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Abstract

The objective of this study is to present rigorous proofs for Collatz
conjecture and introduce some interesting behavior of the Kaakuma
sequence that is a vast generalized form of Collatz sequence. We
analyze the behavior of Kaakuma sequence such as scaling up, scaling
down, translation, function iteration and uniform growth of inverse
tree. In addition to this we investigate relationship of increasing rate,
number of iterations of cycles, gap in cycles, and densities of cycles of
the Kaakuma sequence and evaluate consistency of tree size density
after scaling.

Our investigation culminates in the formulation of a set of conjec-
tures encompassing lemmas and postulates, which we rigorously prove
using a combination of analytical reasoning, numerical evidence, and
exhaustive case analysis. These results provide compelling evidence
for the veracity of the Collatz conjecture and contribute to our under-
standing of the underlying mathematical structure.
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1 Introduction

The Collatz Conjecture, also known as the 3n+1 Conjecture, Hailstone Prob-
lem, Kakutani’s Conjecture, Ulam’s Conjecture, Hasse’s Algorithm, and the
Syracuse Problem, is a long-standing and unsolved mathematical problem
that has fascinated mathematicians for around a century. It is one of the most
dangerous unsolved problems in mathematics. The conjecture is named after
the German mathematician Lothar Collatz, who first proposed it in 1937.

Statement of the Conjecture

The Collatz conjecture originally states an iterative sequence of natural num-
bers. Take a natural number n. If n is even, make it half. If n is odd, multiply
it by 3 and add 1. Continue the process repeatedly, taking the result as the
next input, and continue iterating. The conjecture states that regardless of
the starting value, the sequence of numbers will eventually reach the value
1. For example:

14→ 7→ 22→ 11→ 34→ 17→ 52→ 26→ 13→ 40→ 20→ 10→ 5

→ 16→ 8→ 4→ 2→ 1

Historical Background and Significance

The Collatz Conjecture has captured the minds of mathematicians for almost
a century. Many have attempted to prove or disprove it, employing various
techniques and approaches. Despite its apparent simplicity, the conjecture
has resisted all attempts at a definitive solution. The search for a solution to
the Collatz conjecture continues, driven by the allure of a seemingly simple
problem harboring immense complexity. It serves as a reminder that even in
the vast realm of mathematics, profound mysteries still await discovery.

Even though the Collatz conjecture is simple to express and understand,
it has tantalized scientists for around a century. Mathematicians have exten-
sively tested the conjecture using computers for billions of billions of values,
and it holds true for all tested cases. The Collatz Conjecture has fascinated
mathematicians because of its apparent simplicity combined with its elusive-
ness. Many attempts have been made to prove or disprove the conjecture,
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involving various mathematical techniques and concepts. However, conjec-
ture remains one of the most enduring unsolved problems in mathematics.

Heuristic Argument

A heuristic argument, sometimes stated as a probabilistic approach, attempts
to show that the conjecture is true for infinitely diverging cases, not for
non-trivial cycles, especially if the number of iterations is small to make a
cycle. The probabilistic approach concerns how often each case will happen
in mean to get lower or upper values of the starting number after a number
of iterations. The ratio is 3/4 and n → 3n/4. This forms a basic study of
research, working with varied examples.

Improved Results and Further Research

Almost all initial values n in which we perform our Collatz function T con-
clusively iterate to a value less than n. Studies indicate that 99.99% of the
starting values iterate to a value less than the starting value. Allouche and
Korec have improved this result by proving that for an initial value n, it
iterates to a value less than n0.869 and more improved to a value less than
n0.7925, respectively. Terras’s paper ”A Stopping-Time Problem on the Posi-
tive Integers” (Terras, 1976) provides initial derivation.

Allouche proves that almost all values iterate to a value less than n0.869

and states that not just asymptotic behavior is required to determine the
periodicity of the function, with periodicity referring to repeating points and
intervals between them. The ideas used in Allouche’s paper are based on
those used by Terras in his original proof and are continued by Ivan Korec
(Korec, 1994).

Tao’s contribution to the Collatz Conjecture (Tao, 2019) represents a
significant breakthrough. His main result, ”Collatz orbits have almost bound
values,” states that for any function f(n) such that when n tends to infinity,
f(n) also tends to positive infinity, the minimum term within a given Collatz
orbit of n will be less than f(n) for almost all values of n.
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Kaakuma Sequence

Kaakuma sequence is a piecewise-defined recursive integer sequence:.

f(n) =



k1n+c1
b1

Case 1
k2n+c2

b2
Case 2

k3n+c3
b3

Case 3
...

...
kin+ci

bi
Case i

Kaakum sequence is an iterative sequence of integers with cases based on
modulo conditions, it is a vast general form of Collatz sequence.
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2 Expressions of Collatz sequence

The Collatz conjecture can be represented in different ways while retaining
the same meaning. Below are various notations used to describe the conjec-
ture.

a) General Notation

ni+1 =

{
3ni + 1 if ni is odd
ni

2
if ni is even

Here, n0 is any number that begins an orbit and eventually reaches 1 by
iterating rule at nT .

b) Function Notation

f(n) =

{
3n+ 1 if n is odd
n
2

if n is even

In this notation, the result is used as the next value for iteration until the
value reaches 1.

c) Simplified Notation

n =

{
3n+ 1 if n is odd
n
2

if n is even

This notation is often used in coding assignments. The right side of the
equation is the input, and the left side is the output. The iteration continues
using the output as the next input until reaching 1.

d) Shorter Form

f(n) =

{
3n+1

2
if n is odd

n
2

if n is even
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e) Modular Form

f(n) =

{
3n+1

2
if n ≡ 1 (mod 2)

n
2

if n ≡ 0 (mod 2)

This notation expresses the conditions of iteration in modular form.

f) Inverse of the Collatz Conjecture

The inverse of the Collatz conjecture states that if you start from 1 as a
root of a tree, and for each number, you double it in all cases and divide a
number minus one by three when it is possible to get a positive integer, then
all natural numbers are traced in the tree map. This implies that no natural
number is left out of the inverse tree map.

f(n) =

{
n−1
3

if n ≡ 1 (mod 3)

2n ∀n (n ∈ N)

Table 1: Tabular form of Inverse Tree Map

n ≡ 4 (mod 6) f(n) = n−1
3

f(n) = 2n
4 1 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024
16 5 10, 20, 40, 80, 160, 320, 640, 1280
10 3 6, 12, 24, 48, 96, 192, 384, 768, 1536
40 13 26, 52, 104, 208, 416, 832, 1664
52 17 34, 68, 136, 272, 544, 1088
34 11 22, 44, 88, 176, 352, 704, 1408
22 7 14, 28, 56, 112, 224, 448, 896, 1792
28 9 18, 24, 48, 96, 192, 384, 768, 1536
64 21 42, 84, 164, 328, 656, 1312
88 29 58, 116, 232, 464, 928, 1856
58 19 38, 76, 152, 304, 608, 1216
76 25 50, 100, 200, 400, 800, 1600
112 39 78, 156, 312, 624, 1248

In this tabular form of the inverse tree of the Collatz function, the nodes
make new branches from values in the form 6k + 4 from existing nodes.
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3 Behavior of the Collatz Sequence

Before proceeding with the proof of the Collatz conjecture, it is essential to
understand some basic behaviors of the Collatz sequence.

3.1 Transformation

3.1.1 Translation

Translation is a transformation that shifts each value in the orbit by a fixed
distance forward or backward. For example:

Original sequence: 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1

Shifted by two forward: 9, 24, 13, 36, 19, 54, 28, 15, 42, 22, 12, 5, 18, 10, 6, 4, 3

Shifted by three backward: 4, 19, 8, 31, 14, 49, 23, 10, 37, 17, 7, 2, 13, 5, 1

The function f(n) and its translated version g(n) can be expressed as:

f(n) =

{
3n+1

2
if n ≡ 1 (mod 2)

n
2

if n ≡ 0 (mod 2)

g(n) = f(n) + 2 =

{
3n−3

2
if n ≡ 1 (mod 2)

n+2
2

if n ≡ 0 (mod 2)

Similarly,

f(n) =

{
3n+1

2
if n ≡ 1 (mod 2)

n
2

if n ≡ 0 (mod 2)

g(n) = f(n)− 3 =

{
3n+7

2
if n ≡ 1 (mod 2)

n+2
2

if n ≡ 0 (mod 2)

During translation of a sequence, only the constant terms are changed.
The transformation can be expressed as:

f(c) = c− l(k − d)

If a conditional equation is kn+c
d

and is translated by length l, then the
translated equation becomes:

kn+ c− l(k − d)

d
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This formula is applied in all cases and is used with its sign or direction.
*Lemma 1
The next term of n after shifting by translating length l is:

kn+ c

d
+ l =

kn+ c+ dl

d

Using the direct formula:

k(n+ l) + c− l(k − d)

d
=

kn+ c+ dl

d

Proof carried out by induction.
For a short form of the Collatz sequence translated forward by 1:

f(n) =

{
3n+1

2
if n ≡ 1 (mod 2)

n
2

if n ≡ 0 (mod 2)

g(n) = f(n) + 1 =

{
3n
2

if n ≡ 0 (mod 2)
n+1
2

if n ≡ 1 (mod 2)

This form and its inverse is used for its simplicity in this study.

3.1.2 Reflection on the Y-Axis

A reflection of the Collatz orbit on the y-axis involves multiplying constant
terms by −1 and starting the sequence with the reflected value:

−1× kn+ c

d
←→ kn− c

d

For the functions:

f(n) =

{
3n
2

if n ≡ 0 (mod 2)
n+1
2

if n ≡ 1 (mod 2)

g(n) = −f(n) = f(−n) =

{
3n
2

if n ≡ 0 (mod 2)
n−1
2

if n ≡ 1 (mod 2)

Example sequence for negative integers:

−8,−12,−18,−27,−14,−21,−11,−6,−9,−5,−3,−2

This converges to the −2,−3 cycle.
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3.1.3 Scaling Up Mapping

Scaling involves multiplying the sequence by a fixed value s. This is done by
multiplying the constant terms by the scaling up factor (natural number):

s× kn+ c

d
←→ kn+ sc

d

When the Collatz orbit is scaled up by s, e.g., multiplying by 5:

8, 12, 18, 27, 14, 21, 11, 6, 9, 5, 3, 2

multiplied by 5 yields:

40, 60, 90, 135, 70, 105, 55, 30, 45, 25, 15, 10

For the function:

f(n) =

{
3n
2

if n ≡ 0 (mod 2)
n+1
2

if n ≡ 1 (mod 2)

and

g(n) = 5× f(n) = f(n) =

{
3n
2

if n ≡ 0 (mod 2)
n+5
2

if n ≡ 1 (mod 2)

The scaled map of the Collatz sequence by a number different from a
power of 3 has two or more cycles:

f(n) =

{
3n
2

if n ≡ 0 (mod 2)
n+3i

2
if n ≡ 1 (mod 2)

The trajectory converges to 2×3i or (2×3i, 3i+1) cycle for all positive integers.
For instance:

f(n) =

{
3n
2

if n ≡ 0 (mod 2)
n+27

2
if n ≡ 1 (mod 2)

This converges to 54 or (54, 81) cycle.

3.1.4 Scaling Down mapping

Scaling down is inverse of scaling up mapping, it is a transformation that
scales down a sequence by scaling down factor. all divisible numbers by
scaling factor in a sequence divided by scaling factor and the rest removed.
When it is required we can use translation before scaling down.
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When f(n) ≡ 0 (mod 3)

f(n) =

{
3n
2

if n ≡ 0 (mod 2)
n+1
2

if n ≡ 1 (mod 2)

and

g(n) =
f(n)

3
if f(n) ≡ 0 (mod 3) =


3n
2

if n ≡ 0 (mod 2)
3n+1

4
if n ≡ 1 (mod 4)

n+1
4

if n ≡ 3 (mod 4)

It converges to 1 for all natural numbers, if Collatz conjecture is true.
8, 12, 18, 27, 14, 21, 11, 6, 9, 5, 3, 2 maps to 4, 6, 9, 7, 2, 3, 1
The Equation for inverse tree of scaled down by scaling down factor 3.

f(n) =


2n

3
if n ≡ 0 (mod 3)

4n− 1

3
if n ≡ 1 (mod 4)

4n− 1 ∀n (n ∈ N)

When we try to demonstrate scaling down graphically.

Figure 1: Original Inverse Tree

12



Figure 2: when We select only three factors

Figure 3: when we remove non-three factors
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Figure 4: when we divide the rest by three

When f(n) ≡ 0 (mod 5)

f(n) =

{
3n
2

if n ≡ 0 (mod 2)
n+1
2

if n ≡ 1 (mod 2)

and

g(n) =
f(n)

5
if f(n) ≡ 0 (mod 5) =



3n
2

if n ≡ 0 (mod 2)

3n if n ≡ 3 (mod 4)
3n+1

4
if n ≡ 1 (mod 8)

n+3
16

if n ≡ 13 (mod 16)
9n+7

4
if n ≡ 5 (mod 32)

9n+11
8

if n ≡ 53 (mod 64)
9n+67

64
if n ≡ 21 (mod 64)

It converges to 1 for all natural numbers if collatz conjecture is true.
28, 42, 63, 32, 48, 72, 108, 162, 243, 122, 183, 92, 138, 207, 104, 156,
234, 351, 176, 264, 396, 594, 891, 446, 669, 335, 168, 252, 378, 567, 284,
426, 639, 320, 480, 720, 1080, 1620, 2430, 3645, 1823, 912, 1368, 2052,
3078, 4617, 2309, 1155, 578, 867, 434, 651, 326, 489, 245, 123, 62, 93, 47
maps to:
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11, 33, 25, 19, 57, 43, 129, 97, 73, 55, 165, 373, 421, 949, 1069, 67, 201,
151, 453, 1021, 64, 96, 144, 216, 324, 486, 729, 547, 1641, 1231, 3693,
231, 693, 781, 49, 37

When f(n) ≡ 0 (mod 9)

f(n) =

{
3n
2

if n ≡ 0 (mod 2)
n+1
2

if n ≡ 1 (mod 2)

and

g(n) =
f(n)

9
if f(n) ≡ 0 (mod 9) =



3n
2

if n ≡ 0 (mod 2)

3n if n ≡ 3 (mod 8)
3n+1

8
if n ≡ 5 (mod 8)

9n+1
8

if n ≡ 7 (mod 8)
3n+1

4
if n ≡ 1 (mod 32)

3n+5
32

if n ≡ 9 (mod 32)
9n+7
32

if n ≡ 17 (mod 32)
n+7
64

if n ≡ 57 (mod 64)
9n+31
128

if n ≡ 25 (mod 128)
3n+5
16

if n ≡ 89 (mod 128)

It converges to 1 for all natural numbers, if Collatz conjecture is true.
28, 42, 63, 32, 48, 72, 108, 162, 243, 122, 183, 92, 138, 207, 104, 156,
234, 351, 176, 264, 396, 594, 891, 446, 669, 335, 168, 252, 378, 567, 284,
426, 639, 320, 480, 720, 1080, 1620, 2430, 3645, 1823, 912, 1368, 2052,
3078, 4617, 2309, 1155, 578, 867, 434, 651, 326, 489, 245, 123, 62, 93, 47
maps to:
7, 8, 12, 18, 27, 81, 23, 26, 39, 44, 66, 99, 297, 28, 42, 63, 71, 80, 120,
180, 270, 405, 152, 228, 342, 513, 385, 289, 217, 41, 4
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3.1.5 Function Iteration.

f(n) =


9n
4

if n ≡ 0 (mod 4)
3n+2

4
if n ≡ 2 (mod 4)

3n+3
4

if n ≡ 3 (mod 4)
n+3
4

if n ≡ 1 (mod 4)

Eg: 8, 18, 14, 11, 9, 3, 3

f(n) =



27n
8

if n ≡ 0 (mod 8)
9n+4

8
if n ≡ 4 (mod 8)

9n+6
8

if n ≡ 2 (mod 8)
3n+6

8
if n ≡ 6 (mod 8)

9n+9
8

if n ≡ 7 (mod 8)
3n+7

8
if n ≡ 3 (mod 8)

3n+9
8

if n ≡ 5 (mod 8)
n+7
8

if n ≡ 1 (mod 8)

Eg: 8, 27, 11, 5, 3, 2

f(n) =
3n+ 3× 2i−1 − 3

2i
if n = 2ik + 2i−1 + 1

where i ranges from 1 to ∞ as we divide the last case into two cases infinitely.

3.2 Proportional Distribution of Powers of 3 or 2

When mapping the inverse tree of the Collatz trajectory, There are two
occurrences of 3i−1 factors situated between two instances of 3i factors on
onward tree) .

• There are only two 3ik numbers between two 3i+1k numbers.

• The maximum number of 3i+jk numbers between two 3ik numbers is
only one, for i and j greater than 1.

• All 3k numbers are separated by only one 3k + 2 number.
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Example:
27 , 53, 105, 209, 417, 833, 1665 , 3329, 6657 , 13313, 26625 , 53249,

106497 , 212993, 425985, 851969, 1703937, 3407873, 6815745

Lemma 2 For 3k, 6k−1, and 12k−3, all pairs of 3k numbers are separated
by one 3k+2 number. From this, when we formulate sequences of 3k numbers:

f(n) = 4n− 3

9k, 36k − 3, 144k − 15, 576k − 63, all pairs of 9k numbers are separated
by two 3k numbers. From this, when we formulate sequences of 9k numbers:

f(n) = 64n− 63

By following the same principle, 3ik can be formulated by 22jn − 3il. If
we start the sequence with 3i+1k, the sequence is:

3i+1k,

22j3i+1k − 3il,

24j3i+1k − 22j3il − 3il,

26j3i+1k − 24j3il − 22j3il − 3il

where j1 = 1 and ji+1 = 3ji.
The fourth term is a factor of 3i+1 because j is even and 24j + 22j + 1 is

a factor of 3:
24jn ≡ 1 (mod 3),

22jn ≡ 1 (mod 3),

1 ≡ 1 (mod 3)

Adding them:
24j + 22j + 1 ≡ 0 (mod 3)

Thus:

26j3i+1k − 24j3il − 22j3il − 3il = 3i
(
3× 26j − (24jl + 22jl + 1)

)
= 3i+1m

Therefore, the size of a tree or branches of the inverse tree of the Collatz
function has a proportional growth rate based on the initial condition. This
behavior of the Collatz sequence maintains the proportionality of the size of
branches and prevents the occurrence of an unbalanced growth rate of a tree
or branches. This property is one of crucial properties to decide the collatz
conjecture. This property of equivalent distribution of numbers and their
powers works for any number and any Kaakuma sequence.
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3.3 Constants

3.3.1 Nearly Constant Expansion Rate of Inverse Tree Map

The average growth rate of the Collatz inverse tree map is 1
3
.

f(n) =

{
2n
3

if n ≡ 0 (mod 3)

2n− 1 ∀n (n ∈ N)

Let us start from 2 as the root of the tree and ignore recycling because
the 2 and 3 cycling cases duplicate data. The main root of the tree is 2, {2},
{3}, {5}, {9}, {6, 17}, {4, 11, 33}, {7, 21, 22, 65}, . . .

Expansion Rate Analysis

The expansion rate, on average, is 1
3
. For lists with more than 30 elements

1
3
of the numbers are 3k, 1

3
are 3k + 1, and 1

3
are 3k + 2. Among these, 3k

creates double nodes 6k − 1 and 2k. That is why the expansion rate is 1
3
.
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H, LC, TS is for Height, Leaf Count and Tree Size respectively

H LC TS Leafs
1 1 1 2
2 1 2 3
3 1 3 5
4 1 4 9
5 2 6 6, 17
6 3 9 4, 11, 33
7 4 13 7, 21, 22, 65
8 5 18 13, 14, 41, 43, 129
9 6 24 25, 27, 81, 85, 86, 257
10 8 32 49, 18, 53, 54, 161, 169, 171, 513
11 12 44 97, 12, 35, 105, 36, 107, 321, 337, 114, 341, 342, 1025

12 18 62
193, 8, 23, 69, 70, 209, 24, 71, 213, 214, 641,
673, 76, 227, 681, 228, 683, 2049

13 24 86
385, 15, 45, 46, 137, 139, 417, 16, 47,
141, 142, 425, 427, 1281, 1345, 151, 453,
454, 1361, 152, 455, 1365, 1366, 4097

14 31 117

769, 10, 29, 30, 89, 91, 273, 277, 278,
833, 31, 93, 94, 281, 283, 849, 853,
854, 2561, 2689, 301, 302, 905, 907, 2721,
303, 909, 910, 2729, 2731, 8193

15 39 156

1537, 19, 57, 20, 59, 177, 181, 182, 545, 553, 555,
1665, 61, 62, 185, 187, 561, 565, 566, 1697, 1705,
1707, 5121, 5377, 601, 603, 1809, 1813, 1814, 5441,
202, 605, 606, 1817, 1819, 5457, 5461, 5462, 16385

16 50 206

3073, 37, 38, 113, 39, 117, 118, 353, 361, 363, 1089,
1105, 370, 1109, 1110, 3329, 121, 123, 369, 373, 374,
1121, 1129, 1131, 3393, 3409, 1138, 3413, 3414,
10241, 10753, 1201, 402, 1205, 1206, 3617, 3625,
3627, 10881, 403, 1209, 404, 1211, 3633, 3637,
3638, 10913, 10921, 10923, 32769

Table 2: Tree growth data

The table above shows the leaf count in each step with new branches
approaching a size 1

3
of the previous leaf count.
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H L Count T Size Rate H L Count T Size Rate
1 1 1 30 2829 11301 33.317
2 1 2 0 31 3765 15066 33.085
3 1 3 0 32 5014 20080 33.1739
4 1 4 0 33 6682 26762 33.266
5 2 6 100 34 8902 35664 33.223
6 3 9 50 35 11878 47542 33.430
7 4 13 33.333 36 15844 63386 33.389
8 5 18 25 37 21122 84508 33.312
9 6 24 20 38 28150 112658 33.273
10 8 32 33.333 39 37536 150194 33.342
11 12 44 50 40 50067 200261 33.383
12 18 62 50 41 66763 267024 33.347
13 24 86 33.333 42 89009 356033 33.320
14 31 117 29.166 43 118631 474664 33.279
15 39 156 25.806 44 158171 632835 33.330
16 50 206 28.205 45 210939 843774 33.361
17 68 274 36 46 281334 1125108 33.372
18 91 365 33.823 47 375129 1500237 33.339
19 120 485 31.868 48 500106 2000343 33.315
20 159 644 32.5 49 666725 2667068 33.316
21 211 855 32.704 50 888947 3556015 33.330
22 282 1137 33.649 51 1185305 4741320 33.338
23 381 1518 35.106 52 1580518 6321838 33.342
24 505 2023 32.545 53 2107346 8429184 33.332
25 665 2688 31.683 54 2809845 11239029 33.335
26 885 3573 33.082 55 3746399 14985428 33.331
27 1187 4760 34.124 56 4995078 19980506 33.330
28 1590 6350 33.951 57 6660211 26640717 33.335
29 2122 8472 33.459

Table 3: Growth Rate of Leaf Count with Heights

The table above shows the leaf count and tree size at each height with
their corresponding rate of expansion. The average expansion rate remains
close to 1

3
as the tree grows.
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3.3.2 Average Stopping Time

f(n) =

{
3n+ 1 if n ≡ 1 (mod 2)
n
2

if n ≡ 0 (mod 2)

Average stopping time of this sequence is 3.49269.

f(n) =


3n
2

if n ≡ 0 (mod 2)
3n+1

4
if n ≡ 1 (mod 4)

n+1
4

if n ≡ 3 (mod 4)

Average stopping time of this sequence is 3.037.

3.3.3 Ratio of Stopping Time

The ratio of stopping time to log2(n) is bounded. Specifically, this ratio
is less than 10 for large starting numbers (more than 8 digits). For such
large numbers, the ratio is bounded and typically less than 6. For a starting
number 2p and stopping time t, the ratio ranges from 3.67 to 5.15.

p 187 188 189 190 191 192 193 194 195 196 197

t 693 690 753 753 753 749 994 994 994 994 747

t/p 3.71 3.67 3.98 3.96 3.94 3.90 5.15 5.12 5.10 5.07 3.79

Table 4: Ratio of stopping time t to log2(n)

3.4 Stopping Time Iteration Groups

When we group the numbers by iteration, some numbers have the same
number of stopping times and are grouped by 2tk + c. If the iterations of
c’s stopping time is t and 2t > c, then all the numbers noted 2tk + c have
stopping time t.

t 4 7 5 7 5 59 56 8 54 7 54 51 8 45 8

c 4 8 12 16 24 28 32 40 48 60 64 72 80 92 96

Table 5: Stopping Time Iteration Groups
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For corresponding values t to c, 2tk + c has the same stopping time of t.
For example:

• The stopping time t of 25k + 12 is 5,

• The stopping time t of 27k + 16 is 7,

• The stopping time t of 25k + 24 is 5,

• The stopping time t of 259k + 28 is 59.

Riho Terras (1976) showed that almost all initial values (more than
99.99%) eventually become a value less than n. This is 100 times the sum of
the reciprocals of stopping times grouped: 100×

∑
1/2t.

3.5 Connection of 2n in Collatz Iteration

2n is connected with n or 4n. When we iterate the Collatz function in the

translated format using
3n

2
and

n+ 1

2
, 2n is connected with n or 4n.

If there is a new cycle, 2n must be connected with 4n because a new
cycle’s starting value cannot be connected with a smaller one. This property
makes the Collatz structure very special and provides a visible framework for
a potential proof of the Collatz conjecture.

Lemma 3

Let 2i+1 ·o be the first number of a non-trivial cycle (where o denotes an odd
integer). Then 2i+2 · o is also in the new cycle.

We define:
2i · o→ 3i · o = m

2i+1 · o→ 3i+1 · o = 3m

2i+2 · o→ 3i+2 · o = 9m

Now we can compare m, 3m, and 9m, all odd numbers since o is odd.

Case 1: Let m = 4k + 3

m = 4k + 3→ 2k + 2→ 3k + 3

3m = 12k + 9→ 6k + 5→ 3k + 3

In this case, 3m is connected with a smaller number, so it cannot be the start
of a new cycle.
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Case 2: Let m = 4k + 1

m = 4k + 1→ 2k + 1→ n+ 1

3m = 12k + 3→ 6k + 2→ 9k + 3

9m = 36k + 9→ 18k + 5→ 9k + 3

Now 3m is connected with 9m, meaning if there is a non-trivial cycle that
starts with n, then 2n is also a node in it.

4 Proofs

4.1 Contradiction in Tree Size Density

Tree size is defined as the number of nodes connected to a cycle in the
inverse of the Collatz sequence. Tree size density refers to the number of
nodes relative to the whole set of natural numbers. The tree size density
of a cycle is the ratio of nodes connected to it to the whole set of natural
numbers. If a Kaakum sequence has a single cycle, its tree size is the whole
set of natural numbers, and its density is 1or100%.

The root of a tree is the smallest natural number in any cycle.

Factors contributing for Tree size Density in a

Sequences

• The gap between roots: As the gap between roots of trees in a
sequence increases, the density of the previous cycle increases.

• Number of iterations of a loop: As the number of iterations in a
loop increases, the corresponding tree becomes denser.

• Increasing rate of increasing portion: increasing rate of the in-
creasing part of a sequence provides an opportunity to occurrence of a
large gap of a Kaakuma sequence.

• Initially obtaining more nodes: If the tree of a cycle initially pro-
duces more nodes, it tends to be denser overall.
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4.1.1 Proof 1: Contradiction of Tree Size Density Before and Af-
ter Scaling Down

This proof is conducted via proof by contradiction.
Let non-trivial cycle exists we can investigate its tree size density in

different ways and evaluate consistency of the tree size density.
The Tree size densities before scaling down Assume 280 is the first non-

Collatz number. We consider the minimal portion of the tree leaves of cycle
1 that can be traced before 280.

Growing the tree until the largest leaf in the Collatz inverse tree exceeds
280, we find that this occurs at height 81. At this point, the leaf count exceeds
6.6 × 109. The largest leaf at height 81 is 280 + 1. This is a conservative
estimate for the leaf count compared to a non-trivial cycle, since 280 − 3.3×
1010 nodes are traced back makes the tree denser, while 280 never traces a
smaller number.

This is to mean that if 350 < 280 is a leaf at height 81 that was not pre-
viously traced, it would generate many more leaves less than 280 at different
heights. Hence, the density of the trivial cycle of Collatz inverse tree map
is significantly more than 6.6× 109 times than the density of a hypothetical
non-trivial cycle. we can also use projection of tree growth in 3.3.1 before
height 80 and it is 117,869,914,517 continuing from height 57. from this tree
size density of the trivial cycle is 1−10−11 and tree size density of non-trivial
cycle is 10−11

The Tree size densities After scaling down We observe a contradiction
when we scale down, as seen in Property 3.1.4. Scaling down removes the
gap that allows the trivial cycle to dominate before reaching the non-trivial
one. We also examine the initially connected nodes by the non-trivial cycle.

f(n) =


2n

3
if n ≡ 0 (mod 3)

2n− 1 ∀n ∈ N

Assume 2p is the first non-Collatz number, and define a scaled-down
function:

g(n) =
f(n)

p
if f(n) ≡ 0 (mod p)

Then, the first non-trivial cycle maps to 2. The values 2, 3, 4, 6, and 9
are known nodes in the non-trivial inverse tree from the beginning, making
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it denser than the trivial cycle tree map with only the known root 1.
If 2p is the root of the non-trivial cycle, then 4p is also a node in that cycle.

That is why 2, 3, 4, 6, and 9 are nodes in the non-trivial cycle after scaling
down. If we want, we may displace initially connected nodes by changing the
scaling down factor. For example, scaling down by 2p results in 1, 2, 3 as the
known initial nodes of the non-trivial cycle. Here, the density of trivial cycle
is less than 0.5 and the density of non-trivial cycle is greater than 0.5 after
scaling down.

In addition, a non-trivial cycle has a high number of iterations in the first
loop, making the corresponding cycle denser.

Conclusion There exists a significant contradiction in the density rela-
tionship of the inverse tree sizes for the trivial and non-trivial cycles of the
Collatz sequence, before and after scaling down. This shows that a non-
trivial cycle in the Collatz sequence never exist, supporting the truth of the
Collatz Conjecture.

Further insight can be gained by constructing related sequences for il-
lustration and clarification. To assess their relevance, we utilize various
Kaakuma sequences closely related to the Collatz sequence.

Semi-Cycled Sequences of Collatz Sequences

To obtain meaningful results, the starting number of a cycle should be the
smallest number of the semi-cycle in the forward sequence. We use the stop-
ping point to identify sub-cycles. When using the inverse tree, the starting
number corresponds to a local minimum or a saddle point.

Examples

• Example 1: Sub-cycle 7→ 11→ 17→ 26→ 13 versus 1→ 2
Full cycle comparison: (7–13, 4 iterations) vs (1–2, 1 iteration).
Densities: 52.47% (non-trivial), 47.53% (trivial)

• Example 2: Sub-cycle 27→ 41→ 62→ . . .→ 23 vs 1→ 2
(27–23, 59 iterations) vs (1–2, 1 iteration).
Densities: 46.115% (non-trivial), 53.885% (trivial)
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• Example 3: Sub-cycle 191→ 287→ 431→ . . .→ 154 vs 1→ 2
(191–154, 13 iterations) vs (1–2, 1 iteration).
Densities: 5.3325% (non-trivial), 94.6675% (trivial)

These examples indicate that non-trivial cycles in the Collatz sequence
tend to have comparable densities due to their large number of iterations.

The 3n− 1 Sequence

We analyze the inverse of the 3n/2 sequence defined as:

f(n) =

{
2n
3

if n ≡ 0 (mod 3)

2n ∀n ∈ N

This sequence has three roots: 0, 4, and 16, with 1, 3, and 11 iterations,
respectively.

Size and Density of Trees

Scaled down by Size1 Size2 Size3 Density1 Density2 Density3

1 2615505 2597930 2786564 32.69381 32.47413 34.83205
3 2613554 2600664 2785781 32.66943 32.50830 34.82226
9 2611674 2601054 2787271 32.64593 32.51318 34.84089
27 2609873 2602065 2788061 32.62341 32.52581 34.85076
81 2609796 2602512 2787691 32.62245 32.53140 34.84614
243 2609861 2603354 2786784 32.62326 32.54193 34.83480
225 2610226 2603335 2786438 32.62783 32.54169 34.83048

Table 6: Comparison of Tree Sizes and Densities at Different Scaling Levels

This demonstrates that the density of non-trivial cycles is approximately
equal to the density of trivial cycles after appropriate scaling down.

The 3n+ p Sequence

f(n) =

{
3n+p

2
n ≡ 1 (mod 2)

n
2

n ≡ 0 (mod 2)
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To examine the effect of large gaps, consider the sequence:

f(n) =

{
3n+1394753

2
n ≡ 1 (mod 2)

n
2

n ≡ 0 (mod 2)

This sequence has only two cycles: 1 and 1394753. Their tree size densi-
ties are:

Cycle 1:
1394752

1394753
, Cycle 2:

1

1394753

After scaling down by p−1
2

= 697376 or p+1
2

= 697377, the gap between
cycles reduces from 1394752 to 1. This shows that iteration count of the first
cycle has a major impact on maintaining consistent tree size density after
scaling down.

The 3n+ p sequence helps understand how the non-trivial cycle of 3n+1
behaves. However, as p increases p and 1 are only cycles, the iteration length
of the first cycle may grow excessively.

More Sequences

Let us compare sequences with relatively large gaps but only two cycles.

Equations

Eq1: f(n) =


22n− 54

3
if n ≡ 0 (mod 3)⌈

n
3

⌉
otherwise

Eq2: f(n) =


41n

4
if n ≡ 0 (mod 4)

5n+ 2

4
if n ≡ 2 (mod 4)⌈

n
4

⌉
otherwise

Eq3: f(n) =


6n

5
if n ≡ 0 (mod 5)

197n+ 2

5
if n ≡ 4 (mod 5)⌈

n
5

⌉
otherwise
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Eq4: f(n) =


243n− 644

4
if n ≡ 0 (mod 4)⌈

n
4

⌉
otherwise

Eq5: f(n) =


207n− 668

4
if n ≡ 0 (mod 4)⌈

n
4

⌉
otherwise

f(n) =


3n+ 1000209607

2
if n ≡ 1 (mod 2)

n

2
if n ≡ 0 (mod 2)

(Eq6)

New Cycles and Densities

Equation New Cycle Density First Few Nodes After Scaling Down

Eq1 2151 0.0725% 2, 347, 1661, 3068, 4981, 5773, 8674, 14943, 15203,
15205, 17012, 17319, 20879, 22046, 22496, 22506,
22519, 22902, 25646

Eq2 46040 0.0035% 2, 1718, 2046, 26639, 27440, 94164, 123666,
181557, 201781, 238202, 255311, 281260, 282024,
297171, 318439, 328915

Eq3 87194 0.000009% 2, 394, 156249, 166317, 239061, 526696, 572774,
599757, 807307, 831583, 868781, 940487, 1434351,
1438936, 1655078

Eq4 107612 0.000025% 2, 145471, 146994, 161451, 188779, 209516,
247514, 258076, 349152, 379525, 535323, 563743,
563973, 581883, 673291

Eq5 114288 0.003% 2, 50118, 95807, 129686, 144989, 163801, 245307,
278639, 335573, 375173, 435339, 473948, 476444,
497122, 524268

Eq6 1000209607 10−9% 1000209607k − 1000209605 k is natural number

Table 7: Comparison of Tree Sizes Densities and Distribution of Nodes of
Second Cycle After Scaling Down
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Discussion

From this experiment, we observe that as the geometric mean increases and
the High Variance of coefficients that valid only natural numbers, there is a
potential for increasing the gap. Increasing in gap corresponds to an increase
in the density of the first cycle.

However, when we compare geometric mean, variances of coefficients, gap,
and density, the relationships become inaccurate. A more reliable metric for
comparison is the average stopping time, gap and density.

Even if we assume a non-trivial Collatz cycle exists beyond 268, its density
would be less than 10−17%, and its second node after scaling down would
be greater than 1016. In contrast, for the non-trivial cycle associated with
the classic Collatz sequence, the scaled down first few nodes are 2, 3, 4, 6, 9,
consistent with behaviors noted in Sections 3.1.4 and 3.6.

This means that if the unscaled sequence contains 2p, 3p, 4p, 6p, 9p, after
dividing by p, we can get 2, 3, 4, 6, 9. This supports the validity of the Collatz
conjecture.

Although it is highly unlikely to find a sequence exhibiting the exact
behavior of the Collatz conjecture with both a connection between n and 2n,
and a small average stopping time after few iterations, the most promising
approach is to search for sequences with:

• Similar average stopping time,

• Nearly the same base/modulus cases.

Combinations after Function Iteration

If we iterate the Collatz function from Section 3.2 three times, the result is
a 16-branch equation, with coefficients 3i for i = 0 to 4, and branch counts
based on binomial coefficients:

1, 4, 6, 4, 1

Let us define:

f(n) =

⌈
3in

16

⌉
for n ≡ r (mod 16)

There are more than 50 million combinations when considering all module
configurations for mod 16, but after checking more than 200,000 of them,

29



the maximum observed gap was 25. This suggests that if there were non-
trivial cycle of 3n+ 1 its it is less than 100.

In general, for any Kaakuma sequence having two cycles with a big gap
like 1020:

• It is connected with the number of iterations of cycles and the increasing
rate of increasing portion.

• If the first cycle has few iterations as in the Collatz sequence, the
increasing rate must be large, and greater than 1010 Eqs (1− 5).

• If the increasing rate is small as in the 3n+ p sequence, the number of
iterations of the first cycle is more than 1014 Eq6 first cycle has 7901480
iterations.

• If the gap is very large, the nodes of non-trivial cycle are very dispersed
even after scaled down because it scarcity. Eg Eqs (1− 6)

4.1.2 proof 2 Contradiction of Tree Size Density Before Scaling
Up and After Scaling Up

Scaling up is the reverse operation of scaling down, and we can compare the
density of tree size with trivial cycle 1 and non-trivial cycle 2 somewhere
above 20 digit numbers. When we scale up by a scaling factor usually the
product of coefficient powers to avoid occurrences of new cycles, the gap
between trivial cycle and non-trivial cycle increases significantly. This result
unbalanced tree size density before and after scaling up.

How much can we increase the gap by scaling up, and what will happens
to the density of the non-trivial cycle part after a significant increment of
the gap between cycles?

Let 280−1 be a non-trivial root, and let 31,000,000 be the scaling up factor.
If we aim to maximize the gap between two cycles, we cannot use just any
scaling up factor.

f(n) =

{
3n+1

2
if n ≡ 1 (mod 2),

n
2

if n ≡ 0 (mod 2).

Its non-trivial root is 280 − 1 and the smallest ratio of tree size density
is 1 : 280. To maximize the scaling factor gap between cycles, we use the
inverse function after applying a scaling factor 3x:
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f(n) =

{
3n+3x

2
if n ≡ 1 (mod 2),

n
2

if n ≡ 0 (mod 2).
(scaled up)

f−1(n) =

{
2n−3x

3
if n ≡ 0 (mod 3),

2n for all n.
(inverse)

Now the starting number is transformed to 3x(280 − 1). To get the max-
imum value of x, we analyze the gap function:

f(x) = 280+x − 3x

f ′(x) = 281+x ln 2− 3x ln 3

Setting f ′(x) = 0, we find:

281+x ln 2 = 3x ln 3 ⇒ x ≈ 136.3

The nearest integer is x = 136, so we can maximize the gap from 280

to 2216 − 3136 ≈ 2214. The density diminishes by 2134. If the density of the
non-trivial cycle were d before, it becomes less than d/2134 after scaling up
that is impossible and inconsistent.

Now consider sequences with two or more roots and arbitrary large scaling
factors. Do they diminish their tree size densities relative to each other, or
maintain consistency of their proportionality?

There are methods to maintain tree size density consistency before and
after scaling up:

We can use the sequence below to make the change in densities extreme
in the first proof.

f(n) =

{
3n+3216

2
if n ≡ 1 (mod 2),

n
2

if n ≡ 0 (mod 2).

1. Unmovable Root

If the smallest number in the scaled-up sequence remains the same, then the
proportionality of tree size density remains consistent.

f(n) =

{
3n
2

if n ≡ 0 (mod 2),
n+43

2
if n ≡ 1 (mod 2).
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This sequence has two roots: 1 and 43. Their tree size density ratio is
1 : 43. Scaling by 3x does not affect their proportionality, since all factors of
43 remain connected to root 43 and the rest to root 1.

2. Immersion of Counterbalancing Values

If a sequence can be scaled by any factor (with negative constants), propor-
tionality is preserved by interposing values. More values are immersed before
root 2 to keep tree size density consistent.

f(n) =

{
3n
2

if n ≡ 0 (mod 2),
n−1
2

if n ≡ 1 (mod 2).

This sequence has roots 0, 4, and 16. When scaled by 3x, these become
connected via:

2x · {0, 4, 16}
3x

f(n) =

{
3n
2

if n ≡ 0 (mod 2),
n−81

2
if n ≡ 1 (mod 2).

3. Stretching Back

If the scaling factor is too large, the second cycle stretches back sufficiently
to the left to maintain proportionality.

Example 1:

f(n) =


11n+181

2
if n ≡ 3 (mod 4),

n+3
4

if n ≡ 1 (mod 4),
n
2

if n ≡ 0 (mod 2).

Roots: 1, 35267, 63051.
Scaled up:

f(n) =


11n+181·11x

2
if n ≡ 3 (mod 4),

n+3·11x
4

if n ≡ 1 (mod 4),
n
2

if n ≡ 0 (mod 2).
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Inverse:

f−1(n) =


2n−181·11x

11
,

4n− 3 · 11x,
2n.

Let n0 = 35267 · 11x. Then,

nm = 2x · 35267− 181 · 2x + 181

Apply this to:

f(x) = 4nm − 3 · 11x = 35086 · 2x+2 − 3 · 11x

Maximum at x = 4, so the gap becomes 140525 (from 35267). NB small
change comes by scaling up counterbalanced by the number of iterations in
the first cycle. when we scale up by proper amount of scaling factor, number
of iterations of first cycle increases and balances the change.

4.2 proof 3 The Vanishing Ratio of Binomial Sum of
increasing portion in Function Iteration

When we iterate the Collatz function successively, a binomial number system
pattern emerges. This pattern involves the number of powers of three as
coefficients of a variable combined with the total number of cases equal to
the base. When we successively iterate cases infinitely, the sum of binomials
where the coefficients satisfy 3i

2n
> 1 approaches zero:∑

3i

2n
>1

(
n

i

)
= 0.

From Section 3.1.5 when we extend function iterations infinitely:- We can
start from zero to show that successive iterate cases of the sequence generate
a binomial form with 3i coefficients in the numerator.

f(n) = 0, f(n) = n, and so on.
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No. Number of Cases Number of 3i (i from 0 to n)
1 0 0
2 1 1
3 2 1, 1
4 3 1, 2, 1
5 4 1, 3, 3, 1
6 5 1, 4, 6, 4, 1
7 6 1, 5, 10, 10, 5, 1

Lemma 4

Let 3i−1 and 3i have bi−1 and bi amounts for f(n) in the next division of
cases. The bi amount of 3i and bi−1 amount of 3 · 3i−1 = 3i results in bi+ bi−1

amounts of 3i generated.
This is how Pascal’s triangle develops for binomials:

bi = bi + bi−1.

Central Limit Theorem (CLT) Insight

For large n, the binomial distributionX ∼ Bin(n, 0.5) approximates a normal
distribution:

X ∼ N(µ, σ2), µ =
n

2
, σ2 =

n

4
.

Thus, the probability P (X > nt) can be approximated using:

Z =
X − µ

σ
,

where Z is a standard normal random variable. The condition X > nt
translates to:

P (X > nt) = P

(
Z >

nt− µ

σ

)
.

Substituting µ = n
2
and σ =

√
n
4
=

√
n
2
, we get:

34



P (X > nt) = P

(
Z >

nt− n
2√

n
2

)
= P

(
Z >

√
n · (2t− 1)

)
.

For t = log2(3) ≈ 1.585, we have 2t − 1 > 1. As n → ∞, the term√
n · (2t − 1) → ∞, and since the tail probability of a standard normal

distribution decays exponentially:

P (Z >
√
n · (2t− 1))→ 0.

Chernoff Bound for Rigorous Proof

The Chernoff bound provides an upper bound for P (X > nt):

P (X > nt) ≤ exp (−n ·D(t || 0.5)) ,

where D(t || 0.5) is the relative entropy:

D(t || 0.5) = t log

(
t

0.5

)
+ (1− t) log

(
1− t

0.5

)
.

For t > 0.5, D(t || 0.5) > 0. Thus:

P (X > nt) ≤ exp (−n · constant) ,

which decays exponentially as n→∞. The sum of binomial coefficients∑
i>n log2(3)

(
n

i

)
normalized by 2n approaches 0 as n→∞ because the probability

P (X > n log2(3))

decays exponentially.
NB:- when we successively divide after scaling down it is mor rapid.
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4.3 Proof 4 Qodaa Ratio Test

The Qodaa Ratio Test is a method of analyzing the product of coefficients
of cases with their occurrences as power of a Kaakuma sequence. Kaakuma
sequence is a sequence of integers that fluctuating up and down based on
conditions and it is equated with two or more well defined conditions. The
Kaakuma sequence is a broad generalization of the Collatz sequence. The
Qodaa Ratio Test helps in determining the exact limit coefficients where
diverging occurs by examining the ratio of products of numerators to de-
nominators with their occurrences.

f(n) =


3n+ 1 if n ≡ 1 (mod 2)
3n−2

4
if n ≡ 2 (mod 4)

n
4

if n ≡ 0 (mod 4)

Case1 2k+1 it is half of natural numbers, it generates only one-fourth of
natural numbers of case2 and one-fourth of natural numbers of case3 with
ratio case2:case3=1/4:1/4=1:1.
Case2 4k+2 it is one-fourth of natural numbers, it generates half of natural
numbers of case1, one-fourth of natural numbers of case2 and one-fourth
of natural numbers of case3 with ratio case1:case2:case3=1/2:14:1/4=2:1:1
based on their fractions of natural numbers and Case3 4k it is one-fourth
of natural numbers, it generates in the same with case2 When we calculate
them by in-out rule they may have different occurrences amount of cases
relatively. The occurrences amount of each case is used as the power of cases
in product of coefficients.
Before starting we need to realize some points on Qodaa ratio as much as
Qodaa Ratio Test is efficient and simple to apply.

• If cases do not have proportional chances of generating other cases,
then the tree size of branches on the inverse tree map of the Kaakuma
sequence is not applicable and nearly constant growth of leaves is not
valid. Proportional cases generation validates tree size balance and vice
versa.

• If cases do not have proportional chances of generating cases, then the
generating amount must be negligible to avoid overload of tree size.

• The occurrences of cases, number of iterations, and occurrence of values
are not random, even if they cannot be precisely determined. It is pos-
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sible to infer them from behaviors discussed in Sections 3.3 (Successive
Case Division) and 3.6 (Stopping Time Iteration Group).

• Even if occurrences are probabilistic, values like 3/4 must be interpreted
and defined carefully, particularly as probabilistic value approach zero.

• if we force to vary natural law of generating of cases proportionally it is
impossible to set rule when altered by successive partition or selective
mapping .

f(n) =



k1n+c1
b1

Case 1
k2n+c2

b2
Case 2

k3n+c3
b3

Case 3
...

...
kin+ci

bi
Case i

Qodaa Ratio Test states that if

R =
∏
i

(
ki
bi

)pi

.

If R < 1, the sequence is expected to be convergent or bounded. If R > 1, di-
vergence is likely. When applying the in-out rule, these cases may have differ-
ent occurrences. The occurrences of each case are used as the power of cases
in the product of coefficients. Kaakuma sequences have many categories.
Among them, we can check simple, complex, and complicated Kaakuma se-
quences only for positive integers.

4.3.1 Simple Kaakuma Sequence

In a simple Kaakuma sequence, each case generates all cases, and we can
simply take the ratio of the cases’ fractions of natural numbers to determine
the occurrences of each case relatively. This will be consistent with the rule
of in and out.

Example 1: Base Two

f(n) =

{
kn+c
2

if n ≡ 1 (mod 2)
n
2

if n ≡ 0 (mod 2)
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Case 1: n ≡ 1 (mod 2) is half of the natural numbers, and Case 2: n ≡ 0
(mod 2) is also half of the natural numbers.

The ratio of Case 1 to Case 2 is 1/2 : 1/2 = 1 : 1 . From the Qodaa ratio
test rule: (

k

2

)1

×
(
1

2

)1

< 1 =⇒ k

4
< 1 =⇒ k < 4

The sequence f(n) with k = 3:

f(n) =

{
3n+1

2
if n ≡ 1 (mod 2)

n
2

if n ≡ 0 (mod 2)

converges to 1 for all n ∈ N with a Qodaa ratio 3/4.

Example 2: Base Three

f(n) =


kn+c
3

if n ≡ 2 (mod 3)
n+2
3

if n ≡ 1 (mod 3)
n
3

if n ≡ 0 (mod 3)

The ratio is 1/3 :1/3 : 1/3 = 1 : 1 : 1. by using Qodaa ratio rule:(
k

3

)1

×
(
1

3

)1

×
(
1

3

)1

< 1 =⇒ k/27 < 1 =⇒ k < 27

With k = 26:

f(n) =


26n−25

3
if n ≡ 2 (mod 3)

n+2
3

if n ≡ 1 (mod 3)
n
3

if n ≡ 0 (mod 3)

converges to 1 for all n ∈ N with a Qodaa ratio of 26/27.

Example 3: Base Four

f(n) =


255n−261

4
if n ≡ 3 (mod 4)

n+2
4

if n ≡ 2 (mod 4)
n+3
4

if n ≡ 1 (mod 4)
n
4

if n ≡ 0 (mod 4)
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converges to 1 for all n ∈ N with a Qodaa ratio of 255/256 = 0.996.
Compare this with the original Collatz sequence after the first successive

division:

f(n) =


9n
4

if n ≡ 0 (mod 4)
3n+2

4
if n ≡ 2 (mod 4)

3n+3
4

if n ≡ 3 (mod 4)
n+3
4

if n ≡ 1 (mod 4)

converges to 2 for all n ∈ N with a Qodaa ratio of 81/256 = 0.3045.

Example 4: Base Eight

f(n) =



16777215n−116440489
8

if n ≡ 7 (mod 8)
n+2
8

if n ≡ 6 (mod 8)
n+3
8

if n ≡ 5 (mod 8)
n+4
8

if n ≡ 4 (mod 8)
n+5
8

if n ≡ 3 (mod 8)
n+6
8

if n ≡ 2 (mod 8)
n+7
8

if n ≡ 1 (mod 8)
n
8

if n ≡ 0 (mod 8)

converges to 1 for all n ∈ N with a Qodaa ratio of 16777215/16777216 =
0.99999994.

Compare this with the original Collatz sequence after the second division:

f(n) =



27n
8

if n ≡ 0 (mod 8)
9n+4

8
if n ≡ 4 (mod 8)

9n+6
8

if n ≡ 2 (mod 8)
3n+6

8
if n ≡ 6 (mod 8)

9n+9
8

if n ≡ 7 (mod 8)
3n+7

8
if n ≡ 3 (mod 8)

3n+9
8

if n ≡ 5 (mod 8)
n+7
8

if n ≡ 1 (mod 8)

converges to 2 for all n ∈ N with a Qodaa ratio of 0.0317.
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Example 5: Base Five

f(n) =



3124n−3131
5

if n ≡ 4 (mod 5)
n+2
5

if n ≡ 3 (mod 5)
n+3
5

if n ≡ 2 (mod 5)
n+4
5

if n ≡ 1 (mod 5)
n
5

if n ≡ 0 (mod 5)

This sequence converges to 1 for all n ∈ N with a Qodaa ratio of 0.99968.

Example 6: Base Six

f(n) =



46655n−46657
6

if n ≡ 5 (mod 6)
n+2
6

if n ≡ 4 (mod 6)
n+3
6

if n ≡ 3 (mod 6)
n+4
6

if n ≡ 2 (mod 6)
n+5
6

if n ≡ 1 (mod 6)
n
6

if n ≡ 0 (mod 6)

This sequence converges to 1 for all n ∈ N with a Qodaa ratio of 0.999978.

Example 7: Base Seven

f(n) =



823542n−4200008
7

if n ≡ 6 (mod 7)
n+2
7

if n ≡ 5 (mod 7)
n+3
7

if n ≡ 4 (mod 7)
n+4
7

if n ≡ 3 (mod 7)
n+5
7

if n ≡ 2 (mod 7)
n+6
7

if n ≡ 1 (mod 7)
n
7

if n ≡ 0 (mod 7)

This sequence converges to 1 for all n ∈ N with a Qodaa ratio of 0.999998.

Example 8: Base Two with Sub-Cases

f(n) =


n
2

if n ≡ 0 (mod 2)
kn+c
4

if n ≡ 3 (mod 4)
n+3
4

if n ≡ 1 (mod 4)
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The cases share a ratio of 1/2 : 1/4 : 1/4 = 2 : 1 : 1. The Qodaa ratio is:(
1

2

)2

×
(
k

4

)1

×
(
1

4

)1

=
k

64

We can use the Qodaa Ratio Test to determine the values of k. For the
condition k/64 < 1, we have 1 < k < 64 for positive integer values of k.

Tabular Analysis of occurrences using in = out rule

Produced
Generates After solved

sum Simplified
A B C A B C

a 2a 2b 2c 4c 2c 2c 8c 2
b a b c 2c c c 4c 1
c a b c 2c c c 4c 1

When we equate the generating and generated values of each case using
the in-out rule:

a = b+ c 3b = a+ c 3c = a+ b b = c a = 2c

f(n) =


n
2

if n ≡ 0 (mod 2)
63n−59

4
if n ≡ 1 (mod 4)

n+1
4

if n ≡ 3 (mod 4)

This sequence converges to 1 for all n ∈ N with a Qodaa ratio of 63
64
.

Example 9:

f(n) =


n
2

if n ≡ 0 (mod 2)
n+1
4

if n ≡ 3 (mod 4)
n+7
8

if n ≡ 1 (mod 8)
kn+c
8

if n ≡ 5 (mod 8)

The ratio of cases is 1/2 : 1/4 : 1/8 : 1/8, which simplifies to 4 : 2 : 1 : 1.
The occurrences ratio yields:
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(
1

2

)4

×
(
1

4

)2

×
(
1

8

)1

×
(
k

8

)1

=
k

16384

For positive integer values, 1 < k < 16384.

f(n) =


n
2

if n ≡ 0 (mod 2)
n+1
4

if n ≡ 3 (mod 4)
n+7
8

if n ≡ 1 (mod 8)
16383n−81907

8
if n ≡ 5 (mod 8)

This sequence converges to 1 for all n ∈ N with a Qodaa ratio of 0.999939.

when we set k in case2:

If we set k in line 2, the product of coefficient values differs due to the
difference in power:

f(n) =


n
2

if n ≡ 0 (mod 2)
kn+c
4

if n ≡ 3 (mod 4)
n+7
8

if n ≡ 1 (mod 8)
n+3
8

if n ≡ 5 (mod 8)

To determine the limit of k using Qodaa ratio rule:

(
1

2

)4

×
(
k

4

)2

×
(
1

8

)1

×
(
1

8

)1

=
k2

16384
=⇒ 1 < k < 128

f(n) =


n
2

if n ≡ 0 (mod 2)
127n−369

4
if n ≡ 3 (mod 4)

n+7
8

if n ≡ 1 (mod 8)
n+3
8

if n ≡ 5 (mod 8)

This sequence converges to 1 for all n ∈ N with a Qodaa ratio of 127/128.
when we set k in case1:

f(n) =


kn+c
2

if n ≡ 0 (mod 2)
n+1
4

if n ≡ 3 (mod 4)
n+7
8

if n ≡ 1 (mod 8)
n+3
8

if n ≡ 5 (mod 8)
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Using Qodaa ratio rule

(
k

2

)4

×
(
1

4

)2

×
(
1

8

)1

×
(
1

8

)1

=
k4

16384
=⇒ 1 < k <

√
128

f(n) =


11n−2

2
if n ≡ 0 (mod 2)

n+1
4

if n ≡ 3 (mod 4)
n+7
8

if n ≡ 1 (mod 8)
n+3
8

if n ≡ 5 (mod 8)

The sequence converges to 1 for all n ∈ N with a Qodaa ratio of 11/
√
128.

Example 10

f(n) =



n
2

if n ≡ 0 (mod 2)
n−1
8

if n ≡ 1 (mod 8)
n−3
8

if n ≡ 3 (mod 8)
n+3
8

if n ≡ 5 (mod 8)
kn+c
8

if n ≡ 7 (mod 8)

With ratio 1/2 : 1/8 : 1/8 : 1/8 : 1/8 = 4 : 1 : 1 : 1 : 1:(
1

2

)4

×
(
1

8

)1

×
(
1

8

)1

×
(
1

8

)1

×
(
k

8

)1

=
k

65536
=⇒ 1 < k < 65536

when we substitute k

f(n) =



n
2

if n ≡ 0 (mod 2)
n−1
8

if n ≡ 1 (mod 8)
n−3
8

if n ≡ 3 (mod 8)
n+1
8

if n ≡ 7 (mod 8)
65535n−327667

8
if n ≡ 5 (mod 8)

Converges to 0 for all n ∈ N, with QR = 65535/65536.
When shifting the coefficient in the first line:(

k

2

)4

×
(
1

8

)1

×
(
1

8

)1

×
(
1

8

)1

×
(
1

8

)1

< 1 =⇒ 1 < k < 16
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f(n) =



15n−28
2

if n ≡ 0 (mod 2)
n+7
8

if n ≡ 1 (mod 8)
n+5
8

if n ≡ 3 (mod 8)
n+3
8

if n ≡ 5 (mod 8)
n+1
8

if n ≡ 7 (mod 8)

Converges to 1 for all n ∈ N, with QR = 15/16.

Example 11

f(n) =



n
2

if n ≡ 0 (mod 2)
n+1
4

if n ≡ 3 (mod 4)
n+7
8

if n ≡ 1 (mod 8)
n+11
16

if n ≡ 5 (mod 16)
kn+c
16

if n ≡ 13 (mod 16)

With ratio 1/2 : 1/4 : 1/8 : 1/16 : k/16 = 8 : 4 : 2 : 1 : 1:(
1

2

)8

×
(
1

4

)4

×
(
1

8

)2

×
(

1

16

)1

×
(

k

16

)1

< 1 =⇒ 1 < k < 230

f(n) =



n
2

if n ≡ 0 (mod 2)
n+1
4

if n ≡ 3 (mod 4)
n+7
8

if n ≡ 1 (mod 8)
n+11
16

if n ≡ 5 (mod 16)
230n−n−13×230+45

16
if n ≡ 13 (mod 16)

Converges to 1 for all n ∈ N, with QR = 230−1
230

.
When shifting k in line 3:(

1

2

)8

×
(
1

4

)4

×
(
k

8

)2

×
(

1

16

)1

×
(

k

16

)1

< 1 =⇒ 1 < k < 215
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f(n) =



n
2

if n ≡ 0 (mod 2)
n+1
4

if n ≡ 3 (mod 4)
32767n−32751

8
if n ≡ 1 (mod 8)

n+11
16

if n ≡ 5 (mod 16)
n+3
16

if n ≡ 13 (mod 16)

Converges to 1 for all n ∈ N.
When shifting k in line 2:(

1

2

)8

×
(
k

4

)4

×
(
1

8

)2

×
(

1

16

)1

×
(

k

16

)1

< 1 =⇒ 1 < k < 215/2

f(n) =



n
2

if n ≡ 0 (mod 2)
181n−535

4
if n ≡ 3 (mod 4)

n+7
8

if n ≡ 1 (mod 8)
n+11
16

if n ≡ 5 (mod 16)
n+3
16

if n ≡ 13 (mod 16)

Converges to 1 for all n ∈ N.
When shifting k in line 1:

(
k

2

)8

×
(
1

4

)4

×
(
1

8

)2

×
(

1

16

)1

×
(

k

16

)1

< 1⇒ 1 < k < 215/4

f(n) =



13n−4
2

if n ≡ 0 (mod 2)
n+1
4

if n ≡ 3 (mod 4)
n+7
8

if n ≡ 1 (mod 8)
n+11
16

if n ≡ 5 (mod 16)
n+3
16

if n ≡ 13 (mod 16)

Converges to 1 for all n ∈ N.

4.3.2 Complex Kaakuma Sequence

In a complex Kaakuma sequence, at least one case is never generated by
one or more cases. To analyze limit of converging values complex Kaakuma
sequence, we use a tabular format to get the relative occurrence of each case.
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Example 12

f(n) =

{
3n+ 1 if n ≡ 1 (mod 2)
n
2

if n ≡ 0 (mod 2)

(original Collatz sequence)
We organize and represent each line of conditions or cases with capital

letters A,B,C to show producing amounts and small letters a, b, c to show
produced amounts with their order.

Produced
Produces Solved in Terms of b

Sum Simplified
A B A B

a b b b 1
b a b b b 2b 2

a = b, QR = 33 ×
(
1
2

)2
= 3

4

Example 13

f(n) =


3n+ 1 if n ≡ 0 (mod 2)
3n+1

2
if n ≡ 3 (mod 4)

n−1
4

if n ≡ 1 (mod 4)

Converges to 1 for all n ∈ N, with QR = 27
64
.

Generated
Generates Solved in Terms of c

Sum Simplified
A B C A B C

a 2c 2c 2c 1
b a b c c 2c c 4c 2
c a b c c 2c c 4c 2

2a = 2c, b = a+ c, 3c = a+ b, a = c, b = 2c, QR = 31×
(
3
2

)2× (1
4

)2
= 27

64

Example 14

f(n) =


n
2

if n ≡ 0 (mod 2)
kn+c
4

if n ≡ 3 (mod 4)
n+1
2

if n ≡ 1 (mod 4)
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When we use the generating and generated of each case, in=out rule.

Produced
Produces Solved in Terms of a

Sum Simplified
A B C A B C

a 2a 2b 2a 2a 4a 1
b a b c a a 2a 4a 1
c a b c a a 2a 4a 1

2a = 2b, 3b = a+ c, c = a+ b→ a = b, c = 2a(
1

2

)1

×
(
k

4

)1

×
(
1

2

)1

=
k1

24
→ 1 < k1 < 24 → 1 < k < 24

Example 15

f(n) =


n
2

if n ≡ 0 (mod 2)
n+1
4

if n ≡ 3 (mod 4)
n+3
4

if n ≡ 1 (mod 8)
kn+c
8

if n ≡ 5 (mod 8)

Produced
Produces Solved in Terms of d

Sum Simplified
A B C D A B C D

a 4a 4b 4d 12d 8d 4d 24d 3
b 2a 2b 2c 2d 6d 4d 4d 2d 16d 2
c a b c d 3d 2d 2d d 8d 1
d a b c d 3d 2d 2d d 8d 1

a = b+ d, 3b = a+ c+ d, 3c = a+ b+ d, 7d = a+ b+ c, so c = 2d, b = 2d,
a = 3d

(
1

2

)3

×
(
1

4

)2

×
(
1

4

)1

×
(
k

8

)1

=
k1

212
→ 1 < k1 < 212 → 1 < k < 212

f(n) =


n
2

if n ≡ 0 (mod 2)
n+1
4

if n ≡ 3 (mod 4)
n+3
4

if n ≡ 1 (mod 8)
4095n−20459

8
if n ≡ 5 (mod 8)
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converges to 1 ∀n : n ∈ N, QR = 4095
4096

When we shift k in line 2:(
1

2

)3

×
(
k

4

)2

×
(
1

4

)1

×
(
1

8

)1

=
k2

212
→ 1 < k2 < 212 → 1 < k < 26

f(n) =


n
2

if n ≡ 0 (mod 2)
63n−181

4
if n ≡ 3 (mod 4)

n+3
4

if n ≡ 1 (mod 8)
n+3
8

if n ≡ 5 (mod 8)

converges to 1 ∀n : n ∈ N, QR = 63
64

When we shift k in line 1:(
k

2

)3

×
(
1

4

)2

×
(
1

4

)1

×
(
1

8

)1

=
k3

212
→ 1 < k3 < 212 → 1 < k < 24

f(n) =


15n−4

2
if n ≡ 0 (mod 2)

n+1
4

if n ≡ 3 (mod 4)
n+3
4

if n ≡ 1 (mod 8)
n+3
8

if n ≡ 5 (mod 8)

converges to 1 ∀n : n ∈ N, QR = 15/16

Example 16

f(n) =


n
2

if n ≡ 0 (mod 2)
n−1
2

if n ≡ 3 (mod 4)
n+1
2

if n ≡ 1 (mod 8)
kn+c
8

if n ≡ 5 (mod 8)

Produced
Produces Solved in Terms of d

Sum Simplified
A B C D A B C D

a 4a 4d 4d 4d 8d 1
b 2a 2b 2d 2d 4d 2d 8d 1
c a b c d d 2d 4d d 8d 1
d a b c d d 2d 4d d 8d 1
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a = d, b = a+ d, b = 2d, c = a+ b+ d, c = 2b, 7d = a+ b+ c

From these equations, we find:

c = 4d, b = 2d, a = d

(
1

2

)1

×
(
1

2

)1

×
(
1

2

)1

×
(
k

8

)1

=
k

23

k

23
=

k

8
=

k1

26

1 < k1 < 26 → 1 < k < 26

f(n) =


n
2

if n ≡ 0 (mod 2)
n−1
2

if n ≡ 3 (mod 4)
n+1
2

if n ≡ 1 (mod 8)
55n+197

8
if n ≡ 5 (mod 8)

The function f(n) converges to 1 for all n ∈ N, and QR = 55
64
.

Example 17

f(n) =



n
2

if n ≡ 0 (mod 2)
n−1
2

if n ≡ 3 (mod 8)
n−5
2

if n ≡ 7 (mod 8)
n+1
2

if n ≡ 1 (mod 8)
kn+c
8

if n ≡ 5 (mod 8)

Produced
Produces Solved in Terms of e

Sum Simplified
A B C D E A B C D E

a 4a 4e 4e 4e 8e 4
b a e e e 2e 1
c a e e e 2e 1
d a b c d e e e e 4e e 8e 4
e a b c d e e e e 4e e 8e 4
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a = e, 2b = a+ e, 2c = a+ e, d = a+ b+ c+ e, 7e = a+ b+ c+ d

a = b = c = e, d = 4e(
1

2

)4

×
(
1

2

)1

×
(
1

2

)1

×
(
1

2

)4

×
(
k

8

)4

=
k4

222

1 < k4 < 222 → 1 < k < 25.5

f(n) =



n
2

if n ≡ 0 (mod 2)
n−1
2

if n ≡ 3 (mod 8)
n−5
2

if n ≡ 7 (mod 8)
n+1
2

if n ≡ 1 (mod 8)
45n−33

8
if n ≡ 5 (mod 8)

Converges to 1 for all n ∈ N, QR = 45/32
√
2.

Example 18

f(n) =


n
2

if n ≡ 0 (mod 2)
n+1
4

if n ≡ 3 (mod 4)
kn+c
2

if n ≡ 1 (mod 4)

Generated
Generates Solved in Terms of a

Sum Simplified
A B C A B C

a 2a 2b 0 2a 2a 0 4a 2
b a b c a a 2a 4a 2
c a b 0 a a 0 2a 1

a = b, 3b = a+ c, c = a+ b, c = 2a = 2b

(
1

2

)2

×
(
1

4

)2

×
(
k

2

)1

< 1 =⇒ 1 < k < 27

f(n) =


n
2

if n ≡ 0 (mod 2)
n+1
4

if n ≡ 3 (mod 4)
126n−120

2
if n ≡ 1 (mod 4)

Converges to 1 for all n ∈ N, QR = 63
64
.
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Example 19

f(n) =
{

3n+3·2i−1−3
2i

if n = 2ik + 2i−1 + 1 for i ≥ 1

where i ranges from 1 to ∞.

Converges to 3 for all n ∈ N with n > 1 and QR→ 0.

4.3.3 Complicated Kaakuma Sequence

Equations with partially generating cases are impossible to apply the Qodaa
ratio test directly. This highlights the elegance of the Qodaa ratio test and
its insightful application to any well-stated Kaakuma sequence.

If it is not done with care and attention, it will be full of subtle errors.

Example 20

f(n) =


n
2

if n ≡ 0 (mod 2)
n
3

if n ≡ 3 (mod 6)
kn+1

2
if n ≡ 1 (mod 6) or n ≡ 5 (mod 6)

Case3 generates 6k, 6k+1, 6k+3 and 6k+4 that is 2/3 of case1, case2 and
1/2 of case3. The occurrences of a case also partially differ, to avoid subtle
errors we have to dismantle all cases.

f(n) =



kn+1
2

if n ≡ 1 (mod 6)
n
2

if n ≡ 2 (mod 6)
n
3

if n ≡ 3 (mod 6)
n
2

if n ≡ 4 (mod 6)
kn+1

2
if n ≡ 5 (mod 6)

n
2

if n ≡ 0 (mod 6)

ed
Produces Solved in Terms of b

Sum Simplified
A B C D E F A B C D E F

a a b c 3b b 2b 6b 3
b d 2b 2b 1
c c e f 2b 2b 2b 6b 3
d a b 3b b 4b 2
e c d 2b 2b 4b 2
f e f 2b 2b 4b 2
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a = b+ c d = 2b 2c = e+ f 2d = a+ b 2e = c+ d

f = e a = 3b c = d = e− f = 2b(
k

2

)3

×
(
1

2

)1

×
(
1

3

)3

×
(
1

2

)2

×
(
k

2

)2

×
(
1

2

)2

< 1

k5 < 210 × 33 =⇒ k < 7.7327

f(n) =


n
2

if n ≡ 0 (mod 2)
n
3

if n ≡ 3 (mod 6)
7n+1

2
if n ≡ 1 (mod 6) or n ≡ 5 (mod 6)

Converges to 1 with QR = 0.905.
When coefficient sample is 6k + 5 it alter generating cases.

f(n) =



kn+1
2

if n ≡ 1 (mod 6)
n
2

if n ≡ 2 (mod 6)
n
3

if n ≡ 3 (mod 6)
n
2

if n ≡ 4 (mod 6)
kn+1

2
if n ≡ 5 (mod 6)

n
2

if n ≡ 0 (mod 6)

For the coefficient, we can use 5 instead of 6p+5 to get generating sample.
Note that A and E vary depending on what they generate:

ed
Produces Solved in Terms of b

Sum Simplified
A B C D E F A B C D E F

a b c e b 4b 3b 8b 4
b d 2b 2b 1
c a c f 4b 4b 4b 12b 6
d b e b 3b 4b 2
e c d 4b 2b 6b 3
f a f 4b 4b 8b 4

2a = b+ c+ e 2b = d 2c = a+ f 2d = b+ e 2e = c+ d

f = a a = c = f = 4b d = 2b e = 3b(
k

2

)4

×
(
1

2

)1

×
(
1

3

)6

×
(
1

2

)2

×
(
k

2

)3

×
(
1

2

)4

< 1
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=⇒ k7 < 214 × 36 =⇒ k < 10.257

f(n) =


n
2

if n ≡ 0 (mod 2),
n
3

if n ≡ 3 (mod 6),
5n+1

2
if n ≡ 1 (mod 6) or n ≡ 5 (mod 6).

Converges to 1 with QR = 0.48747

Example 21:

f(n) =


n
2

if n ≡ 0 (mod 2) —3/6,
n
3

if n ≡ 3 (mod 6) —1/6,
kn+3

2
if n ≡ 1 (mod 6) or n ≡ 5 (mod 6) —2/6.

f(n) =



kn+3
2

if n ≡ 1 (mod 6) —A(c,f),
n
2

if n ≡ 2 (mod 6) —B(a,d),
n
3

if n ≡ 3 (mod 6) —C(a,c,e),
n
2

if n ≡ 4 (mod 6) —D(b,e),
kn+3

2
if n ≡ 5 (mod 6) —E(c,f),

n
2

if n ≡ 0 (mod 6) —F(c,f).

Generates After solved in terms of 1/e
Sum Simplified

A B C D E F A B C D E F
a b c 2 2 2
b d 0 0
c a c e f 1 2 1 2 6 6
d b 0 0
e c d 2 2 2
f a e f 1 1 2 4 4

2a=b+c 2b=d 2c=e+f 2d=b 2 e=c+d f=a+e b=0 d=0 a=e
c=2e f=2e

Note:- if a sequence is semi-cycled or a case is not generated it is not
considered as Kaakuma sequence
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Example 22

f(n) =



n
2

if n ≡ 0 (mod 2)
n+1
2

if n ≡ 7 (mod 8)
n+3
4

if n ≡ 5 (mod 8)
n+5
8

if n ≡ 3 (mod 8)

kn+ c if n ≡ 1 (mod 8)

We split cases that are partially generated to avoid complexity:

f(n) =



n
2

if n ≡ 2 (mod 4) – A(d, e, f, g)
n
4

if n ≡ 4 (mod 8) – B(d, e, f, g)
n
8

if n ≡ 0 (mod 8) – C(all)
n+1
2

if n ≡ 7 (mod 8) – D(b, c)
n+3
4

if n ≡ 5 (mod 8) – E(a, b, c)
n+5
8

if n ≡ 3 (mod 8) – F (all)

kn+ c if n ≡ 1 (mod 8) – G(c)

Generates After solving in terms of 1/ f
A B C D E F G A B C D E F G

a 2c 2e 2f 30/7 4 2
b c d e f 15/7 4 2 1
c c d e f g 15/7 4 2 1 8
d a b c f 18/7 16/7 15/7 1
e a b c f 18/7 16/7 15/7 1
f a b c f 8/7 16/7 15/7 1
g a b c f 18/7 16/7 15/7 1

sum 72/7 64/7 120/7 8 8 8 8
simplified 9 8 15 7 7 7 7

g = a+ b+ c+ f 7f = a+ b+ c 4e = a+ b+ c+ f

2d = a+ b+ c+ f 7c = d+ e+ f + g 4b = c+ d+ e+ f

2a = c+ e+ f

when we solve it in terms of f

g = 8f e = 2f d = 4f c = 15f/7 b = 16f/7 a = 18f/7
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(1/2)9 × (1/4)8 × (1/8)15 × (1/2)7 × (1/4)7 × (1/8)7 × k7 < 1

⇒ k7 < 2112 ⇒ k < 216

When we substitute k:

f(n) =



n
2

if n ≡ 0 (mod 2)
n+1
2

if n ≡ 7 (mod 8)
n+3
4

if n ≡ 5 (mod 8)
n+5
8

if n ≡ 3 (mod 8)

65535n− 65519 if n ≡ 1 (mod 8)

The sequence Converges to 1 for all n ∈ N, QR = 65535/65536.
Note: This is a complicated form a sequence in Example 10 where case2

and case5 generate case1 partially.
All these different types of examples show how Qodaa Ratio Test Works

even in complicated equations. Qodaa ratio test is simple and rigor to apply.
Beyond this there are some points to study in future like number of cycles,
interval of constants a sequence to converges, where diverging will start for
a diverging kaakuma sequence.

4.4 Proof 3: Computational Analysis

Even though computational analysis cannot serve as a rigorous proof of the
Collatz conjecture, it can provide convincing evidence until more rigorous
proofs, like Proof 1 and Proof 2, are available. In some challenging cases,
and based on their argument level, computational results must be considered,
at least to some extent.

4.4.1 Constants and Bounded Values

There are several distinct constants and bounded values observed in the
Collatz sequence as discussed in Behavior 3.5.

The average stopping time of the Collatz sequence is a constant, similar
to the constants π and e. The function f(n) is defined as:

f(n) =

{
3n+1

2
if n ≡ 1 (mod 2)

n
2

if n ≡ 0 (mod 2)
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The average stopping time of this sequence is approximately 3.49269. The
key point is that if the average stopping time is constant and consistent with
very small variation on both sides, it is almost impossible to divert from this
behavior after 1020 or 1040. If the Collatz conjecture were invalid, this would
imply that for 2120, the stopping time t would not align as:

(
2120−1∑
n=2

t)/(2120 − 1) = 3.49269

but:

(
2120∑
n=2

t)/2120 =∞

which is impossible.

4.4.2 Inverse Map of Collatz Sequence

The inverse map of the Collatz sequence covers all natural numbers starting
from root 1. During this process, its expansion rate is 33.33

4.4.3 Ratio of Stopping Time

The ratio of stopping time to log2(n) is bounded and less than 5.5. It is
also bounded and less than 5, and small numbers such as 28 and 32 can be
adjusted by translation. This can be verified by computer programs using
high-rate stopping time values like 2k. This constant is analogous to the ratio
of primes in natural numbers, π(x). For example:

2k
4× (26k − 1)

9

8× (218k − 1)

27

16× (254k − 1)

81

32× (2162k − 1)

243

4.4.4 Expected Huge Iterations

In the Collatz sequence, it is not surprising to encounter relatively high it-
eration numbers. As seen in Behavior 3.8, numbers with powers of 2 have
relatively high iterations, and numbers that reach powers of 2 before decreas-
ing from the starting numbers also have high iterations. Numbers less than
2200000 are expected to have relatively high iterations, and the constants are
kept as described in Behavior 3.5.3 and 3.5.4.
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4.4.5 Special and Extreme Contradiction in Cycle Case

In the cycle case, the number of iterations needed to create a cycle is n/10.
If 1020 is the first number to create a non-trivial cycle, it must have 1019

iterations to the minimum, as discussed in Behavior 3.7. This is contradictory
because, based on Analysis 3.5.2, it should only be up to 5.5 × 60 = 330 at
the maximum.

4.4.6 Collatz Sequence with Falling Values

If there exists a non-Collatz number, its sequence must include iteration
group numbers or falling values like 259k+28, 254k+64. These falling values
lead to other falling points and make the sequence excessively dense.

4.4.7 Infinite Paradigm-Shifting Kaakuma Sequence

An example of an infinite paradigm-shifting Kaakuma sequence is given by
65535n − 327667. As seen in Proof 1 Example 10 and Example 25, this
sequence has over 2 billion iterations and a height greater than 1080. It takes
15 days to complete iterations for a small number, 9757. This is a highly
paradigm-shifting example of a Kaakuma sequence, with many more such
cases existing.

Conclusion

The Collatz conjecture is considered true because of the following reasons:

1. Contradiction in tree size balance

2. Qodaa Ratio Test

3. Computational Analysis
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