a1. Then, we have:

A2m = ωs+t.a1(201)
BnC l = ωs(202)

From (202), we deduce that Bn = ωn, Cn = ωl, s = n + l and Am = ωl − ωn >

0 =⇒ l > n. We have also A2m = ωs+t.a1 = (ωl − ωn)2 = ω2l + ω2n − 2 × ωs. As
ω ̸= 2 =⇒ ω is odd, then A2m = ωs+t.a1 = (ωl − ωn)2 is even, then 2 | a1 =⇒ 2 | a,
it is in contradiction with a, b coprime, then this case is impossible.



70 CHAPTER 2. A COMPLETE PROOF OF BEAL’S CONJECTURE

** J-4-1-1-2-1-3-2- Suppose that a, k′
1 are coprime, with :

A2m = ωs.a(203)
BnC l = ωs(204)

From (204), we deduce that Bn = ωn, C l = ωl and s = n + l. As ω ̸= 2 =⇒ ω is
odd and A2m = ωs.a = (ωl − ωn)2 is even, then 2 | a. It follows the contradiction
with a, b coprime and this case is impossible.

** J-4-1-1-2-2- We suppose that k′
1 = ωs.k2, with s ≥ 6, ω ∤ k2. We have :

A2m = ωs.k2.a

BnC l = ωs.k2

** J-4-1-1-2-2-1- If k2 is prime, from the last equation above, ω = k2, it is in
contradiction with ω ∤ k2. Then this case is impossible.

** J-4-1-1-2-2-2- We suppose that k′
1 = ωs.k2, with s ≥ 6, ω ∤ k2 and k2 not a prime.

Then, we have:

A2m = ωs.k2.a

BnC l = ωs.k2(205)

** J-4-1-1-2-2-2-1- We suppose that ω, a are coprime, then ω ∤ a. As A2m =
ωs.k2.a =⇒ ω | A =⇒ A = ωi.A1 with i ≥ 1 and ω ∤ A1, then s = 2i.m. From (205),
we have ω | (BnC l) =⇒ ω | Bn or ω | C l.

** J-4-1-1-2-2-2-1-1- We suppose that ω | Bn =⇒ ω | B =⇒ B = ωj .B1 with j ≥ 1
and ω ∤ B1. then :

Bn
1 C l = ω2im−jnk2

- If 2im − jn > 0, ω | C l =⇒ ω | C, no contradiction with C l = ωimAm
1 + ωjnBn

1
and the conjecture (34) is verified.

- If 2im − jn = 0 =⇒ Bn
1 C l = k2, as ω ∤ k2 =⇒ ω ∤ C l, then the contradiction

with ω | (C l = Am + Bn).
- If 2im − jn < 0 =⇒ ωjn−2imBn

1 C l = k2 =⇒ ω | k2, then the contradiction with
ω ∤ k2.

** J-4-1-1-2-2-2-1-2- We suppose that ω | C l. Using the same method used above,
we obtain identical results.

** J-4-1-1-2-2-2-2- We suppose that a, ω are not coprime, then ω | a =⇒ a = ωt.a1
and ω ∤ a1. So we have :

A2m = ωs+t.k2.a1(206)
BnC l = ωs.k2(207)
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As A2m = ωs+t.k2.a1 =⇒ ω | A =⇒ A = ωiA1 with i ≥ 1 and ω ∤ A1, then
s + t = 2im. From (207), we have ω | (BnC l) =⇒ ω | Bn or ω | C l.

** J-4-1-1-2-2-2-2-1- We suppose that ω | Bn =⇒ ω | B =⇒ B = ωjB1 with j ≥ 1
and ω ∤ B1. then:

Bn
1 C l = ω2im−t−jnk2

- If 2im − t − jn > 0, ω | C l =⇒ ω | C, no contradiction with C l = ωimAm
1 + ωjnBn

1
and the conjecture (34) is verified.

- If 2im − t − jn = 0 =⇒ Bn
1 C l = k2, As ω ∤ k2 =⇒ ω ∤ C l, then the contradiction

with ω | (C l = Am + Bn).
- If 2im − t − jn < 0 =⇒ ωjn+t−2imBn

1 C l = k2 =⇒ ω | k2, then the contradiction
with ω ∤ k2.

** J-4-1-1-2-2-2-2-2- We suppose that ω | C l. Using the same method used above,
we obtain identical results.

** J-4-1-2- 3b − 4a ̸= 4 and 4 | (3b − 4a) =⇒ 3b − 4a = 4sΩ with s ≥ 1 and 4 ∤ Ω.
We obtain:

A2m = k′
1a(208)

BnC l = 4s−1k′
1Ω(209)

** J-4-1-2-1- We suppose that k′
1 = 2. From (208), we deduce that 2 | a. As

4 | (3b − 4a) =⇒ 2 | b, then the contradiction with a, b coprime and this case is
impossible.

** J-4-1-2-2- We suppose that k′
1 = 3. From (208) we deduce that 33 | A2m. From

(209), it follows that 33 | Bn or 33 | C l. In the last two cases, we obtain 33 | p. But
4p = 3k′

1b = 9b =⇒ 3 | b, then the contradiction with a, b coprime. Then this case
is impossible.

** J-4-1-2-3- We suppose that k′
1 is prime ≥ 5:

** J-4-1-2-3-1- Suppose that k′
1 and a are coprime. The equation (208) gives

(Am)2 = k′
1.a, that is impossible with k′

1 ∤ a. Then this case is impossible.

** J-4-1-2-3-2- Suppose that k′
1 and a are not coprime. Let k′

1 | a =⇒ a = k′α
1 a1

with α ≥ 1 and k′
1 ∤ a1. The equation (208) is written as :

A2m = k′
1a = k′α+1

1 a1

The last equation gives k′
1 | A2m =⇒ k′

1 | A =⇒ A = k′i
1 .A1, with k′

1 ∤ A1. If
2i.m ̸= (α + 1), it is impossible. We suppose that 2i.m = α + 1, then k′

1 | Am.
We return to the equation (209). If k′

1 and Ω are coprime, it is impossible. We
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suppose that k′
1 and Ω are not coprime, then k′

1 | Ω and the exponent of k′
1 in

Ω is so the equation (209) is satisfying. We deduce easily that k′
1 | Bn. Then

k′2
1 | (p = A2m + B2n + AmBn), but 4p = 3k′

1b =⇒ k′
1 | b, then the contradiction

with a, b coprime.

** J-4-1-2-4- We suppose that k′
1 ≥ 4 is not a prime.

** J-4-1-2-4-1- We suppose that k′
1 = 4, we obtain then A2m = 4a and

BnC l = 3b−4a = 3p′−4a. This case was studied in the paragraph 2.6.8, case ** I-2-.

** J-4-1-2-4-2- We suppose that k′
1 > 4 is not a prime.

** J-4-1-2-4-2-1- We suppose that a, k′
1 are coprime. From the expression A2m =

k′
1.a, we deduce that a = a2

1 and k′
1 = k”2

1. It gives :

Am = a1.k”1

BnC l = 4s−1k”2
1.Ω

Let ω be a prime so that ω | k”1 and k”1 = ωt.k”2 with ω ∤ k”2. The last two
equations become :

Am = a1.ωt.k”2(210)
BnC l = 4s−1ω2t.k”2

2.Ω(211)

From (210), ω | Am =⇒ ω | A =⇒ A = ωi.A1 with ω ∤ A1 and im = t. From (211),
we obtain ω | BnC l =⇒ ω | Bn or ω | C l.

** J-4-1-2-4-2-1-1- If ω | Bn =⇒ ω | B =⇒ B = ωj .B1 with ω ∤ B1. From (210), we
have Bn

1 C l = ω2t−j.n4s−1.k”2
2.Ω.

** J-4-1-2-4-2-1-1-1- If ω = 2 and 2 ∤ Ω, we have Bn
1 C l = 22t+2s−j.n−2k”2

2.Ω:
- If 2t + 2s − jn − 2 ≤ 0 then 2 ∤ C l, then the contradiction with C l = ωimAm

1 +
ωjnBn

1 .
- If 2t + 2s − jn − 2 ≥ 1 =⇒ 2 | C l =⇒ 2 | C and the conjecture (34) is verified.

** J-4-1-2-4-2-1-1-2- If ω = 2 and if 2 | Ω =⇒ Ω = 2.Ω1 because 4 ∤ Ω, we have
Bn

1 C l = 22t+2s+1−j.n−2k”2
2Ω1:

- If 2t + 2s − jn − 3 ≤ 0 then 2 ∤ C l, then the contradiction with C l = ωimAm
1 +

ωjnBn
1 .

- If 2t + 2s − jn − 3 ≥ 1 =⇒ 2 | C l =⇒ 2 | C and the conjecture (34) is verified.

** J-4-1-2-4-2-1-1-3- If ω ̸= 2, we have Bn
1 C l = ω2t−j.n4s−1.k”2

2.Ω:
-If 2t − jn ≤ 0 =⇒ ω ∤ C l it is in contradiction with C l = ωimAm

1 + ωjnBn
1 .
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-If 2t − jn ≥ 1 =⇒ ω | C l =⇒ ω | C and the conjecture (34) is verified.

** J-4-1-2-4-2-1-2- If ω | C l =⇒ ω | C =⇒ C = ωh.C1, with ω ∤ C1. Using the same
method as in the case J-4-1-2-4-2-1-1 above, we obtain identical results.

** J-4-1-2-4-2-2- We suppose that a, k′
1 are not coprime. Let ω be a prime so that

ω | a and ω | k′
1. We write:

a = ωα.a1

k′
1 = ωµ.k”1

with a1, k”1 coprime. The expression of A2m becomes A2m = ωα+µ.a1.k”1. The
term BnC l becomes:

(212) BnC l = 4s−1.ωµ.k”1.Ω

** J-4-1-2-4-2-2-1- If ω = 2 =⇒ 2 | a, but 2 | b, then the contradiction with a, b

coprime, this case is impossible.

** J-4-1-2-4-2-2-2- If ω ≥ 3, we have ω | a. If ω | b then the contradiction with
a, b coprime. We suppose that ω ∤ b. From the expression of A2m, we obtain
ω | A2m =⇒ ω | A =⇒ A = ωi.A1 with ω ∤ A1, i ≥ 1 and 2i.m = α + µ. From (212),
we deduce that ω | Bn or ω | C l.

** J-4-1-2-4-2-2-2-1- We suppose that ω | Bn =⇒ ω | B =⇒ B = ωjB1 with ω ∤ B1
and j ≥ 1. Then, Bn

1 C l = 4s−1ωµ−jn.k”1.Ω :

* ω ∤ Ω :
- If µ − jn ≥ 1, we have ω | C l =⇒ ω | C, there is no contradiction with

C l = ωimAm
1 + ωjnBn

1 and the conjecture (34) is verified.
- If µ − jn ≤ 0, then ω ∤ C l and it is a contradiction with C l = ωimAm

1 + ωjnBn
1 .

Then this case is impossible.

* ω | Ω : we write Ω = ωβ.Ω1 with β ≥ 1 and ω ∤ Ω1. As 3b − 4a = 4s.Ω =
4s.ωβ.Ω1 =⇒ 3b = 4a + 4s.ωβ.Ω1 = 4ωα.a1 + 4s.ωβ.Ω1 =⇒ 3b = 4ω(ωα−1.a1 +
4s−1.ωβ−1.Ω1). If ω = 3 and β = 1, we obtain b = 4(3α−1a1 + 4s−1Ω1) and Bn

1 C l =
4s−13µ+1−jn.k”1Ω1.

- If µ − jn + 1 ≥ 1, then 3 | C l and the conjecture (34) is verified.
- If µ−jn+1 ≤ 0, then 3 ∤ C l and it is the contradiction with C l = 3imAm

1 +3jnBn
1 .

Now, if β ≥ 2 and α = im ≥ 3, we obtain 3b = 4ω2(ωα−2a1 +4s−1ωβ−2Ω1). If ω = 3
or not, then ω | b, but ω | a, then the contradiction with a, b coprime.
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** J-4-1-2-4-2-2-2-2- We suppose that ω | C l =⇒ ω | C =⇒ C = ωhC1 with ω ∤ C1
and h ≥ 1. Then, BnC l

1 = 4s−1ωµ−hl.k”1.Ω. Using the same method as above, we
obtain identical results.

** J-4-2- We suppose that 4 | k′
1.

** J-4-2-1- k′
1 = 4 =⇒ 4p = 3k′

1b = 12b =⇒ p = 3b = 3p′, this case has been studied
(see case I-2- paragraph 2.6.8).

** J-4-2-2- k′
1 > 4 with 4 | k′

1 =⇒ k′
1 = 4sk”1 and s ≥ 1, 4 ∤ k”1. Then, we obtain:

A2m = 4sk”1a = 22sk”1a

BnC l = 4s−1k”1(3b − 4a) = 22s−2k”1(3b − 4a)

** J-4-2-2-1- We suppose that s = 1 and k′
1 = 4k”1 with k”1 > 1, so p = 3p′ and

p′ = k”1b, this is the case 2.6.3 already studied.

** J-4-2-2-2- We suppose that s > 1, then k′
1 = 4sk”1 =⇒ 4p = 3 × 4sk”1b and we

obtain:

A2m = 4sk”1a(213)
BnC l = 4s−1k”1(3b − 4a)(214)

** J-4-2-2-2-1- We suppose that 2 ∤ (k”1.a) =⇒ 2 ∤ k”1 and 2 ∤ a. As (Am)2 =
(2s)2.(k”1.a), we call d2 = k”1.a, then Am = 2s.d =⇒ 2 | Am =⇒ 2 | A =⇒ A = 2iA1
with 2 ∤ A1 and i ≥ 1, then: 2imAm

1 = 2s.d =⇒ s = im. From the equation (214),
we have 2 | (BnC l) =⇒ 2 | Bn or 2 | C l.

** J-4-2-2-2-1-1- We suppose that 2 | Bn =⇒ 2 | B =⇒ B = 2j .B1, with j ≥ 1 and
2 ∤ B1. The equation (214) becomes:

Bn
1 C l = 22s−jn−2k”1(3b − 4a) = 22im−jn−2k”1(3b − 4a)

* We suppose that 2 ∤ (3b − 4a):
- If 2im − jn − 2 ≥ 1, then 2 | C l, there is no contradiction with C l = 2imAm

1 +
2jnBn

1 and the conjecture (34) is verified.
- If 2im−jn−2 ≤ 0, then 2 ∤ C l, then the contradiction with C l = 2imAm

1 +2jnBn
1 .

* We suppose that 2µ | (3b − 4a), µ ≥ 1:
- If 2im + µ − jn − 2 ≥ 1, then 2 | C l, no contradiction with C l = 2imAm

1 + 2jnBn
1

and the conjecture (34) is verified.
- If 2im + µ − jn − 2 ≤ 0, then 2 ∤ C l, then the contradiction with

C l = 2imAm
1 + 2jnBn

1 .
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** J-4-2-2-2-1-2- We suppose that 2 | C l =⇒ 2 | C =⇒ C = 2h.C1, with h ≥ 1 and
2 ∤ C1. With the same method used above, we obtain identical results.

** J-4-2-2-2-2- We suppose that 2 | (k”1.a):

** J-4-2-2-2-2-1- We suppose that k”1 and a are coprime:

** J-4-2-2-2-2-1-1- We suppose that 2 ∤ a and 2 | k”1 =⇒ k”1 = 22µ.k”2
2 and a = a2

1,
then the equations (213-214) become:

A2m = 4s.22µk”2
2a2

1 =⇒ Am = 2s+µ.k”2.a1(215)
BnC l = 4s−122µk”2

2(3b − 4a) = 22s+2µ−2k”2
2(3b − 4a)(216)

The equation (215) gives 2 | Am =⇒ 2 | A =⇒ A = 2i.A1 with 2 ∤ A1, i ≥ 1 and
im = s + µ. From the equation (216), we have 2 | (BnC l) =⇒ 2 | Bn or 2 | C l.

** J-4-2-2-2-2-1-1-1- We suppose that 2 | Bn =⇒ 2 | B =⇒ B = 2j .B1, 2 ∤ B1 and
j ≥ 1, then Bn

1 C l = 22s+2µ−jn−2k”2
2(3b − 4a):

* We suppose that 2 ∤ (3b − 4a):
- If 2im + 2µ − jn − 2 ≥ 1 ⇒ 2 | C l, then there is no contradiction with C l =

2imAm
1 + 2jnBn

1 and the conjecture (34) is verified.
- If 2im + 2µ − jn − 2 ≤ 0 ⇒ 2 ∤ C l, then the contradiction with C l =

2imAm
1 + 2jnBn

1 .

* We suppose that 2α | (3b − 4a), α ≥ 1 so that a, b remain coprime:
- If 2im + 2µ + α − jn − 2 ≥ 1 ⇒ 2 | C l, then no contradiction with C l =

2imAm
1 + 2jnBn

1 and the conjecture (34) is verified.
- If 2im + 2µ + α − jn − 2 ≤ 0 ⇒ 2 ∤ C l, then the contradiction with

C l = 2imAm
1 + 2jnBn

1 .

** J-4-2-2-2-2-1-1-2- We suppose that 2 | C l =⇒ 2 | C =⇒ C = 2h.C1, with h ≥ 1
and 2 ∤ C1. With the same method used above, we obtain identical results.

** J-4-2-2-2-2-1-2- We suppose that 2 ∤ k”1 and 2 | a =⇒ a = 22µ.a2
1 and k”1 = k”2

2,
then the equations (213-214) become:

A2m = 4s.22µa2
1k”2

2 =⇒ Am = 2s+µ.a1.k”2.(217)
BnC l = 4s−1k”2

2(3b − 4a) = 22s−2k”2
2(3b − 4a)(218)

The equation (217) gives 2 | Am =⇒ 2 | A =⇒ A = 2i.A1 with 2 ∤ A1, i ≥ 1 and
im = s + µ. From the equation (218), we have 2 | (BnC l) =⇒ 2 | Bn or 2 | C l.
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** J-4-2-2-2-2-1-2-1- We suppose that 2 | Bn =⇒ 2 | B =⇒ B = 2j .B1, 2 ∤ B1 and
j ≥ 1. Then we obtain Bn

1 C l = 22s−jn−2k”2
2(3b − 4a):

* We suppose that 2 ∤ (3b − 4a) =⇒ 2 ∤ b:
- If 2im − jn − 2 ≥ 1 ⇒ 2 | C l, then no contradiction with C l = 2imAm

1 + 2jnBn
1

and the conjecture (34) is verified.
- If 2im − jn − 2 ≤ 0 ⇒ 2 ∤ C l, then the contradiction with C l = 2imAm

1 + 2jnBn
1 .

* We suppose that 2α | (3b − 4a), α ≥ 1, in this case a, b are not coprime, then
the contradiction.

** J-4-2-2-2-2-1-2-2- We suppose that 2 | C l =⇒ 2 | C =⇒ C = 2h.C1, with h ≥ 1
and 2 ∤ C1. With the same method used above, we obtain identical results.

** J-4-2-2-2-2-2- We suppose that k”1 and a are not coprime 2 | a and 2 | k”1. Let
a = 2t.a1 and k”1 = 2µk”2 and 2 ∤ a1 and 2 ∤ k”2. From (213), we have µ + t = 2λ

and a1.k”2 = ω2. The equations (213-214) become:

A2m = 4sk”1a = 22s.2µk”2.2t.a1 = 22s+2λ.ω2 =⇒ Am = 2s+λ.ω(219)
BnC l = 4s−12µk”2(3b − 4a) = 22s+µ−2k”2(3b − 4a)(220)

From (219) we have 2 | Am =⇒ 2 | A =⇒ A = 2iA1,i ≥ 1 and 2 ∤ A1. From(220),
2s + µ − 2 ≥ 1, we deduce that 2 | (BnC l) =⇒ 2 | Bn or 2 | C l.

** J-4-2-2-2-2-2-1- We suppose that 2 | Bn =⇒ 2 | B =⇒ B = 2j .B1, 2 ∤ B1 and
j ≥ 1. Then we obtain Bn

1 C l = 22s+µ−jn−2k”2(3b − 4a):

* We suppose that 2 ∤ (3b − 4a):

- If 2s + µ − jn − 2 ≥ 1 ⇒ 2 | C l, then no contradiction with C l = 2imAm
1 +2jnBn

1
and the conjecture (34) is verified.

- If 2s+µ−jn−2 ≤ 0 ⇒ 2 ∤ C l, then the contradiction with C l = 2imAm
1 +2jnBn

1 .

* We suppose that 2α | (3b − 4a), for one value α ≥ 1. As 2 | a, then
2α | (3b − 4a) =⇒ 2 | (3b − 4a) =⇒ 2 | (3b) =⇒ 2 | b, then the contradiction with
a, b coprime.

** J-4-2-2-2-2-2-2- We suppose that 2 | C l =⇒ 2 | C =⇒ C = 2h.C1, with h ≥ 1
and 2 ∤ C1. With the same method used above, we obtain identical results.

** J-4-3- 2 | k′
1 and 2 | (3b − 4a): then we obtain 2 | k′

1 =⇒ k′
1 = 2t.k”1 with t ≥ 1

and 2 ∤ k”1, 2 | (3b − 4a) =⇒ 3b − 4a = 2µ.d with µ ≥ 1 and 2 ∤ d. We have also
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2 | b. If 2 | a, it is a contradition with a, b coprime.

We suppose, in the following, that 2 ∤ a. The equations (213-214) become:
A2m = 2t.k”1.a = (Am)2(221)

BnC l = 2t−1k”1.2µ−1d = 2t+µ−2k”1.d(222)
From (221), we deduce that the exponent t is even, let t = 2λ. Then we call
ω2 = k”1.a, it gives Am = 2λ.ω =⇒ 2 | Am =⇒ 2 | A =⇒ A = 2i.A1 with i ≥ 1
and 2 ∤ A1. From (222), we have 2λ+µ−2 ≥ 1, then 2 | (BnC l) =⇒ 2 | Bn or 2 | C l:

** J-4-3-1- We suppose that 2 | Bn =⇒ 2 | B =⇒ B = 2jB1, with j ≥ 1 and 2 ∤ B1.
Then we obtain Bn

1 C l = 22λ+µ−jn−2.k”1.d.
- If 2λ + µ − jn − 2 ≥ 1 ⇒ 2 | C l =⇒ 2 | C, there is no contradiction with

C l = 2imAm
1 + 2jnBn

1 and the conjecture (34) is verified.
- If 2s+t+µ−jn−2 ≤ 0 ⇒ 2 ∤ C, then the contradiction with C l = 2imAm

1 +2jnBn
1 .

** J-4-3-2- We suppose that 2 | C l =⇒ 2 | C. With the same method used above,
we obtain identical results.

The Main Theorem is proved.

2.7. Examples and Conclusion

2.7.1. Numerical Examples

2.7.1.1. Example 1:

We consider the example : 63 + 33 = 35 with Am = 63, Bn = 33 and C l = 35. With
the notations used in the paper, we obtain:

p = 36 × 73, q = 8 × 311, ∆̄ = 4 × 318(37 × 42 − 733) < 0

ρ = 38 × 73
√

73√
3

, cosθ = −4 × 33 ×
√

3
73

√
73

(223)

As A2m = 4p

3 .cos2 θ

3 =⇒ cos2 θ

3 = 3A2m

4p
= 3 × 24

73 = a

b
=⇒ a = 3 × 24, b = 73; then

we obtain:

(224) cos
θ

3 = 4
√

3√
73

, p = 36.b

We verify easily the equation (223) to calculate cosθ using (224). For this example,
we can use the two conditions from (70) as 3 | a ,b | 4p and 3 | p. The cases 2.5.4 and
2.6.3 are respectively used. For the case 2.5.4, it is the case B-2-2-1- that was used
and the conjecture (34) is verified. Concerning the case 2.6.3, it is the case G-2-2-1-
that was used and the conjecture (34) is verified.
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2.7.1.2. Example 2:

The second example is: 74 +73 = 143. We take Am = 74 , Bn = 73 and C l = 143. We
obtain p = 57×76 = 3×19×76 , q = 8×710 , ∆ = 27q2 −4p3 = 27×4×718(16×
49 − 193) = −27 × 4 × 718 × 6075 < 0 , ρ = 19 × 79 ×

√
19 , cosθ = − 4 × 7

19
√

19
.

As A2m = 4p

3 .cos2 θ

3 =⇒ cos2 θ

3 = 3A2m

4p
= 72

4 × 19 = a

b
=⇒ a = 72, b = 4 × 19,

then cos
θ

3 = 7
2
√

19
and we have the two principal conditions 3 | p and b | (4p). The

calculation of cosθ from the expression of cos
θ

3 is confirmed by the value below:

cosθ = cos3(θ/3) = 4cos3 θ

3 − 3cos
θ

3 = 4
( 7

2
√

19

)3
− 3 7

2
√

19
= − 4 × 7

19
√

19
Then, we obtain 3 | p ⇒ p = 3p′, b | (4p) with b ̸= 2, 4 then 12p′ = k1b = 3 × 76b. It
concerns the paragraph 2.6.9 of the second hypothesis. As k1 = 3 × 76 = 3k′

1 with
k′

1 = 76 ̸= 1. It is the case J-4-1-2-4-2-2- with the condition 4 | (3b − 4a). So we
verify :

3b − 4a = 3 × 4 × 19 − 4 × 72 = 32 =⇒ 4 | (3b − 4a)
with A2m = 78 = 76 ×72 = k′

1.a and k′
1 not a prime, with a and k′

1 not coprime with
ω = 7 ∤ Ω(= 2). We find that the conjecture (34) is verified with a common factor
equal to 7 (prime and divisor of k′

1 = 76).

2.7.1.3. Example 3:

The third example is: 194 + 383 = 573 with Am = 194, Bn = 383 and C l = 573.
We obtain p = 196 × 577 , q = 8 × 27 × 1910 , ∆ = 27q2 − 4p3 = 4 × 1918(273 ×

16 × 192 − 5773) < 0 , ρ = 199 × 577
√

577
3
√

3
, cosθ = −4 × 34 × 19

√
3

577
√

577
. As A2m =

4p

3 .cos2 θ

3 =⇒ cos2 θ

3 = 3A2m

4p
= 3 × 192

4 × 577 = a

b
=⇒ a = 3 × 192, b = 4 × 577, then

cos
θ

3 = 19
√

3
2
√

577
and we have the first hypothesis 3 | a and b | (4p). Here again, the

calculation of cosθ from the expression of cos
θ

3 is confirmed by the value below:

cosθ = cos3(θ/3) = 4cos3 θ

3 − 3cos
θ

3 = 4
(

19
√

3
2
√

577

)3

− 3 19
√

3
2
√

577
= −4 × 34 × 19

√
3

577
√

577

Then, we obtain 3 | a ⇒ a = 3a′ = 3 × 192, b | (4p) with b ̸= 2, 4 and b = 4p′

with p = kp′ soit p′ = 577 and k = 196. This concerns the paragraph 2.5.8 of
the first hypothesis. It is the case E-2-2-2-2-1- with ω = 19, a′, ω not coprime and
ω = 19 ∤ (p′ − a′) = (577 − 192) with s − jn = 6 − 1 × 3 = 3 ≥ 1, and the conjecture
(34) is verified.
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2.7.2. Conclusion

The method used to give the proof of the conjecture of Beal has discussed many
possibles cases, using elementary number theory and the results of some theorems
about Diophantine equations. We have confirmed the method by three numerical
examples. In conclusion, we can announce the theorem:

Theorem 13. — Let A, B, C, m, n, and l be positive natural numbers with
m, n, l > 2. If :
(225) Am + Bn = C l

then A, B, and C have a common factor.
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CHAPTER 3

A COMPLETE PROOF OF THE CONJECTURE
c < rad1.63(abc)

Abstract. — In this paper, we consider the abc conjecture, we will give the proof
that the conjecture c < rad1.63(abc) is true. It constitutes the key to resolving the
abc conjecture.

The paper is under reviewing.

To the memory of my Father who taught me arithmetic,
To my wife Wahida, my daughter Sinda and my son Mohamed Mazen
To Prof. A. Nitaj for his work on the abc conjecture

3.1. Introduction and notations

Let a be a positive integer, a =
∏
i a
αi
i , ai prime integers and αi ≥ 1 positive integers.

We call radical of a the integer
∏
i ai noted by rad(a). Then a is written as:

(226) a =
∏
i

aαi
i = rad(a).

∏
i

aαi−1
i

We denote:

(227) µa =
∏
i

aαi−1
i =⇒ a = µa.rad(a)

The abc conjecture was proposed independently in 1985 by David Masser of the
University of Basel and Joseph Œsterlé of Pierre et Marie Curie University (Paris
6) [1]. It describes the distribution of the prime factors of two integers with those
of its sum. The definition of the abc conjecture is given below:

Conjecture 14. — (abc Conjecture): For each ϵ > 0, there exists K(ϵ)
such that if a, b, c positive integers relatively prime with c = a + b, then :
(228) c < K(ϵ).rad1+ϵ(abc)
where K is a constant depending only of ϵ.
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We know that numerically, Logc

Log(rad(abc)) ≤ 1.629912 [2]. It concerned the best

example given by E. Reyssat [2]:

(229) 2 + 310.109 = 235 =⇒ c < rad1.629912(abc)

A conjecture was proposed that c < rad2(abc) [3]. In 2012, A. Nitaj [4] proposed
the following conjecture:

Conjecture 15. — Let a, b, c be positive integers relatively prime with c =
a + b, then:

c < rad1.63(abc)(230)
abc < rad4.42(abc)(231)

In this paper, we will give the proof of the conjecture given by (230) that consti-
tutes the key to obtain the proof of the abc conjecture using classical methods with
the help of some theorems from the field of the number theory.

3.2. The Proof of the conjecture c < rad1.63(abc)

Let a, b, c be positive integers, relatively prime, with c = a + b, b < a and

R = rad(abc), c =
j′=J ′∏
j′=1

c
βj′
j′ , βj′ ≥ 1, cj′ ≥ 2 prime integers.

In the following, we will give the proof of the conjecture c < rad1.63(abc).

Proof. — :

3.2.1. Trivial cases:

- We suppose that c < rad(abc), then we obtain:

c < rad(abc) < rad1.63(abc) =⇒ c < R1.63

and the condition (230) is satisfied.

- We suppose that c = rad(abc), then a, b, c are not coprime, case to reject.

In the following, we suppose that c > rad(abc) and a, b and c are not all prime
numbers.

- We suppose µa ≤ rad0.63(a). We obtain :

c = a + b < 2a ≤ 2rad1.63(a) < rad1.63(abc) =⇒ c < rad1.63(abc) =⇒ c < R1.63
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Then (230) is satisfied.

- We suppose µc ≤ rad0.63(c). We obtain :

c = µcrad(c) ≤ rad1.63(c) < rad1.63(abc) =⇒ c < R1.63

and the condition (230) is satisfied.

3.2.2. We suppose µc > rad0.63(c) and µa > rad0.63(a)

3.2.2.1. Case : rad0.63(c) < µc ≤ rad1.63(c) and rad0.63(a) < µa ≤ rad1.63(a)

We can write:

µc ≤ rad1.63(c) =⇒ c ≤ rad2.63(c)

µa ≤ rad1.63(a) =⇒ a ≤ rad2.63(a)

 =⇒ ac ≤ rad2.63(ac) =⇒ a2 < ac ≤ rad2.63(ac)

=⇒ a < rad1.315(ac) =⇒ c < 2a < 2rad1.315(ac) < rad1.63(abc)

=⇒ c = a + b < R1.63

3.2.2.2. Case : rad1.63(c) < µc or rad1.63(a) < µa

I - We suppose that rad1.63(c) < µc and rad1.63(a) < µa ≤ rad2(a):

I-1- Case rad(a) < rad(c):
In this case a = µa.rad(a) ≤ rad3(a) ≤ rad1.63(a)rad1.37(a) < rad1.63(a).rad1.37(c)
=⇒ c < 2a < 2rad1.63(a).rad1.37(c) < rad1.63(abc) =⇒ c < R1.63 .

I-2- Case rad(c) < rad(a) < rad
1.63
1.37 (c): As a ≤ rad1.63(a).rad1.37(a) <

rad1.63(a).rad1.63(c) =⇒ c < 2a < 2rad1.63(a).rad1.63(c) < R1.63 =⇒ c < R1.63 .

I-3- Case rad
1.63
1.37 (c) < rad(a):

I-3-1- We suppose rad1.63(c) < µc ≤ rad2.26(c), we obtain:

c ≤ rad3.26(c) =⇒ c ≤ rad1.63(c).rad1.63(c) =⇒

c < rad1.63(c).rad1.37(a) < rad1.63(c).rad1.63(a).rad1.63(b) = R1.63 =⇒ c < R1.63

I-3-2- We suppose µc > rad2.26(c) =⇒ c > rad3.26(c).

I-3-2-1- We consider the case µa = rad2(a) =⇒ a = rad3(a) and c = a + 1. Then,
we obtain that X = rad(a) is a solution in positive integers of the equation:

(232) X3 + 1 = c
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I-3-2-1-1- We suppose that c = radn(c) with n ≥ 4, we obtain the equation:

(233) radn(c) − rad3(a) = 1

But the solutions of the equation (233) are [5] :(rad(c) = 3, n = 2, rad(a) = +2), it
follows the contradiction with n ≥ 4 and the case c = radn(c), n ≥ 4 is to reject.

I-3-2-1-2- In the following, we will study the cases µc = A.radn(c) with rad(c) ∤
A, n ≥ 0. The above equation (232) can be written as :

(234) (X + 1)(X2 − X + 1) = c

Let δ one divisor of c so that :

X + 1 = δ(235)

X2 − X + 1 = c

δ
= m = δ2 − 3X(236)

We recall that rad(a) > rad
1.63
1.37 (c).

I-3-2-1-2-1- We suppose δ = l.rad(c). We have δ = l.rad(c) < c = µc.rad(c) =⇒

l < µc. As c

δ
= µcrad(c)

lrad(c) = µc
l

= m = δ2 − 3X =⇒ µc = l.m = l(δ2 − 3X). From

m = δ2 − 3X) and X = rad(a), we obtain:

m = l2rad2(c) − 3rad(a) =⇒ 3rad(a) = l2rad2(c) − m

A- Case 3|m =⇒ m = 3m′, m′ > 1: As µc = ml = 3m′l =⇒ 3|rad(c) and
(rad(c), m′) not coprime. We obtain:

rad(a) = l2rad(c). rad(c)
3 − m′

It follows that a, c are not coprime, then the contradiction.

B - Case m = 3 =⇒ µc = 3l =⇒ c = 3lrad(c) = 3δ = δ(δ2 − 3X) =⇒ δ2 =
3(1 + X) = 3δ =⇒ δ = lrad(c) = 3 =⇒ c = 3δ = 9 = a + 1 =⇒ a = 8 =⇒ c = 9 <

(2 × 3)1.63 ≈ 18.55, it is a trivial case and the conjecture is true.

I-3-2-1-2-2- We suppose δ = l.rad2(c), l ≥ 2. If n = 0 then µc = A and from the
equation above (236):

m = c

δ
= µc.rad(c)

lrad2(c) = A.rad(c)
lrad2(c) = A

lrad(c) ⇒ rad(c)|A

It follows the contradiction with the hypothesis above rad(c) ∤ A.

I-3-2-1-2-3- We suppose δ = lrad2(c), l ≥ 2 and in the following n > 0. As

m = c

δ
= µc.rad(c)

lrad2(c) = µc
lrad(c) , if lrad(c) ∤ µc then the case is to reject.

We suppose lrad(c)|µc =⇒ µc = m.lrad(c), with m, rad(c) not coprime, then
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c

δ
= m = δ2 − 3rad(a).

C - Case m = 1 = c/δ =⇒ δ2 − 3rad(a) = 1 =⇒ (δ − 1)(δ + 1) = 3rad(a) =
rad(a)(δ + 1) =⇒ δ = 2 = l.rad2(c), then the contradiction.

D - Case m = 3, we obtain 3(1 + rad(a)) = δ2 = 3δ =⇒ δ = 3 = lrad2(c). Then the
contradiction.

E - Case m ̸= 1, 3, we obtain: 3rad(a) = l2rad4(c) − m =⇒ rad(a) and rad(c) are
not coprime. Then the contradiction.

I-3-2-1-2-4- We suppose δ = l.radn(c), l ≥ 2 with n ≥ 3. c = µc.rad(c) =
lradn(c)(δ2 − 3rad(a)) and m = δ2 − 3rad(a) = δ2 − 3X.

F - As seen above (paragraphs C,D), the cases m = 1 and m = 3 give contradictions,
it follows the reject of these cases.

G - Case m ̸= 1, 3. Let q be a prime that divides m (q can be equal to m), it follows
q|(µc = l.m) =⇒ q = cj′

0
=⇒ cj′

0
|δ2 =⇒ cj′

0
|3rad(a). Then rad(a) and rad(c) are

not coprime. It follows the contradiction.

I-3-2-1-2-5- We suppose δ =
∏
j∈J1 c

βj

j , βj ≥ 1 with at least one j0 ∈ J1 with:

(237) βj0 ≥ 2, rad(c) ∤ δ

We can write:

(238) δ = µδ.rad(δ), rad(c) = r.rad(δ), r > 1, (r, µδ) = 1

Then, we obtain:

c = µc.rad(c) = µc.r.rad(δ) = δ(δ2 − 3X) = µδ.rad(δ)(δ2 − 3X) =⇒
r.µc = µδ(δ2 − 3X)(239)

- We suppose µc = µδ =⇒ r = δ2 − 3X = (µc.rad(δ))2 − 3X. As δ < δ2 − 3X =⇒
r > δ =⇒ rad(c) > r > (µc.rad(δ) = A.radn(c)rad(δ)) =⇒ 1 > A.radn−1(δ), then
the contradiction.

- We suppose µc < µδ. As rad(a) = δ − 1 = µδrad(δ) − 1, we obtain:

rad(a) > µc.rad(δ) − 1 > 0 =⇒ rad(ac) > c.rad(δ) − rad(c) > 0

As c = 1 + a and we consider the cases c > rad(ac), then:

c > rad(ac) > c.rad(δ) − rad(c) > 0 =⇒ c > c.rad(δ) − rad(c) > 0 =⇒

1 > rad(δ) − rad(c)
c

> 0, rad(δ) ≥ 2 =⇒ The contradiction(240)
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- We suppose µc > µδ. In this case, from the equation (239) and as (r, µδ) = 1, it
follows we can write:

µc = µ1.µ2, µ1, µ2 > 1,

c = µcrad(c) = µ1.µ2.rad(δ).r = δ.(δ2 − 3X),
We do a choice so that µ2 = µδ, r.µ1 = δ2 − 3X =⇒ δ = µ2.rad(δ).

** 1- We suppose (µ1, µ2) ̸= 1, then ∃ cj0 so that cj0 |µ1 and cj0 |µ2. But µδ = µ2 ⇒
c2
j0 |δ. From 3X = δ2 − rµ1 =⇒ cj0 |3X =⇒ cj0 |X or cj0 = 3.

- If cj0 |(X = rad(a)), it follows the contradiction with (c, a) = 1.
- If cj0 = 3. We have rµ1 = δ2 − 3X = δ2 − 3(δ − 1) =⇒ δ2 − 3δ + 3 − r.µ1 = 0.

As 3|µ1 =⇒ µ1 = 3kµ′
1, 3 ∤ µ′

1, k ≥ 1, we obtain:

(241) δ2 − 3δ + 3(1 − 3k−1rµ′
1) = 0

** 1-1- We consider the case k > 1 =⇒ 3 ∤ (1−3k−1rµ′
1). Let us recall the Eisenstein

criterion [6]:

Theorem 16. — (Eisenstein Criterion) Let f = a0 + · · · + anXn be a
polynomial ∈ Z[X]. We suppose that ∃ p a prime number so that p ∤ an,
p|ai, (0 ≤ i ≤ n − 1), and p2 ∤ a0, then f is irreducible in Q.

We apply Eisenstein criterion to the polynomial R(Z) given by:

(242) R(Z) = Z2 − 3Z + 3(1 − 3k−1rµ′
1)

then:
- 3 ∤ 1, - 3|(−3),- 3|3(1 − 3k−1rµ′

1), and - 32 ∤ 3(1 − 3k−1rµ′
1).

It follows that the polynomial R(Z) is irreducible in Q, then, the contradiction with
R(δ) = 0.

** 1-2- We consider the case k = 1, then µ1 = 3µ′
1 and (µ′

1, 3) = 1, we obtain:

(243) δ2 − 3δ + 3(1 − rµ′
1) = 0

** 1-2-1- We consider that 3 ∤ (1 − r.µ′
1), we apply the same Eisenstein criterion to

the polynomial R′(Z) given by:

R′(Z) = Z2 − 3Z + 3(1 − rµ′
1)

and we find a contradiction with R′(δ) = 0.

** 1-2-2- We consider that:

(244) 3|(1 − r.µ′
1) =⇒ rµ′

1 − 1 = 3i.h, i ≥ 1, 3 ∤ h, h ∈ N∗

δ is an integer root of the polynomial R′(Z):

(245) R′(Z) = Z2 − 3Z + 3(1 − rµ′
1) = 0
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The discriminant of R′(Z) is:

∆ = 32 + 3i+1 × 4.h

As the root δ is an integer, it follows that ∆ = t2 > 0 with t a positive integer. We
obtain:

∆ = 32(1 + 3i−1 × 4h) = t2(246)
=⇒ 1 + 3i−1 × 4h = q2 > 1, q ∈ N∗(247)

We can write the equation (243) as :

δ(δ − 3) = 3i+1.h =⇒ 33µ′
1
rad(δ)

3 .
(
µ′

1rad(δ) − 1
)

= 3i+1.h =⇒(248)

µ′
1
rad(δ)

3 .
(
µ′

1rad(δ) − 1
)

= h(249)

We obtain i = 2 and q2 = 1 + 12h = 1 + 4µ′
1rad(δ)(µ′

1rad(δ) − 1). Then, q satisfies :

q2 − 1 = 12h = 4µ′
1rad(δ)(µ′

1rad(δ) − 1) =⇒(250)
(q−1)

2 . (q+1)
2 = 3h = (µ′

1rad(δ) − 1).µ′
1rad(δ) ⇒(251)

q − 1 = 2µ′
1rad(δ) − 2(252)

q + 1 = 2µ′
1rad(δ)(253)

It follows that (q = x, 1 = y) is a solution of the Diophantine equation:

(254) x2 − y2 = N

with N = 4µ′
1rad(δ)(µ′

1rad(δ) − 1) = 12h > 0. Let Q(N) be the number of the
solutions of (254) and τ(N) is the number of suitable factorization of N , then we
announce the following result concerning the solutions of the Diophantine equation
(254) (see theorem 27.3 in [7]):

- If N ≡ 2(mod 4), then Q(N) = 0.
- If N ≡ 1 or N ≡ 3(mod 4), then Q(N) = [τ(N)/2].
- If N ≡ 0(mod 4), then Q(N) = [τ(N/4)/2].
[x] is the integral part of x for which [x] ≤ x < [x] + 1.

As N = 4µ′
1rad(δ)(µ′

1rad(δ) − 1) =⇒ N ≡ 0(mod 4) =⇒ Q(N) = [τ(N/4)/2]. As
(q, 1) is a couple of solutions of the Diophantine equation (254), then ∃ d, d′ positive
integers with d > d′ and N = d.d′ so that :

d + d′ = 2q(255)
d − d′ = 2.1 = 2(256)

** 1-2-2-1 As N > 1, we take d = N and d′ = 1. It follows:{
N + 1 = 2q

N − 1 = 2 =⇒ N = 3 =⇒ then the contradiction with N ≡ 0(mod 4).
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** 1-2-2-2 Now, we consider the case d = 2µ′
1rad(δ)(µ′

1rad(δ) − 1) and d′ = 2. It
follows:{

2µ′
1rad(δ)(µ′

1rad(δ) − 1) + 2 = 2q

2µ′
1rad(δ)(µ′

1rad(δ) − 1) − 2 = 2 ⇒ 2µ′
1rad(δ)(µ′

1rad(δ) − 1) = q + 1

As q + 1 = 2µ′
1rad(δ), we obtain µ′

1rad(δ) = 2, then the contradiction with 3|δ.

** 1-2-2-3 Now, we consider the case d = µ′
1rad(δ)(µ′

1rad(δ) − 1) and d′ = 4. It
follows: {

µ′
1rad(δ)(µ′

1rad(δ) − 1) + 4 = 2q

µ′
1rad(δ)(µ′

1rad(δ) − 1) − 4 = 2 ⇒ µ′
1rad(δ)(µ′

1rad(δ) − 1) = 6

As µ′
1rad(δ) > 0 =⇒ µ′

1rad(δ) = 3 =⇒ µ′
1 = 1, rad(δ) = 3 and q = 5. From

q2 = 1 + 12h, we obtain h = 2. Using the relation (244) rµ′
1 − 1 = 3ih as µ′

1 = 1, i =
2, h = 2, it gives r − 1 = 9h = 18. As δ is the positive root of the equation (243):

Z2 − 3Z + 3(1 − r) = 0 =⇒ δ = 9 = 32

But δ = 1 + X = 1 + rad(a) =⇒ rad(a) = 8 = 23, then the contradiction.

** 1-2-2-4 Now, let cj0 be a prime integer so that cj0 |radδ, we consider the case

d = µ′
1
rad(δ)

cj0
(µ′

1rad(δ) − 1) and d′ = 4cj0 . It follows:


µ′

1
rad(δ)

cj0
(µ′

1rad(δ) − 1) + 4cj0 = 2q

µ′
1
rad(δ)

cj0
(µ′

1rad(δ) − 1) − 4cj0 = 2
=⇒ µ′

1
rad(δ)

cj0
(µ′

1rad(δ) − 1) = 2(1 + 2cj0) =⇒

Then the contradiction as the left member is greater than the right member 2(1 + 2cj0).

** 1-2-2-5 Now, we consider the case d = 4µ′
1rad(δ) and d′ = (µ′

1rad(δ) − 1). It
follows:{

4µ′
1rad(δ) + (µ′

1rad(δ) − 1) = 2q

4µ′
1rad(δ) − (µ′

1rad(δ) − 1) = 2 =⇒ 3µ′
1rad(δ) = 1 =⇒ Then the contradiction.

** 1-2-2-6 Now, we consider the case d = 2µ′
1rad(δ) and d′ = 2(µ′

1rad(δ) − 1). It
follows: {

2µ′
1rad(δ) + 2(µ′

1rad(δ) − 1) = 2q =⇒ 2µ′
1rad(δ) − 1 = q

2µ′
1rad(δ) − 2(µ′

1rad(δ) − 1) = 2 =⇒ 2 = 2

It follows that this case presents no contradictions a priori.
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** 1-2-2-7 µ′
1rad(δ) and µ′

1rad(δ) − 1 are coprime, let µ′
1rad(δ) − 1 =

j=J∏
j=1

λ
γj

j , we

consider the case d = 2λj′µ′
1rad(δ) and d′ = 2µ′

1rad(δ) − 1
λj′

. It follows:
2λj′µ′

1rad(δ) + 2µ′
1rad(δ) − 1

λj′
= 2q

2λj′µ′
1rad(δ) − 2µ′

1rad(δ) − 1
λj′

= 2

** 1-2-2-7-1 We suppose that γj′ = 1. We consider the case d = 2λj′µ′
1rad(δ) and

d′ = 2µ′
1rad(δ) − 1

λj′
. It follows:

2λj′µ′
1rad(δ) + 2µ′

1rad(δ) − 1
λj′

= 2q

2λj′µ′
1rad(δ) − 2µ′

1rad(δ) − 1
λj′

= 2

=⇒ 4λj′µ′
1rad(δ) = 2(q+1) =⇒ 2λj′µ′

1rad(δ) = q+1

But from the equation (253), q + 1 = 2µ′
1rad(δ), then λj′ = 1, it follows the

contradiction.

** 1-2-2-7-2 We suppose that γj′ ≥ 2. We consider the case d = 2λ
γj′ −r′

j′
j′ µ′

1rad(δ)

and d′ = 2µ′
1rad(δ) − 1

λ
r′

j′
j′

. It follows:



2λ
γj′ −r′

j′
j′ µ′

1rad(δ) + 2µ′
1rad(δ) − 1

λ
r′

j′
j′

= 2q

2λ
γj′ −r′

j′
j′ µ′

1rad(δ) − 2µ′
1rad(δ) − 1

λ
r′

j′
j′

= 2

=⇒ 4λ
γj′ −r′

j′
j′ µ′

1rad(δ) = 2(q + 1)

=⇒ 2λ
γj′ −r′

j′
j′ µ′

1rad(δ) = q + 1

As above, it follows the contradiction. It is trivial that the other cases for more
factors

∏
j”

λ
γj”−r”j”
j” give also contradictions.

** 1-2-2-8 Now, we consider the case d = 4(µ′
1rad(δ) − 1) and d′ = µ′

1rad(δ), we
have d > d′. It follows:{

4(µ′
1rad(δ) − 1) + µ′

1rad(δ) = 2q ⇒ 5µ′
1rad(δ) = 2(q + 2)

4(µ′
1rad(δ) − 1) − µ′

1rad(δ) = 2 ⇒ µ′
1rad(δ) = 2 ⇒

{
Then the contradiction as
3|δ.
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** 1-2-2-9 Now, we consider the case d = 4u(µ′
1rad(δ) − 1) and d′ = µ′

1rad(δ)
u

,
where u > 1 is an integer divisor of µ′

1rad(δ). We have d > d′ and:
4u(µ′

1rad(δ) − 1) + µ′
1rad(δ)

u
= 2q

4u(µ′
1rad(δ) − 1) − µ′

1rad(δ)
u

= 2

=⇒ 2u(µ′
1rad(δ) − 1) = µ′

1rad(δ)

Then the contradiction as µ′
1rad(δ) and (µ′

1rad(δ) − 1) are coprime.

In conclusion, we have found only one case (** 1-2-2-6 above) where there is
no contradictions a priori. As τ(N) is large and also [τ(N/4)/2], it follows the
contradiction with Q(N) ≤ 1 and the hypothesis (µ1, µ2) ̸= 1 is false.

** 2- We suppose that (µ1, µ2) = 1.

From the equation rµ1 = δ2 − 3X and the condition rad(a) = X >

rad1.63/1.37(c) ⇐⇒ δ − 1 = X > rad1.19(c), we obtain the following inequal-
ity:

δ − 1 > (r.rad(δ))1.19 =⇒ −3(δ − 1) < −3r.rad(δ).(r.rad(δ))0.19 =⇒
rµ1 = δ2 − 3(δ − 1) < (r.rad(δ))2 − 3r.rad(δ).(r.rad(δ))0.19 =⇒

µ1 < r.rad2(δ) − 3.rad(δ).(r.rad(δ))0.19 =⇒

µ1 < r.rad2(δ)
(

1 − 3
(r.rad(δ))0.81

)
(257)

As a = rad3(a) < c, we can write:

rad3(a) < µ1µ2rad(c) < µ2.rad(δ).rad2(c)
(

1 − 3
(r.rad(δ))0.81

)
but (r, rad(δ)) = 1, r.rad(δ) ≥ 6 =⇒ (r.rad(δ))0.81 ≥ (60.81 ≈ 4.26) and δ =
µ2.rad(δ), it follows:

rad3(a) < µ1µ2rad(c) < µ2.rad(δ).rad2(c) =⇒ rad3(a) < δ.rad2(c) < 1.6rad(a).rad2(c)

As rad(a) > (rad1.62/1.37(c) = rad1.19(c)) =⇒ rad1.19(c) < rad(a) < 1.27rad(c),
then we obtain:

rad1.19(c) < 1.27rad(c) =⇒ rad(c) < 3.5 =⇒ rad(c) ≤ 3, but rad(c) = r.rad(δ) ≥ 6

Then the contradiction.

It follows that the case µc > rad2.26(c) ⇒ c > rad3.26(c) and a = rad3(a) is
impossible.
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I-3-2-2- We consider the case µa = rad2(a) =⇒ a = rad3(a) and c = a + b. Then,
we obtain that X = rad(a) is a solution in positive integers of the equation:

(258) X3 + 1 = c̄

with c̄ = c − b + 1 = a + 1 =⇒ (c̄, a) = 1. We obtain the same result as of the case
I-3-2-1- studied above considering rad(a) > rad

1.63
1.37 (c̄).

I-3-2-3- We suppose µc > rad2.26(c) ⇒ c > rad3.26(c) and c large and µa < rad2(a),
we consider c = a + b, b ≥ 1. Then c = rad3(c) + h, h > rad3(c), h a positive integer
and we can write a + l = rad3(a), l > 0. Then we obtain :

(259) rad3(c) + h = rad3(a) − l + b =⇒ rad3(a) − rad3(c) = h + l − b > 0

as rad(a) > rad
1.63
1.37 (c). We obtain the equation:

(260) rad3(a) − rad3(c) = h + l − b = m > 0

Let X = rad(a) − rad(c), then X is an integer root of the polynomial H(X) defined
as:

(261) H(X) = X3 + 3rad(ac)X − m = 0

To resolve the above equation, we denote X = u + v, It follows that u3, v3 are the
roots of the polynomial G(t) given by:

(262) G(t) = t2 − mt − rad3(ac) = 0

The discriminant of G(t) is ∆ = m2 + 4rad3(ac) = α2, α > 0. As m = rad3(a) −
rad3(c) > 0, we obtain that α = rad3(a) + rad3(c) > 0, then from the expression
of the discriminant ∆, it follows that the couple (α = x, m = y) is a solution of the
Diophantine equation:

(263) x2 − y2 = N

with N = 4rad3(ac) = 4rad3(a).rad3(c) > 0. Here, we will use the same method
that is given in the above sub-paragraph ** 1-2-2 - of the paragraph I-3-2-1-2-
5-. We have the two terms rad3(a) and rad3(c) coprime. As (α, m) is a couple of
solutions of the Diophantine equation (263) and α > m, then ∃ d, d′ positive integers
with d > d′ and N = d.d′ so that :

d + d′ = 2α(264)
d − d′ = 2m(265)

I-3-2-3-1- Let us consider the case d = 2rad3(a), d′ = 2rad3(c). It follows:{
2rad3(a) + 2rad3(c) = 2α =⇒ α = rad3(a) + rad3(c)
2rad3(a) − 2rad3(c) = 2m =⇒ m = rad3(a) − rad3(c)

It follows that this case presents a priori no contradictions.
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I-3-2-3-2- Now, we consider for example, the case d = 4rad3(a) and d′ =
rad3(c) =⇒ d > d′. We rewrite the equations (264-265):

4rad3(a) + rad3(c) = 2(rad3(a) + rad3(c)) ⇒ 2rad3(a) = rad3(c))
4rad3(a) − rad3(c) = 2(rad3(a) − rad3(c)) =⇒ 2rad3(a) = −rad3(c))

Then the contradiction.

I-3-2-3-3- We consider the case d = 4rad3(c)rad3(a) and d′ = 1 =⇒ d > d′. We
rewrite the equations (264-265):

4rad3(c)rad3(a) + 1 = 2(rad3(c) + rad3(a)) =⇒
2(2rad3(c)rad3(a) − rad3(c) − rad3(a)) = −1 ⇒ a contradiction

4rad3(c)rad3(a) − 1 = 2(rad3(c) − rad3(a))

Then the contradiction.

I-3-2-3-4- Let c1 be the first factor of rad(c). We consider the case d = 4c1rad3(a)

and d′ = rad3(c)
c1

=⇒ d > d′. We rewrite the equation (264):

4c1rad3(a) + rad3(c)
c1

= 2(rad3(a) + rad3(c)) ⇒

2rad3(a)(2c1 − 1) = rad3(c)
c1

(2c1 − 1) ⇒ 2rad3(a) = rad2(c). rad(c)
c1

c1 = 2 or not, there is a contradiction with a, c coprime.

The other cases of the expressions of d and d′ not coprime so that N = d.d′ give
also contradictions.

Let Q(N) be the number of the solutions of (263), as N ≡ 0(mod4), then
Q(N) = [τ(N/4)/2]. From the study of the cases above, we obtain that Q(N) ≤ 1
is ≪ [(τ(N)/4)/2]. It follows the contradiction.

Then the cases µa ≤ rad2(a) and c > rad3.26(c) are impossible.

II- We suppose that rad1.63(c) < µc ≤ rad2(c) and µa > rad1.63(a):

II-1- Case rad(c) < rad(a) : As c ≤ rad3(c) = rad1.63(c).rad1.37(c) =⇒ c <

rad1.63(c).rad1.37(a) < rad1.63(ac) < rad1.63(abc) =⇒ c < R1.63 .

II-2- Case rad(a) < rad(c) < rad
1.63
1.37 (a):
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As c ≤ rad3(c) ≤ rad1.63(c).rad1.37(c) =⇒ c < rad1.63(c).rad1.63(a) < rad1.63(abc) =⇒
c < R1.63 .

II-3- Case rad
1.63
1.37 (a) < rad(c):

II-3-1- We suppose rad1.63(a) < µa ≤ rad2.26(a) =⇒ a ≤ rad1.63(a).rad1.63(a)
=⇒ a < rad1.63(a).rad1.37(c) =⇒ c = a + b < 2a < 2rad1.63(a).rad1.63(c) <

rad1.63(abc) =⇒ c < R1.63 =⇒ c < R1.63 .

II-3-2- We suppose µa > rad2.26(a) =⇒ a > rad3.26(a) and µc ≤ rad2(c). Using
the same method as it was explicated in the paragraphs I-3-2- (permuting a, c

see in Appendix II’-3-2-), we arrive at a contradiction. It follows that the cases
µc ≤ rad2(c) and µa > rad2.26(a) are impossible.

3.2.2.3. Case µa > rad1.63(a) and µc > rad1.63(c):

Taking into account the cases studied above, it remains to see the following two
cases:

- µc > rad2(c) and µa > rad1.63(a),
- µa > rad2(a) and µc > rad1.63(c).

III- We suppose µc > rad2(c) and µa > rad1.63(a) =⇒ c > rad3(c) and
a > rad2.63(a). We can write c = rad3(c) + h and a = rad3(a) + l with h a
positive integer and l ∈ Z.

III-1- We suppose rad(c) < rad(a). We obtain the equation:

(266) rad3(a) − rad3(c) = h − l − b = m > 0

Let X = rad(a)−rad(c), from the above equation, X is a real root of the polynomial:

(267) H(X) = X3 + 3rad(ac)X − m = 0

As above, to resolve (267), we denote X = u + v, It follows that u3, v3 are the roots
of the polynomial G(t) given by :

(268) G(t) = t2 − mt − rad3(ac) = 0

The discriminant of G(t) is:

(269) ∆ = m2 + 4rad3(ac) = α2, α > 0

As m = rad3(a) − rad3(c) > 0, we obtain that α = rad3(a) + rad3(c) > 0, then from
the equation (269), it follows that (α = x, m = y) is a solution of the Diophantine
equation:

(270) x2 − y2 = N
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with N = 4rad3(ac) > 0. Let Q(N) be the number of the solutions of (270) and
τ(N) is the number of suitable factorization of N , and using the same method as in
the paragraph I-3-2-3- above, we obtain a contradiction.

III-2- We suppose rad(a) < rad(c). We obtain the equation:

(271) rad3(c) − rad3(a) = b + l − h = m > 0

Let X be the variable X = rad(c) − rad(a), we use the similar calculations as in
the paragraph above I-3-2-3- permuting c, a, we find a contradiction.

It follows that the case µc > rad2(c) and µa > rad1.63(a) is impossible.

IV - We suppose µa > rad2(a) and µc > rad1.63(c), we obtain a > rad3(a) and
c > rad2.63(c). We can write a = rad3(a) + h and c = rad3(c) + l with h a positive
integer and l ∈ Z.

The calculations are similar to those in the cases of the paragraph III. We obtain
a contradiction.

It follows that the case µc > rad1.63(c) and µa > rad2(a) is impossible.

All possible cases are discussed.

We can state the following important theorem:

Theorem 17. — Let a, b, c positive integers relatively prime with c = a + b,
then c < rad1.63(abc).

From the theorem above, we can announce also:

Corollary 18. — Let a, b, c positive integers relatively prime with c = a + b,
then the conjecture c < rad2(abc) is true.

Acknowledgments. The author is very grateful to Professors Mihăilescu
Preda and Gérald Tenenbaum for their comments about errors found in previous
manuscripts concerning proposed proofs of the abc conjecture.

Appendix

II’-3-2- We suppose µa > rad2.26(a) =⇒ a > rad3.26(a).
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II’-3-2-1- We consider the case µc = rad2(c) =⇒ c = rad3(c) and c = a + 1. Then,
we obtain that Y = rad(c) is a solution in positive integers of the equation:

(272) Y 3 − 1 = a

II’-3-2-1-1- We suppose that a = radn(a) with n ≥ 4, we obtain the equation:

(273) rad3(c) − radn(a) = 1

But the solutions of the Catalan equation [5] xp−yq = 1 where the unknowns x, y, p

and q take integer values, all ≥ 2, has only one solution (x, y, p, q) = (3, 2, 2, 3), but
the solution of the equation (273) are (rad(c) = 3, rad(a) = 2, 3 ̸= 2, n ≥ 4), it
follows the contradiction with n ≥ 4 and the case a = radn(a), n ≥ 4 is to reject.

II’-3-2-1-2- In the following, we will study the cases µa = A.radn(a) with rad(a) ∤
A, n ≥ 0. The above equation (272) can be written as :

(274) (Y − 1)(Y 2 + Y + 1) = a

Let δ one divisor of a so that :

Y − 1 = δ(275)

Y 2 + Y + 1 = a

δ
= m = δ2 + 3Y(276)

We recall that rad(c) > rad
1.63
1.37 (a).

II’-3-2-1-2-1- We suppose δ = l.rad(a). We have δ = l.rad(a) < a = µa.rad(a) =⇒

l < µa. As δ is a divisor of a, then l is a divisor of µa,
a

δ
= µarad(a)

l.rad(a) = µa
l

= m =

δ2 + 3Y , then µa = l.m. From µa = l(δ2 + 3Y ), we obtain:

m = l2rad2(a) + 3rad(c) =⇒ 3rad(c) = m − l2rad2(a)

A’- Case 3|m =⇒ m = 3m′, m′ > 1: As µa = ml = 3m′l =⇒ 3|rad(a) and
(rad(a), m′) not coprime. We obtain:

rad(c) = m′ − l2rad(a). rad(a)
3

It follows that a, c are not coprime, then the contradiction.

B’ - Case m = 3 =⇒ µa = 3l =⇒ a = 3lrad(a) = 3δ = δ(δ2 + 3Y ) =⇒ δ2 =
3(1 − Y ) = −3δ < 0, then the contradiction.

II’-3-2-1-2-2- We suppose δ = l.rad2(a), l ≥ 2. If n = 0 then µa = A and from
the equation above (276):

m = a

δ
= µa.rad(a)

lrad2(a) = A.rad(a)
lrad2(a) = A

lrad(a) ⇒ rad(a)|A
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It follows the contradiction with the hypothesis above rad(a) ∤ A.

II’-3-2-1-2-3- We suppose δ = lrad2(a), l ≥ 2 and in the following n > 0.

As m = a

δ
= µa.rad(a)

lrad2(a) = µa
lrad(a) , if lrad(a) ∤ µa then the case is to reject.

We suppose lrad(a)|µa =⇒ µa = m.lrad(a), with m, rad(a) not coprime, then
a

δ
= m = δ2 + 3rad(c).

C’ - Case m = 1 = a/δ =⇒ δ2 + 3rad(c) = 1, then the contradiction.

D’ - Case m = 3, we obtain 3(1 − rad(c)) = δ2 =⇒ δ2 < 0. Then the contradiction.

E’ - Case m ̸= 1, 3, we obtain: 3rad(c) = m − l2rad4(a) =⇒ rad(a) and rad(c) are
not coprime. Then the contradiction.

II’-3-2-1-2-4- We suppose δ = l.radn(a), l ≥ 2 with n ≥ 3. From a = µa.rad(a) =
lradn(a)(δ2 + 3rad(c)), we denote m = δ2 + 3rad(c) = δ2 + 3Y .

F’ - As seen above (paragraphs C’,D’), the cases m = 1 and m = 3 give contradic-
tions, it follows the reject of these cases.

G’ - Case m ̸= 1, 3. Let q be a prime that divides m (q can be equal to m), it
follows q|µa =⇒ q = aj′

0
=⇒ aj′

0
|δ2 =⇒ aj′

0
|3rad(c). Then rad(a) and rad(c) are not

coprime. It follows the contradiction.

II’-3-2-1-2-5- We suppose δ =
∏
j∈J1 a

βj

j , βj ≥ 1 with at least one j0 ∈ J1 with:

(277) βj0 ≥ 2, rad(a) ∤ δ

We can write:

(278) δ = µδ.rad(δ), rad(a) = r.rad(δ), r > 1, (r, rad(δ)) = 1 ⇒ (r, µδ) = 1

Then, we obtain:

a = µa.rad(a) = µa.r.rad(δ) = δ(δ2 + 3Y ) = µδ.rad(δ)(δ2 + 3Y ) =⇒
r.µa = µδ(δ2 + 3Y )(279)

- We suppose µa = µδ =⇒ r = δ2 + 3Y = (µa.rad(δ))2 + 3Y . As δ < δ2 + 3Y =⇒
r > δ =⇒ rad(a) > r > (µa.rad(δ) = A.radn(a)rad(δ)) =⇒ 1 > A.radn−1(δ), then
the contradiction.

- We suppose µa < µδ. As rad(c) = µδrad(δ) + 1, we obtain:

rad(c) > µa.rad(δ) + 1 > 0 =⇒ rad(ac) > a.rad(δ) + rad(a) > 0
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As c = 1 + a and we consider the cases c > rad(ac), then:

c > rad(ac) > a.rad(δ) + rad(a) > 0 =⇒ a + 1 ≥ a.rad(δ) + rad(a) > 0 =⇒

a ≥ a.rad(δ) + rad(δ) =⇒ 1 ≥ rad(δ) + rad(a)
a

> 0, rad(δ) ≥ 2 =⇒ The contradiction

- We suppose µa > µδ. In this case, from the equation (239) and as (r, µδ) = 1, it
follows we can write:

µa = µ1.µ2, µ1, µ2 > 1(280)
a = µarad(a) = µ1.µ2.r.rad(δ) = δ.(δ2 + 3Y )(281)

so that r.µ1 = δ2 + 3Y, µ2 = µδ =⇒ δ = µ2.rad(δ)(282)

** 1- We suppose (µ1, µ2) ̸= 1, then ∃ aj0 so that aj0 |µ1 and aj0 |µ2. But µδ = µ2 ⇒
a2
j0 |δ. From 3Y = rµ1 − δ2 =⇒ aj0 |3Y =⇒ aj0 |Y or aj0 = 3.

- If aj0 |(Y = rad(c)), it follows the contradiction with (c, a) = 1.
- If aj0 = 3. We have rµ1 = δ2 + 3Y = δ2 + 3(δ + 1) =⇒ δ2 + 3δ + 3 − r.µ1 = 0.

As 3|µ1 =⇒ µ1 = 3kµ′
1, 3 ∤ µ′

1, k ≥ 1, we obtain:

(283) δ2 + 3δ + 3(1 − 3k−1rµ′
1) = 0

** 1-1- We consider the case k > 1 =⇒ 3 ∤ (1−3k−1rµ′
1). Let us recall the Eisenstein

criterion [6]:

Theorem 19. — (Eisenstein Criterion) Let f = a0 + · · · + anXn be a
polynomial ∈ Z[X]. We suppose that ∃ p a prime number so that p ∤ an,
p|ai, (0 ≤ i ≤ n − 1), and p2 ∤ a0, then f is irreducible in Q.

We apply Eisenstein criterion to the polynomial R(Z) given by:

(284) R(Z) = Z2 + 3Z + 3(1 − 3k−1rµ′
1)

then:
- 3 ∤ 1, - 3|(+3),- 3|3(1 − 3k−1rµ′

1), and - 32 ∤ 3(1 − 3k−1rµ′
1).

It follows that the polynomial R(Z) is irreducible in Q, then, the contradiction with
R(δ) = 0.

** 1-2- We consider the case k = 1, then µ1 = 3µ′
1 and (µ′

1, 3) = 1, we obtain:

(285) δ2 + 3δ + 3(1 − rµ′
1) = 0

** 1-2-1- We consider that 3 ∤ (1 − r.µ′
1), we apply the same Eisenstein criterion to

the polynomial R′(Z) given by:

R′(Z) = Z2 + 3Z + 3(1 − rµ′
1)

and we find a contradiction with R′(δ) = 0.
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** 1-2-2- We consider that:

(286) 3|(1 − r.µ′
1) =⇒ rµ′

1 − 1 = 3i.h, i ≥ 1, 3 ∤ h, h ∈ N∗

δ is an integer root of the polynomial R′(Z):

(287) R′(Z) = Z2 + 3Z + 3(1 − rµ′
1) = 0

The discriminant of R′(Z) is:

∆ = 32 + 3i+1 × 4.h

As the root δ is an integer, it follows that ∆ = t2 > 0 with t a positive integer. We
obtain:

∆ = 32(1 + 3i−1 × 4h) = t2(288)
=⇒ 1 + 3i−1 × 4h = q2 > 1, q ∈ N∗(289)

As µδ = µ2 and 3|µ2 =⇒ µ2 = 3µ′
2, then we can write the equation (285) as :

δ(δ + 3) = 3i+1.h =⇒ 33µ′
2
rad(δ)

3 .
(
µ′

2rad(δ) + 1
)

= 3i+1.h =⇒(290)

µ′
2
rad(δ)

3 .
(
µ′

2rad(δ) + 1
)

= h(291)

We obtain i = 2 and q2 = 1 + 12h = 1 + 4µ′
2rad(δ)(µ′

2rad(δ) + 1). Then, q satisfies :

q2 − 1 = 12h = 4µ′
2rad(δ)(µ′

2rad(δ) + 1) =⇒(292)
(q−1)

2 . (q+1)
2 = 3h = µ′

2rad(δ)(µ′
2rad(δ) + 1). ⇒(293)

q + 1 = 2µ′
2rad(δ) + 2(294)

q − 1 = 2µ′
2rad(δ)(295)

It follows that (q = x, 1 = y) is a solution of the Diophantine equation:

(296) x2 − y2 = N

with N = 4µ′
2rad(δ)(µ′

2rad(δ) + 1) = 12h > 0. Let Q(N) be the number of the
solutions of (296) and τ(N) is the number of suitable factorization of N , then we
announce the following result concerning the solutions of the Diophantine equation
(296) (see theorem 27.3 in [7]):

- If N ≡ 2(mod 4), then Q(N) = 0.
- If N ≡ 1 or N ≡ 3(mod 4), then Q(N) = [τ(N)/2].
- If N ≡ 0(mod 4), then Q(N) = [τ(N/4)/2].
[x] is the integral part of x for which [x] ≤ x < [x] + 1.

As N = 4µ′
2rad(δ)(µ′

2rad(δ) + 1) =⇒ N ≡ 0(mod 4) =⇒ Q(N) = [τ(N/4)/2]. As
(q, 1) is a couple of solutions of the Diophantine equation (296), then ∃ d, d′ positive
integers with d > d′ and N = d.d′ so that :

d + d′ = 2q(297)
d − d′ = 2.1 = 2(298)
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** 1-2-2-1 As N > 1, we take d = N and d′ = 1. It follows:{
N + 1 = 2q

N − 1 = 2 =⇒ N = 3 =⇒ then the contradiction with N ≡ 0(mod 4).

** 1-2-2-2 Now, we consider the case d = 2µ′
2rad(δ)(µ′

2rad(δ) + 1) and d′ = 2. It
follows:{

2µ′
2rad(δ)(µ′

2rad(δ) + 1) + 2 = 2q

2µ′
2rad(δ)(µ′

2rad(δ) + 1) − 2 = 2 ⇒ µ′
2rad(δ)(µ′

2rad(δ) + 1) = q − 1

As q − 1 = 2µ′
2rad(δ), we obtain µ′

2rad(δ) = 1, then the contradiction.

** 1-2-2-3 Now, we consider the case d = µ′
2rad(δ)(µ′

2rad(δ) + 1) and d′ = 4. It
follows: {

µ′
2rad(δ)(µ′

2rad(δ) + 1) + 4 = 2q

µ′
2rad(δ)(µ′

2rad(δ) + 1) − 4 = 2 ⇒ µ′
2rad(δ)(µ′

2rad(δ) + 1) = 6

As µ′
2rad(δ) ≥ 2 =⇒ µ′

2rad(δ) = 2 =⇒ µ′
2 = 1 ⇒ µ2 = 3 = µδ and rad(δ) = 2 but

3 ∤ 2, then the contradiction.

** 1-2-2-4 Now, let aj0 be a prime integer so that aj0 |radδ, we consider the case

d = µ′
2
rad(δ)

aj0
(µ′

2rad(δ) + 1) and d′ = 4aj0 . It follows:


µ′

2
rad(δ)

aj0
(µ′

2rad(δ) + 1) + 4aj0 = 2q

µ′
2
rad(δ)

aj0
(µ′

2rad(δ) + 1) − 4aj0 = 2
=⇒ µ′

2
rad(δ)

aj0
(µ′

2rad(δ) + 1) = 2(1 + 2aj0) =⇒

Then the contradiction as the left member is greater than the right member 2(1 + 2aj0).

** 1-2-2-5 Now, we consider the case d = 4µ′
2rad(δ) and d′ = (µ′

2rad(δ) + 1). It
follows:{

4µ′
2rad(δ) + (µ′

2rad(δ) + 1) = 2q

4µ′
2rad(δ) − (µ′

2rad(δ) + 1) = 2 =⇒ 3µ′
2rad(δ) = 3 =⇒ Then the contradiction.

** 1-2-2-6 Now, we consider the case d = 2(µ′
2rad(δ) + 1) and d = 2µ′

2rad(δ). It
follows: {

2(µ′
2rad(δ) + 1) + 2µ′

2rad(δ) = 2q =⇒ 2µ′
2rad(δ) + 1 = q

2(µ′
2rad(δ) + 1) − 2µ′

2rad(δ) = 2 =⇒ 2 = 2

It follows that this case presents no contradictions a prior.
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** 1-2-2-7 µ′
2rad(δ) and µ′

2rad(δ) + 1 are coprime, let µ′
2rad(δ) + 1 =

j=J∏
j=1

λ
γj

j , we

consider the case d = 2λj′µ′
2rad(δ) and d′ = 2µ′

2rad(δ) + 1
λj′

. It follows:
2λj′µ′

2rad(δ) + 2µ′
2rad(δ) + 1

λj′
= 2q

2λj′µ′
2rad(δ) − 2µ′

2rad(δ) + 1
λj′

= 2

** 1-2-2-7-1 We suppose that γj′ = 1. We consider the case d = 2λj′µ′
2rad(δ) and

d′ = 2µ′
2rad(δ) + 1

λj′
. It follows:

2λj′µ′
1rad(δ) + 2µ′

1rad(δ) − 1
λj′

= 2q

2λj′µ′
1rad(δ) − 2µ′

1rad(δ) − 1
λj′

= 2

=⇒ 4λj′µ′
1rad(δ) = 2(q+1) =⇒ 2λj′µ′

1rad(δ) = q+1

But from the equation (253), q + 1 = 2µ′
1rad(δ), then λj′ = 1, it follows the

contradiction.

** 1-2-2-7-2 We suppose that γj′ ≥ 2. We consider the case d = 2λ
γj′ −r′

j′
j′ µ′

2rad(δ)

and d′ = 2µ′
2rad(δ) + 1

λ
r′

j′
j′

. It follows:



2λ
γj′ −r′

j′
j′ µ′

2rad(δ) + 2µ′
2rad(δ) + 1

λ
r′

j′
j′

= 2q

2λ
γj′ −r′

j′
j′ µ′

2rad(δ) − 2µ′
2rad(δ) + 1

λ
r′

j′
j′

= 2

=⇒ 4λ
γj′ −r′

j′
j′ µ′

2rad(δ) = 2(q + 1)

=⇒ 2λ
γj′ −r′

j′
j′ µ′

2rad(δ) = q + 1

As above, it follows the contradiction. It is trivial that the other cases for more
factors

∏
j”

λ
γj”−r”j”
j” give also contradictions.

** 1-2-2-8 Now, we consider the case d = 4(µ′
2rad(δ) + 1) and d′ = µ′

2rad(δ), we
have d > d′. It follows:{

4(µ′
2rad(δ) + 1) + µ′

2rad(δ) = 2q ⇒ 5µ′
2rad(δ) = 2(q + 2)

4(µ′
2rad(δ) + 1) − µ′

2rad(δ) = 2 ⇒ µ′
2rad(δ) = 2 ⇒

{
Then the contradiction as
3|δ.
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** 1-2-2-9 Now, we consider the case d = 4u(µ′
2rad(δ) + 1) and d′ = µ′

2rad(δ)
u

,
where u > 1 is an integer divisor of µ′

2rad(δ). We have d > d′ and:
4u(µ′

2rad(δ) + 1) + µ′
2rad(δ)

u
= 2q

4u(µ′
2rad(δ) + 1) − µ′

2rad(δ)
u

= 2

=⇒ 2u(µ′
2rad(δ)+1) = µ′

2rad(δ)+1 ⇒ 2u = 1

Then the contradiction.

In conclusion, we have found only one case (** 1-2-2-6 above) where there is
no contradictions a prior. As τ(N) is large and also [τ(N/4)/2], it follows the
contradiction with Q(N) ≤ 1 and the hypothesis (µ1, µ2) ̸= 1 is false.

** 2- We suppose that (µ1, µ2) = 1.

We recall that rad(c) = Y > rad1.63/1.37(a), δ+1 = Y , rad(a) = r.rad(δ), (r, rad(δ)) =
1, δ = µ2rad(δ) and rµ1 = δ2 + 3X, it follows:

(299) U(δ) = δ2 + 3δ + 3 − rµ1 = 0

** 2-1- We suppose 3|(3 − rµ1) and 32 ∤ (3 − rµ1), then we use the Eisenstein cri-
terion [6] to the polynomial U(δ) given by the equation (299), and the contradiction.

** 2-2- We suppose 3|(3 − rµ1) and 32|(3 − rµ1). From 3|(3 − rµ1) =⇒ 3|rµ1 =⇒
3|r or 3|µ1.

- If 3|r =⇒ (3, radδ) = 1 =⇒ 3 ∤ δ. Then the contradiction with 3|δ2 by the
equation (299).

- If 3|µ1 =⇒ 3 ∤ µ2 =⇒ 3 ∤ δ, it follows the contradiction with 3|δ2 by the equation
(299).

** 2-3- We suppose 3 ∤ (3 − rµ1) =⇒ 3 ∤ rµ1 =⇒ 3 ∤ r and 3 ∤ µ1. From
the equation (299), U(δ) = 0 =⇒ rµ1 ≡ δ2(mod3), as δ2 is a square then
δ2 ≡ 1(mod3) =⇒ rµ1 ≡ 1(mod3), but this result is not all verified. Then the
contradiction.

It follows that the case µa > rad2.26(a) ⇒ a > rad3.26(a) and c = rad3(c) is
impossible.

II’-3-2-2- We consider the case µc = rad2(c) =⇒ c = rad3(c) and c = a + b. Then,
we obtain that Y = rad(c) is a solution in positive integers of the equation:

(300) Y 3 + 1 = c̄
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with c̄ = a + b + 1 = c + 1 =⇒ (c̄, c) = 1. We obtain the same result as of the case
I-3-2-1- studied above considering rad(c̄) > rad

1.63
1.37 (c).

II’-3-2-3- We suppose µa > rad2.26(a) ⇒ a > rad3.26(a) and c large and µc <

rad2(c), we consider c = a + b, b ≥ 1. Then a = rad3(a) + h, h > 0, h a positive
integer and we can write c+ l = rad3(c), l > 0. As rad(c) > rad

1.63
1.37 (a) =⇒ rad(c) >

rad(a) =⇒ h + l + b = m > 0, it follows:
(301) rad3(c) − l = rad3(a) + h + b > 0 =⇒ rad3(c) − rad3(a) = h + l + b = m > 0
We obtain the same result (a contradiction) as of the case I-3-2-3- studied above
considering rad(c) > rad

1.63
1.37 (a). Then, this case is to reject.

Then the cases µc ≤ rad2(c) and a > rad3.26(a) are impossible.
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CHAPTER 4

THE EXPLICIT abc CONJECTURE OF ALAN
BARKER IS TRUE

Abstract. — In this paper, assuming that the conjecture c < rad1.63(abc) is true,
we give the proof that the explicit abc conjecture of Alan Baker (2004) is true. Some
numerical examples are given.

The paper is under reviewing.

To the memory of my Father who taught me arithmetic
To my wife Wahida, my daughter Sinda and my son Mohamed

Mazen
To Prof. A. Nitaj for his work on the abc conjecture

4.1. Introduction and notations

Let a be a positive integer, a =
∏
i a
αi
i , ai prime integers and αi ≥ 1 positive integers.

We call radical of a the integer
∏
i ai noted by rad(a). Then a is written as:

(302) a =
∏
i

aαi
i = rad(a).

∏
i

aαi−1
i

We denote:

(303) µa =
∏
i

aαi−1
i =⇒ a = µa.rad(a)

The abc conjecture was proposed independently in 1985 by David Masser of the
University of Basel and Joseph Œsterlé of Pierre et Marie Curie University (Paris
6) [1]. It describes the distribution of the prime factors of two integers with those
of its sum. The definition of the abc conjecture is given below:

Conjecture 20. — (abc Conjecture): For each ϵ > 0, there exists K(ϵ)
such that if a, b, c positive integers relatively prime with c = a + b, then :
(304) c < K(ϵ).rad1+ϵ(abc)
where K is a constant depending only of ϵ.
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We know that numerically, Logc

Log(rad(abc)) ≤ 1.629912 [2]. It concerned the best

example given by E. Reyssat [2]:

(305) 2 + 310.109 = 235 =⇒ c < rad1.629912(abc)

A conjecture was proposed that c < rad2(abc) [3]. In 2004, Alan Baker [1], [4]
proposed the explicit version of the abc conjecture namely:

Conjecture 21. — Let a, b, c be positive integers relatively prime with c =
a + b, then:

(306) c <
6
5R

(LogR)ω

ω!
with R = rad(abc) and ω = ω(abc) the number of distinct prime factors of
abc.

In the following, we assume that the conjecture c < rad1.63(abc) is true, I give an
elementary proof of Alan Baker’s conjecture cited above. For our proof, we proceed
by contradiction of the abc conjecture. We give also some numerical examples.

4.2. The Proof of the explicit abc conjecture

Proof. — : We proceed by contradiction. It exists at least one triplet (a, b, c) of
positive integers relatively prime with c = a + b and :
(307)

c ≥ 6
5R

(LogR)ω

ω! =⇒ Logc ≥ Log1.2 + 1.63LogR − 0.63LogR + Log

[(LogR)ω

ω!

]
we assume that the conjecture c < rad1.63(abc) true, we can write :

(308) 0 > −Log
R1.63

c
≥ Log1.2 − 0.63LogR + Log

[(LogR)ω

ω!

]
We write LogR as:

LogR = LogR0.63
(

1 + 0.37
0.63

)
The equation (308) becomes:

0 > −Log
R1.63

c
≥ Log1.2 − 0.63LogR + ωLog

(
1 + 0.37

0.63

)
+ Log

[
(Log(R0.63))ω

ω!

]
> Log1.2

−0.63LogR + Log(1 + 0.5873ω) + Log

[
(Log(R0.63))ω

ω!

]
=⇒

0 > −Log
R1.63

c
> −0.63LogR + Log(1.2 + 0.70476ω) + Log

[
(Log(R0.63))ω

ω!

]
(309)
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Let A = (Log(R0.63))ω

ω! , we obtain:

R0.63 = eLogR
0.63 = 1 + Log(R0.63) + (Log(R0.63))2

2! + · · · + A +
+∞∑

k=ω+1

(Log(R0.63))k

k! =⇒

A = R0.63 − 1 −
+∞∑

k=1, ̸=ω

(Log(R0.63))k

k! =⇒

A = R0.63

1 − 1
R0.63

1 +
+∞∑

k=1, ̸=ω

(Log(R0.63))k

k!

 = R0.63(1 − B) > 0, 0 < B < 1

The equation (309) becomes:

(310) 0 > −Log
R1.63

c
> Log(0.70476ω + 1.2 − 0.70476Bω − 1.2B)

Let us consider the smallest case 9 = 8 + 1 =⇒ w = 2, R = 2 × 3 = 6 < 9 = c. The
conjecture is verified c = 9 < 11.56, we obtain B = 0.54 ≪ 2 = w with R = 6 and
0.70476ω + 1.2 − 0.70476Bω − 1.2B = 1.2 > 1. If R is large, then ω can be large
and B will be small, then B ≪ ω, it follows that the term :

0.70476ω + 1.2 − 0.70476Bω − 1.2B > 1 =⇒ 0 > −Log
R1.63

c
> 0

Then it is the contradiction and we obtain:

c <
6
5R

(LogR)ω

ω!
The proof of the explicit abc conjecture of Alan Baker is finished.

Q.E.D

We give below some numerical examples.

4.3. Examples

4.3.1. Example 1. of Eric Reyssat

We give here the example of Eric Reyssat [1], it is given by:

(311) 310 × 109 + 2 = 235 = 6436343

a = 310.109 ⇒ µa = 39 = 19683 and rad(a) = 3 × 109,
b = 2 ⇒ µb = 1 and rad(b) = 2,
c = 235 = 6436343 ⇒ rad(c) = 23. Then rad(abc) = 2 × 3 × 109 × 23 = 15042.

ω = 4 =⇒ 6
5R

(LogR)ω

ω! = 6 437 590.238 > 6 436 343, B = 0.86 < w = 4.
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4.3.2. Example 2. of Nitaj

See [5]:
a = 1116.132.79 = 613 474 843 408 551 921 511 ⇒ rad(a) = 11.13.79

b = 72.412.3113 = 2 477 678 547 239 ⇒ rad(b) = 7.41.311
c = 2.33.523.953 = 613 474 845 886 230 468 750 ⇒ rad(c) = 2.3.5.953

rad(abc) = 2.3.5.7.11.13.41.79.311.953 = 28 828 335 646 110

ω = 10 =⇒ 6
5R

(LogR)ω

ω! = 7 794 478 289 809 729 132 015, 590 > 613 474 845 886 230 468 750, B =
0.9927 ≪ (w = 10).

4.3.3. Example 3.

The example is of Ralf Bonse, see [2] :
25434.182587.2802983.85813163 + 215.377.11.173 = 556.245983

a = 25434.182587.2802983.85813163
b = 215.377.11.173

c = 556.245983
rad(abc) = 2.3.5.11.173.2543.182587.245983.2802983.85813163

rad(abc) = 1.5683959920004546031461002610848e + 33

ω = 10 =⇒ 6
5R

(LogR)ω

ω! = 4.6712291777572705786110845974696e + 358 >

c = 3.4136998783296235160378273576498e + 44, B ≈ 1 ≪ (w = 10).

4.4. Conclusion

Assuming c < R1.63 is true, we have given an elementary proof of the explicit abc

conjecture. We can announce the important theorem:

Theorem 22. — Assuming c < R1.63 is true, the explicit abc conjecture of
Alan Baker is true:
Let a, b, c positive integers relatively prime with c = a + b, then:

(312) c <
6
5R

(LogR)ω

ω!
where ω is the number of distinct prime factors of abc.

Acknowledgments: The author is very grateful to Professors Mihăilescu Preda and
Gérald Tenenbaum for their comments about errors found in previous manuscripts
concerning proofs proposed of the abc conjecture.
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CHAPTER 5

A NEW APPROACH FOR THE PROOF OF THE
abc CONJECTURE

Abstract. — In this paper, we assume that the explicit abc conjecture of Alan
Baker and the conjecture c < R1.63 are true, we give a proof of the abc conjecture
and we propose the constant K(ϵ). Some numerical examples are given.

The paper is under reviewing.

To the Memory of my Mother

5.1. Introduction and notations

Let a be a positive integer, a =
∏
i a
αi
i , ai prime integers and αi ≥ 1 positive integers.

We call radical of a the integer
∏
i ai noted by rad(a). Then a is written as:

(313) a =
∏
i

aαi
i = rad(a).

∏
i

aαi−1
i

We denote:

(314) µa =
∏
i

aαi−1
i =⇒ a = µa.rad(a)

The abc conjecture was proposed independently in 1985 by David Masser of the
University of Basel and Joseph Œsterlé of Pierre et Marie Curie University (Paris
6) [1]. It describes the distribution of the prime factors of two integers with those
of its sum. The definition of the abc conjecture is given below:

Conjecture 23. — (abc Conjecture): For each ϵ > 0, there exists K(ϵ)
such that if a, b, c positive integers relatively prime with c = a + b, then :
(315) c < K(ϵ).rad1+ϵ(abc)
where K is a constant depending only of ϵ.



114 CHAPTER 5. A NEW APPROACH FOR THE PROOF OF THE abc CONJECTURE

We know that numerically, Logc

Log(rad(abc)) ≤ 1.629912 [2]. It concerned the best

example given by E. Reyssat [2]:

(316) 2 + 310.109 = 235 =⇒ c < rad1.629912(abc)

A conjecture was proposed that c < rad2(abc) [3]. In 2012, A. Nitaj [4] proposed
the following conjecture:

Conjecture 24. — Let a, b, c be positive integers relatively prime with c =
a + b, then:

c < rad1.63(abc)(317)
abc < rad4.42(abc)(318)

In the following, we assume that the conjecture c < rad1.63(abc) is true. In 2004,
Alan Baker [1], [5] proposed the explicit version of the abc conjecture namely:

Conjecture 25. — Let a, b, c be positive integers relatively prime with c =
a + b, then:

(319) c <
6
5R

(LogR)ω

ω!
with R = rad(abc) and ω denote the number of distinct prime factors of abc.

A proof of the conjecture (25) written by the author is under review [6]. In the
following, we assume also that the above conjecture is true, I will give an elementary
proof of the abc conjecture by verifying the below inequality:

(320) c <
6
5R

(LogR)ω

ω! < ... < K(ϵ)R1+ϵ

with an adequate choice of the constant K(ϵ). Let we denote α = 6
5R

(LogR)ω

ω! ,
we have remarked from some numerical examples (see below) that c ≪ α − c when
ω = 10 and R not very large. With our choice, c will be very very small comparing
to K(ϵ)R1+ϵ.
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5.2. The Proof of the abc conjecture

Proof. — : Let A = (Log(Rϵ))ω

ω! , and ϵ ∈]0, 0.63[, we obtain:

Rϵ = eLogR
ϵ = 1 + Log(Rϵ) + (Log(Rϵ))2

2! + · · · + A +
+∞∑

k=ω+1

(Log(Rϵ))k

k! =⇒

A = Rϵ − 1 −
+∞∑

k=1,̸=ω

(Log(Rϵ))k

k! =⇒

A = Rϵ

1 − 1
Rϵ

1 +
+∞∑

k=1, ̸=ω

(Log(Rϵ))k

k!

 = Rϵ(1 − B) > 0, 0 < B < 1 =⇒

A = (Log(Rϵ))ω

ω! = Rϵ(1 − B) > 0(321)

We begin from the Baker’s formula below :

c <
6
5R

(LogR)ω

ω! = 6
5R.

1
ϵω

(ϵLogR)ω

ω! = 6
5

R

ϵω
(Log(Rϵ))ω

ω!

Using the term (Log(Rϵ))ω

ω! from (321), the equation above becomes :
(322)

c <
6
5

R

ϵω
Rϵ(1−B)

?︷︸︸︷
< 1.2ee

(
1

ϵ4
)
R1+ϵ =⇒ our choice of the constant K(ϵ) = 1.2ee

(
1

ϵ4
)

We recall the following proposition [4]:

Proposition 26. — Let ϵ −→ K(ϵ) the application verifying the abc conjec-
ture, then:
(323) limϵ→0K(ϵ) = +∞

The chosen constant K(ϵ) verifies the proposition above. Now, is the following
inequality true? :

(324) 6
5

1
ϵω

(1 − B)
?︷︸︸︷
< 1.2ee

( 1
ϵ4

)

Supposing that :

6
5

1
ϵω

(1 − B) >
6
5ee

( 1
ϵ4

)
. =⇒ 1 > (1 − B) > ϵω.ee

( 1
ϵ4

)

As ω ≥ 4 =⇒ ω = 4ω′ + r, 0 ≤ r < 4, ω′ ≥ 1, we write ϵω.ee
(1/ϵ)4

as:

ϵω.ee
(1/ϵ)4

= ee
(1/ϵ)4

(1/(ϵ4))ω′ .ϵr = ee
X

Xω′ .ϵr
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where X = 1
ϵ4 and 1 ≪ X. Or we know that Xω′ ≪ eX =⇒ Xω′ ≪ ee

X .
- If ϵ ∈ [0.1, 0.63[, we obtain ϵr > 0.001 and eX > 8.8e + 4342, it follows that

ϵω.ee
(

1
ϵ4
)

> 1 and we obtain a contradiction and the inequality (324) is true.
- Now we consider 0 < ϵ < 0.1, when ϵ −→ 0+, K(ϵ) −→ +∞ and the inequality

(324) becomes +∞ ≤ +∞ and the abc conjecture is true.
- For ϵ very small ∈]0, 0.10[, ee

X becomes very large, then 8.8e + 4342 ≪ ee
X and

1 ≪ eeX

Xω′ .ϵr, it follows a contradiction, then the equation (324) is true.

Finally, the choice of the constant K(ϵ) = 1.2ee
( 1

ϵ )4

is acceptable for ϵ ∈]0, 0.63[.
As we assume that the conjecture c < R1+0.63 is true, we adopt K(ϵ) = 1.2 for
ϵ ≥ 0.63, and the abc conjecture is true for all ϵ > 0.

The proof of the abc conjecture is finished.

Q.E.D

We give below some numerical examples.

5.3. Examples

5.3.1. Example 1. of Eric Reyssat

We give here the example of Eric Reyssat [1], it is given by:

(325) 310 × 109 + 2 = 235 = 6436343

a = 310.109 ⇒ µa = 39 = 19683 and rad(a) = 3 × 109,
b = 2 ⇒ µb = 1 and rad(b) = 2,
c = 235 = 6436343 ⇒ rad(c) = 23. Then rad(abc) = 2 × 3 × 109 × 23 = 15042.

ω = 4 =⇒ α = 6
5R

(LogR)ω

ω! = 6 437 590.238 > 6 436 343 = c, B = 0.86 < w = 4;
α − c = 1 247.238.

ϵ = 0.5 =⇒ ϵω.ee
( 1

ϵ )4

= 9.446e + 109 > 1 =⇒ (1 − B) < 1.
ϵ = 0.01 =⇒ ϵω = ϵ4 = 10−8 ≪ e( 1

ϵ )4
then (1 − B) < 1.



5.4. CONCLUSION 117

5.3.2. Example 2. of Nitaj

See [4]:
a = 1116.132.79 = 613 474 843 408 551 921 511 ⇒ rad(a) = 11.13.79

b = 72.412.3113 = 2 477 678 547 239 ⇒ rad(b) = 7.41.311
c = 2.33.523.953 = 613 474 845 886 230 468 750 ⇒ rad(c) = 2.3.5.953

rad(abc) = 2.3.5.7.11.13.41.79.311.953 = 28 828 335 646 110

ω = 10 =⇒ α = 6
5R

(LogR)ω

ω! = 7 794 478 289 809 729 132 015.590 >

613 474 845 886 230 468 750 = c, B = 0.9927 ≪ (w = 10); α − c =
7 181 003 443 923 198 663 265.590 ≈ 11.71c

ϵ = 0.5 =⇒ ϵω = ϵ10 = 0.009765625 ≪ e1/(ϵ4) =⇒ (1 − B) < 1.
ϵ = 0.001 =⇒ ϵω = ϵ10 = 10−30, 1/(ϵ4) = 1012 =⇒ ϵ10.e1012

> 1 =⇒ (1 − B) < 1.

5.4. Conclusion

Assuming c < R1.63 is true, and the explicit abc conjecture of Alan Baker true, we
can announce the important theorem:

Theorem 27. — Assuming c < R1.63 is true and the explicit abc conjecture
of Alan Baker true, then the abc conjecture is true:
For each ϵ > 0, there exists K(ϵ) such that if a, b, c positive integers relatively
prime with c = a + b, then :
(326) c < K(ϵ).rad1+ϵ(abc)

where K is a constant depending only of ϵ. For ϵ ∈]0, 0.63[, K(ϵ) = 1.2ee
( 1

ϵ )4

and K(ϵ) = 1.2 if ϵ ≥ 0.63.
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CHAPTER 6

A NOVEL PROOF OF THE abc CONJECTURE: IT
IS EASY AS ABC!

Abstract. — In this paper, we consider the abc conjecture. Assuming that the
conjecture c < rad1.63(abc) is true, we give the proof that the abc conjecture is true.

The paper is under reviewing.

This paper is dedicated to the memory of my Father who taught me
arithmetic,

To my wife Wahida, my daughter Sinda and my son Mohamed
Mazen

6.1. Introduction and notations

Let a be a positive integer, a =
∏
i a
αi
i , ai prime integers and αi ≥ 1 positive integers.

We call radical of a the integer
∏
i ai noted by rad(a). Then a is written as:

(327) a =
∏
i

aαi
i = rad(a).

∏
i

aαi−1
i

We denote:

(328) µa =
∏
i

aαi−1
i =⇒ a = µa.rad(a)

The abc conjecture was proposed independently in 1985 by David Masser of the
University of Basel and Joseph Œsterlé of Pierre et Marie Curie University (Paris
6) [1]. It describes the distribution of the prime factors of two integers with those
of its sum. The definition of the abc conjecture is given below:

Conjecture 28. — (abc Conjecture): For each ϵ > 0, there exists K(ϵ)
such that if a, b, c positive integers relatively prime with c = a + b, then :
(329) c < K(ϵ).rad1+ϵ(abc)
where K is a constant depending only of ϵ.
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We know that numerically, Logc

Log(rad(abc)) ≤ 1.629912 [2]. It concerned the best

example given by E. Reyssat [2]:

(330) 2 + 310.109 = 235 =⇒ c < rad1.629912(abc)

A conjecture was proposed that c < rad2(abc) [3]. In 2012, A. Nitaj [4] proposed
the following conjecture:

Conjecture 29. — Let a, b, c be positive integers relatively prime with c =
a + b, then:

c < rad1.63(abc)(331)
abc < rad4.42(abc)(332)

In the following, we assume that the conjecture giving by the equation (347)
is true that constitutes the key to obtain the proof of the abc conjecture and we
consider the cases c > R because the abc conjecture is verified if c < R. For our
proof, we proceed by contradiction of the abc conjecture, for ϵ ∈]0., 0.63[.

6.2. The Proof of the abc conjecture

Proof. — :

6.2.1. Trivial Case ϵ ≥ (0.63 = ϵ0).

In this case, we choose K(ϵ) = e and let a, b, c be positive integers, relatively prime,
with c = a + b, 1 ≤ b < a, R = rad(abc), then c < R1+ϵ0 ≤ K(ϵ).R1+ϵ =⇒ c <

K(ϵ).R1+ϵ and the abc conjecture is true.

6.2.2. Case: 0 < ϵ < (0.63 = ϵ0).

We recall the following proposition [4]:

Proposition 30. — Let ϵ −→ K(ϵ) the application verifying the abc conjec-
ture, then:
(333) limϵ→0K(ϵ) = +∞

We suppose that the abc conjecture is false, then it exists ϵ′ ∈]0, ϵ0[ and for all
parameter K ′ = K ′(ϵ′) > 0 it exists at least one triplet (a′, b′, c′) so a′, b′, c′ be
positive integers relatively prime with c′ = a′ + b′ and c′ verifies :

(334) c′ > K ′(ϵ′).R′1+ϵ′
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From the proposition cited above, it follows that limϵ−→0K ′(ϵ) < +∞, we can
suppose that K ′(ϵ) is an increasing parameter for ϵ ∈]0, ϵ0[.

As the parameter K ′ is arbitrary, we choose K ′(ϵ) = eϵ
2 , it is an increasing param-

eter. Let :

(335) Yc′(ϵ) = ϵ2 + (1 + ϵ)LogR′ − Logc′, ϵ ∈]0, ϵ0[

About the function Yc′ , we have:

limϵ−→ϵ0Yc′(ϵ) = ϵ2
0 + Log(R′1+ϵ0/c′) = λ > 0, as c < R1+ϵ0

limϵ−→0Yc′(ϵ) = −Log(c′/R′) < 0, as R < c

The function Yc′(ϵ) represents a parabola and it is an increasing function for ϵ ∈
]0, ϵ0[, then the equation Yc′(ϵ) = 0 has one root that we denote ϵ′

1, it follows the
equation :

(336) eϵ
′2
1 R′ϵ′1 = c′

R′

Discussion about the equation (336) above:

We recall the following definition:

Definition 31. — The number ξ is called algebraic number if there is at
least one polynomial:
(337) l(x) = l0 + l1x + · · · + lmxm, lm ̸= 0
with integral coefficients such that l(ξ) = 0, and it is called transcendental if
no such polynomial exists.

We consider the equation (336) :

(338) c′ = K ′(ϵ′
1)R′1+ϵ′1 =⇒ c′

R′ = µ′
c′

rad(a′b′) = eϵ′2
1R′ϵ′1

i) - We suppose that ϵ′
1 = β1 is an algebraic number then β0 = ϵ′2

1 and α1 = R′ are
also algebraic numbers. We obtain:

(339) c′

R′ = µ′
c′

rad(a′b′) = eϵ′2
1R′ϵ′1 = eβ0 .αβ1

1

From the theorem (see theorem 3, page 196 in [5]):

Theorem 32. — eβ0αβ1
1 . . . αβn

n is transcendental for any nonzero algebraic
numbers α1, . . . , αn, β0, . . . , βn.
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we deduce that the right member eβ0 .αβ1
1 of (339) is transcendental, but the term

µ′
c′

rad(a′b′) is an algebraic number, then the contradiction and the hypothesis that

the abc conjecture is false on ϵ ∈]0, ϵ0[. It follows that the abc conjecture is true on
ϵ ∈]0, ϵ0[, then for all ϵ > 0.

ii) - We suppose that ϵ′
1 is transcendental, then ϵ′2

1 is transcendental. If not, ϵ′2
1 is

an algebraic number, it verifies:

l(x) = l2mϵ′2m
1 + 0 × ϵ′2m−1

1 + l2(m−1)ϵ
′2(m−1)
1 + · · · + l2ϵ′2

1 + 0 × ϵ′
1 + l0 = 0

From the definition (337) and the equation above, e′
1 is also an algebraic number,

then the contradiction.

As R′ > 0 is an algebraic number, we know that LogR′ is transcendental. We rewrite
the equation (336) as:

(340) c′

R′ = eϵ
′2
1R′ϵ′1 = eϵ

′2
1+ϵ′1LogR′

By the theorem of Hermite (page 45, [5]) e is transcendental. Let z = ϵ′2
1+ϵ′

1LogR′ >

0:
- As z ̸= 0, if z is an algebraic number it follows that ez is transcendental by

the theorem of Lindemann (page 51, [5]), it follows the contradiction with c′/R′ an
algebraic number. Then the hypothesis that the abc conjecture is false on ϵ ∈]0, ϵ0[
is not true. It follows that the abc conjecture is true on ϵ ∈]0, ϵ0[, then for all ϵ > 0.

- Now we suppose that z ̸= 0 is transcendental. We write ez as:

ez =
+∞∑
n=1

zn

n! = 1 + z + z2

2 + z3

3! + · · · + zN

N ! + r(z)

and r(z) ≪ zN

N ! for N very large

Then :
R′zN + R′Nz(N−1) + · · · + R′N !z + N !(R′ − c′) = 0

It follows that z is an algebraic number =⇒ the contradiction avec z transcendental.
Then the hypothesis that the abc conjecture is false on ϵ ∈]0, ϵ0[ is not true. It
follows that the abc conjecture is true on ϵ ∈]0, ϵ0[, then for all ϵ > 0.

The proof of the abc conjecture is finished. Assuming c < R1+ϵ0 is true, we obtain
that ∀ϵ > 0, ∃K(ϵ) > 0, if c = a + b with a, b, c positive integers relatively coprime,
then :

(341) c < K(ϵ).rad1+ϵ(abc)

and the constant K(ϵ) depends only of ϵ.
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Q.E.D

Ouf, end of the mystery!

6.3. Conclusion

Assuming c < R1+ϵ0 is true, we have given an elementary proof of the abc conjecture.
We can announce the important theorem:

Theorem 33. — Assuming c < R1+ϵ0 is true, the abc conjecture is true:
For each ϵ > 0, there exists K(ϵ) > 0 such that if a, b, c positive integers
relatively prime with c = a + b, then:
(342) c < K(ϵ).rad1+ϵ(abc)
where K is a constant depending of ϵ.
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CHAPTER 7

THE EXPLICIT abc A. BAKER’S CONJECTURE
=⇒ c < R2 TRUE

Abstract. — In this paper, we assume that the explicit abc conjecture of Alan
Baker (2004) is true, we give the proof that c < rad2(abc) is true, it is one of the
keys to resolve the mystery of the abc conjecture. Some numerical examples are
given.

The paper is under reviewing.

To the memory of my Father who taught me arithmetic
To my wife Wahida, my daughter Sinda and my son Mohamed

Mazen
To Prof. A. Nitaj for his work on the abc conjecture

7.1. Introduction and notations

Let a be a positive integer, a =
∏
i a
αi
i , ai prime integers and αi ≥ 1 positive integers.

We call radical of a the integer
∏
i ai noted by rad(a). Then a is written as:

(343) a =
∏
i

aαi
i = rad(a).

∏
i

aαi−1
i

We denote:

(344) µa =
∏
i

aαi−1
i =⇒ a = µa.rad(a)

The abc conjecture was proposed independently in 1985 by David Masser of the
University of Basel and Joseph Œsterlé of Pierre et Marie Curie University (Paris
6) [1]. It describes the distribution of the prime factors of two integers with those
of its sum. The definition of the abc conjecture is given below:
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Conjecture 34. — (abc Conjecture): For each ϵ > 0, there exists K(ϵ)
such that if a, b, c positive integers relatively prime with c = a + b, then :
(345) c < K(ϵ).rad1+ϵ(abc)
where K is a constant depending only of ϵ.

We know that numerically, Logc

Log(rad(abc)) ≤ 1.629912 [2]. It concerned the best

example given by E. Reyssat [2]:

(346) 2 + 310.109 = 235 =⇒ c < rad1.629912(abc)

A conjecture was proposed that c < rad2(abc) [3]. In 2004, Alan Baker [1], [4]
proposed the explicit version of the abc conjecture namely:

Conjecture 35. — Let a, b, c be positive integers relatively prime with c =
a + b, then:

(347) c <
6
5R

(LogR)ω

ω!
with R = rad(abc) and ω = ω(abc) the number of distinct prime factors of
abc.

In the following, we assume that the conjecture of Alan Barker is true, I will give
an elementary proof of the conjecture c < rad2(abc) that constitutes one key to
resolve the open abc conjecture. For our proof, we proceed by contradiction of the
abc conjecture. We give also some numerical examples.

7.2. The Proof of the c < R2 Conjecture

Proof. — : Let one triplet (a, b, c) of positive integers relatively prime with c = a+b

and :

c <
6
5R

(LogR)ω

ω!

Let A = (LogR)ω

ω! , rad(a) =
∏
i=1,I

ai, rad(b) =
∏
j=1,J

bj , and c =
∏
l=1,L

cl, then ω =

I + J + L. we obtain:

ω ≪ (LogR =
∑
i=1,I

Logai +
∑
j=1,J

Logbj +
∑
l=1,L

Logcl)

We can write R as:

(348) R = eLogR = 1 + LogR + (LogR)2

2! + · · · + A +
+∞∑

k=ω+1

(LogR)k

k!
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As (LogR)n

n! <
(LogR)n+1

(n + 1)! for n < LogR and ω ≪ LogR, it follows :

A ≤ 1 + LogR + (LogR)2

2! + · · · + (LogR)ω−1

(ω − 1)! +
n ,n<LogR∑
k=ω+1

(LogR)k

k!

I propose that A ≤ 5
6R, then:

(349) c <
6
5R

(LogR)ω

ω! = 6
5RA ≤ 6

5R.
5
6R =⇒ c < R2

If not, A >
5
6R, we write R = 1+LogR+A+r, r > 0, then A > 5+5LogR+5r, but

for large R, we have ω ≪ LogR, A ≪ LogR ≪ 5logR, we obtain a contradiction. It
follows c < R2.

The proof of c < R2 conjecture is finished.

Q.E.D

We give below some numerical examples.

7.3. Examples

7.3.1. Example 1. of Eric Reyssat

We give here the example of Eric Reyssat [1], it is given by:

(350) 310 × 109 + 2 = 235 = 6 436 343

a = 310.109 ⇒ µa = 39 = 19 683 and rad(a) = 3 × 109,
b = 2 ⇒ µb = 1 and rad(b) = 2,
c = 235 = 6 436 343 ⇒ rad(c) = 23. Then R = rad(abc) = 2 × 3 × 109 × 23 =
15 042 =⇒ R2 = 226 261 764.
ω = 4 =⇒ A = (LogR)4

4! = 356.64, R2 >
6
5R

(LogR)ω

ω! = 6 437 590.238 > (c =

6 436 343). A

R
≈ 0.06 ≪ 5

6 = 0.83.
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7.3.2. Example 2. of Nitaj

See [5]:
a = 1116.132.79 = 613 474 843 408 551 921 511 ⇒ rad(a) = 11.13.79

b = 72.412.3113 = 2 477 678 547 239 ⇒ rad(b) = 7.41.311
c = 2.33.523.953 = 613 474 845 886 230 468 750 ⇒ rad(c) = 2.3.5.953

R = rad(abc) = 2.3.5.7.11.13.41.79.311.953 = 28 828 335 646 110
=⇒ R2 = 831 072 936 124 776 471 158 132 100 > (c = 613 474 845 886 230 468 750)

ω = 10 =⇒ A = (LogR)10

10! = 225 312 992.556 =⇒

R2 >
6
5R

(LogR)ω

ω! = 7 794 478 289 809 729 132 015, 590 > (c = 613 474 845 886 230 468 750),

A

R
= 7.815e − 6 ≪ 5

6 = 0.83

7.3.3. Example 3.

The example is of Ralf Bonse, see [2] :
25434.182587.2802983.85813163 + 215.377.11.173 = 556.245983

a = 25434.182587.2802983.85813163
b = 215.377.11.173

c = 556.245983
R = rad(abc) = 2.3.5.11.173.2543.182587.245983.2802983.85813163

R = 1.5683959920004546031461002610848e + 33 =⇒
R2 = 2.4598659877230900595045886864952e + 66

ω = 10 =⇒ A = (LogR)10

10! = 1 875 772 681 108.203 =⇒

R2 >
6
5R

(LogR)ω

ω! = 3.5303452259448631166310839830891e + 45 >

c = 3.4136998783296235160378273576498e + 44,
A

R
= 1.196e − 21 ≪ 5

6 = 0.83

7.4. Conclusion

Assuming that the explicit abc conjecture is true, we have given an elementary proof
that the c < R2 conjecture holds. We can announce the important theorem:

Theorem 36. — Assuming the explicit abc conjecture of Alan Baker is true,
then the c < R2 conjecture is true.
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