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Abstract
This work presents a foundational reconstruction of arithmetic and algebra based on the principle of relational
finitude. Rejecting the assumption of actual infinity, we develop a finite, frame-dependent mathematical framework
in which conventional number systems—integers, rationals, reals, and complex numbers-emerge as asymptotic
projections or epistemic constructs derived from a closed finite field F𝑃 . Core arithmetic operations are reinterpreted
as internal symmetries of the finite field, and conventional structures such as signed integers, rational fractions,
and complex planes are systematically reconstructed as pseudo-numbers, defined relationally and locally with
respect to a chosen frame of reference. Imaginary and transcendental constants 𝑖, 𝑒 and 𝜋 are derived as specific
elements of F𝑃 with important structural roles. We show that the resulting number classes possess all necessary
properties for consistent computation, approximation, and algebraic closure, while offering the potential resolution
of classical paradoxes of logic and set theory by replacing absolute notions with context-dependent representations.
The proposed system provides a coherent and physically grounded alternative to standard mathematical formalism,
suitable for the description of discrete, informationally finite physical systems.

1. Introduction

1.1. Relational Foundations and the Role of Finitude in Mathematics

A growing body of work in both mathematics and physics suggests that foundational structures may be
more coherently understood through a relational or relativistic lens [18, 14, 24]. In such a framework,
mathematical entities acquire meaning not as intrinsic absolutes, but through their role within a system
defined by internal symmetries, reference points, and operational context. Numbers like 0, 1, or even
complex 𝑖, are not fixed metaphysical truths, but functionally designated positions—origins, units, or
rotation axes—established by a particular framing. Just as in modern physics the concepts of space, time,
and simultaneity are frame-dependent and observer-relative [14], so too might mathematical meaning
be seen as emergent from internal structural relations rather than assumed from external absolutes.

This perspective invites a fresh examination of one of the most enduring assumptions in mathematics:
the acceptance of actual infinity as a foundational principle. From the continuum of the real number
line to infinite-dimensional Hilbert spaces, and from set-theoretic universes to infinitesimal analysis, the
idea of infinity plays a central structural role. It is not merely a calculational tool, but a default axiom
embedded in the formalism of contemporary theory.

And yet, this assumption invites ongoing reflection. Infinity remains a concept of extraordinary
power but also of unresolved philosophical status and unverified physical realization. No empirical
measurement or finite computation has ever accessed an actually infinite entity. Within a relativistic
view of mathematics, such concepts may instead be interpreted as emergent limits, useful abstractions,
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or placeholders for symbolic overflow—arising when finite systems attempt to describe behaviors or
relationships that exceed their intrinsic encoding capacity.

In our recent critical analysis [1], we have argued that concepts such as infinity, randomness, and
falsehood are not intrinsic features of reality but rather epistemic placeholders—artifacts of representa-
tional overflow that arise when finite systems attempt to describe more than they can internally encode.
Within this view, infinity emerges not as a metaphysical reality, but as a signal of symbolic saturation—a
limit of formal self-reference within a finite, coherent, informationally complete universe.

Motivated by this epistemic perspective, we hereby propose a concrete mathematical framework: a
relativistic algebra constructed entirely over a finite number system. Our objective is to demonstrate
that the conventional number systems—integers, rationals, reals, and complex numbers—can be derived
as asymptotic approximations, coordinate projections, or formal extensions of a fundamental, finite
arithmetic. Rather than treating finiteness as a constraint to be transcended, we take it as the generative
substrate of mathematical structure. In this view, the infinite scaffolding of classical mathematics arises
as an emergent representation, valid only under particular framing conditions and in certain asymptotic
limits. In the proposed relativistic mathematical framework, entities acquire meaning only through their
role within a specific frame of reference.

This relational paradigm finds a natural analog in the development of modern physics. The transition
from Newtonian mechanics to Einsteinian relativity redefined the very notions of space, time, and simul-
taneity—not as absolute quantities but as frame-dependent observations shaped by internal consistency
and symmetry. Likewise, a relativistic mathematics replaces external absolutes with internal coherence,
viewing all mathematical structures and operations as inherently contextual, subject to transformation,
and defined through symmetry relations within finite systems.

Such a shift enables a more consistent and physically meaningful foundation for mathematics,
especially in the domain of closed, informationally finite systems. It offers a unified perspective that
bridges abstract algebra, geometry, and modern physical theory, and sets the stage for a reconstruction
of mathematical reasoning grounded in self-contained, finite, and relational structures.

The present framework resonates with several contemporary perspectives that question the ontolog-
ical status of the continuum and advocate for finitely constructed alternatives. In particular, Smolin
has emphasized the need for a relational, observer-dependent formulation of physical laws, suggest-
ing that the continuum is merely an idealization beyond the reach of internal observers [29, 30].
Similarly, D’Ariano and collaborators have reconstructed quantum theory from finite, informationally
grounded axioms, demonstrating that core features of quantum mechanics can emerge without invoking
infinite-dimensional Hilbert spaces [13]. From a mathematical standpoint, the approach aligns with the
ultrafinitist program developed by Benci and Di Nasso, which offers a rigorous alternative to classical
cardinality through the theory of numerosities and bounded arithmetic [4, 3].

Furthermore, the ultrafinitist school—pioneered by Yessenin-Volpin and Parikh—takes finitude even
further by denying the meaningful existence of “too large” numbers and insisting on feasibility as a
foundational constraint. Formalizations of ultrafinitism and feasibility arithmetic appear in works such
as [35, 25, 28, 2], which explore the proof-theoretic and computational consequences of enforcing strict
constructive bounds on arithmetic.
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Ultrafinitism enforces an a priori cutoff on numerical existence—only those magnitudes deemed
“feasible” within a human or machine resource bound are admitted. By contrast, our relativistic frame-
work treats finiteness not as a hard barrier but as a contextual framing condition: We allow arbitrarily
large numbers, so “size” is always relative to the chosen frame. Infinite structures, such as integers and
rationals emerge asymptotically or as coordinate projections, rather than being forbidden. Arithmetic
operations become internal symmetries of a finite system, rather than operations constrained by external
feasibility checks. This shift replaces the ultrafinitist’s absolute feasibility threshold with a relational
notion of scope: any number “exists” within some finite frame, while “infinity” itself appears as a relative
point beyond the horizon of observability and algebraic accessibility.

To support this framework, we further draw upon several key developments in mathematics and
physics. The foundational critique of actual infinity has been explored in works such as [8, 34], which
emphasize the constructive and finitist approaches to mathematics. The relational perspective on math-
ematical objects aligns with category theory [18], where objects are defined by their morphisms and
relationships rather than intrinsic properties. Additionally, the parallels between relativistic mathemat-
ics and modern physics are inspired by the symmetry principles in [14, 24], which highlight the role
of invariance and frame-dependence in physical laws. Finally, the informational limits of finite systems
and their implications for mathematical representation are discussed in [10, 21].

In presenting this framework, we are mindful of a subtle but persistent challenge: the tension between
purely structural formalism and the inevitable intuitions of physical space and time. For the sake of
incremental clarity, in this work, we attempt to keep the description of the underlying constructs as
abstract and rooted in internal symmetries and relational operations. We are trying to defer the explicit
treatment of the physical interpretation for future work. Nevertheless, certain physical associations
become difficult to avoid. In particular, the article presumes the existence of a finite universe, yet this
universe is not assumed to be static or externally bounded. Its finiteness, like all properties in the
proposed model, is not absolute but relativistic—defined with respect to the observer’s internal frame of
reference. The transition from structural symmetry to perceived dynamics, and from closure to apparent
unbounded evolution, is treated as a frame-dependent transformation rather than an ontological shift.

2. Relativistic Numbers

2.1. The Finite Ring Z𝑄

Let us consider a conventional definition of a finite ring Z𝑄 that is defined as the set of integers modulo
𝑄, given by

Z𝑄 := {0, 1, 2, . . . , 𝑄 − 1},

equipped with addition and multiplication operations defined modulo 𝑄. That is, for any 𝑎, 𝑏 ∈ Z𝑄,

𝑎 + 𝑏 := (𝑎 + 𝑏) mod 𝑄, 𝑎 · 𝑏 := (𝑎 · 𝑏) mod 𝑄.

The structure (Z𝑄, +, ·) forms a commutative ring with identity. It is a field if and only if 𝑄 is prime.
The ring Z𝑄 provides a canonical example of a finite number system, in which all operations are
closed, and every element has a unique representative within the finite set. It plays a central role in
modular arithmetic, coding theory [22], cryptography [23], and discrete algebraic structures [5]. A
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Figure 1: Diagram of a finite Ring Z13, typically visualized as a circle on a 2D plane that illustrates its
periodicity and rotational symmetry under the arithmetic operation of addition.

typical diagram of a finite ring Z𝑄, where 𝑄 = 13, is shown in Figure 1. We would like to specifically
note that such a diagram is typically visualized as a circle on a 2D plane that illustrates its periodicity
and rotational symmetry under the arithmetic operation of addition.

Proposition 1 (Relativity of Representation Labels in Z𝑄). Let Z𝑄 = {0, 1, 2, . . . , 𝑄 − 1} be the finite
field of integers modulo a prime𝑄. The elements ofZ𝑄 form a complete and closed set of representations
under modular addition and multiplication. However, the specific numeric labels assigned to these
elements—particularly the designation of 0 as the additive identity—are intrinsically relative and carry
no absolute meaning within the field itself.

More precisely, the field Z𝑄 is invariant under relabeling of its elements via any bijective affine
transformation of the form

𝑘 ↦→ 𝑎 · 𝑘 + 𝑏 mod 𝑄,

where 𝑎 ∈ Z×
𝑄

and 𝑏 ∈ Z𝑄. Such transformations preserve the field structure and allow any element to
be reinterpreted as the origin. In this sense, the element labeled 0 is not uniquely privileged; it simply
represents the additive identity with respect to a chosen reference frame. The same applies to the label
1, which identifies the multiplicative unit only relative to a particular scaling.

Therefore, in the absence of an externally imposed or contextually declared frame—such as one
defined by a designated pair (0, 1)—the labels in Z𝑄 are relational rather than absolute. The roles of
“zero” and “one” are thus not the fundamental properties of the elements themselves, but a conse-
quence of the system’s framing, making all representations in Z𝑄 symmetric and interchangeable under
coordinate transformation. To define our system unambiguously, we must specify a reference frame or
coordinate system (0, 1) within the context of Z𝑄, which then becomes a framed finite ring Z𝑄 (0, 1).

We will henceforth assume all such systems to be framed systems Z𝑄 (0, 1) and will denote the
corresponding finite ring as Z𝑄 for simplicity, unless explicitly stated otherwise.
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2.2. Arithmetic Operations as Symmetries in Z𝑄

In the finite ring Z𝑄, the basic arithmetic operations—addition, multiplication, and exponentiation—can
be understood as manifestations of the underlying symmetries and structural transformations of the ring.

Addition corresponds to a cyclic symmetry. The additive group (Z𝑄, +) forms a finite cyclic group
of order 𝑄, generated by the element 1. Each addition operation 𝑎 ↦→ 𝑎 + 𝑘 (mod 𝑄) can be viewed as
a rotation by 𝑘 steps around a circular configuration of the elements of Z𝑄. This symmetry reflects the
homogeneity and periodicity of the additive structure [12].

Multiplication reflects a scaling symmetry within the ring. The operation 𝑎 ↦→ 𝑎 · 𝑘 (mod 𝑄)
corresponds to a dilation or contraction of the additive structure, where the effect of multiplication
is constrained by the modulus. The multiplicative structure of Z𝑄 is more subtle: if 𝑄 is prime,
Z×
𝑄

= Z𝑄 \ {0} forms a finite multiplicative group, and multiplication becomes a permutation of the
nonzero elements. If 𝑄 is composite, the presence of zero divisors disrupts this structure, but the
operation still defines a transformation governed by modular symmetry [26].

Exponentiation, or the operation 𝑎 ↦→ 𝑎𝑛 (mod 𝑄), represents iterated applications of the mul-
tiplicative symmetry. When restricted to the multiplicative group Z×

𝑄
, this operation defines power

maps and automorphisms that reveal the group-theoretic structure and internal symmetries of the ring.
In particular, when 𝑄 is prime, exponentiation captures cyclic subgroup structures and encodes deep
number-theoretic properties such as primitive roots and residue classes [9].

Thus, the basic arithmetic operations in Z𝑄 are not arbitrary—they are algebraic expressions of
the ring’s internal symmetries. They define how elements of the system transform under structured,
invertible actions, and they reveal the harmonious regularity inherent in finite arithmetic. Let us now
focus on the case of a prime 𝑄. In order to emphasize that 𝑄 is a Prime, we will henceforth denote it as
𝑃 and the corresponding finite framed field as F𝑃 .

Proposition 2 (Morphology and Dimensionality of a finite field F𝑃). Let 𝑃 ∈ N be a prime number. The
finite field F𝑃 and its abstract structure—its morphology—is determined by the symmetries induced
by its fundamental arithmetic operations: addition, multiplication, and exponentiation. Each of these
operations corresponds to a distinct and well-defined class of internal symmetry:

• Addition modulo 𝑃 defines a one-dimensional cyclic symmetry, given by the additive group
(F𝑃 , +), which is isomorphic to the cyclic group Z/𝑃Z. This symmetry reflects uniform translation
across the representation space.

• Multiplication modulo 𝑃 on the nonzero elements defines a second independent symmetry axis.
The multiplicative group (F×

𝑃
, ·) is cyclic of order 𝑃 − 1, introducing a discrete scaling symmetry

across the system. Each nonzero element has a unique inverse, and multiplicative generators induce
full cycles over the group.

• Exponentiation modulo 𝑃, defined as 𝑎 ↦→ 𝑎𝑛, generates a family of automorphisms over F×
𝑃

,
capturing higher-order cyclic structures and subgroup hierarchies. This operation encodes internal
periodicities and multiplicative phase structures.

Together, these operations define a structured, multi-symmetric morphology for F𝑃 , which may be
understood as a discrete two-dimensional algebraic manifold embedded in a three-dimensional abstract
symmetry space. The dimensionality is determined by the triad of generating operations—additive
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(a) F13 , 𝑁 = 2, 𝑎 = 12

(b) F13 , 𝑁 = 3, 𝑎 = 3

(c) F13 , 𝑁 = 4, 𝑎 = 5

Figure 2: State diagram for finite framed field F13 from the perspective of (left) additive symmetry
dimension and (right) multiplicative symmetry dimension of ranks (a) 𝑁 = 2, (b) 𝑁 = 3 and (c) 𝑁 = 4.
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(a) F13 , 𝑁 = 6, 𝑎 = 4

(b)𝑈13 (0, 1, 2) , 𝑁 = 12, 𝑎 = 2

Figure 3: State diagram for finite framed field F13 from the perspective of (left) additive symmetry
dimension and (right) multiplicative symmetry dimension of ranks (a) 𝑁 = 6 and (b) 𝑁 = 12.

rotation, multiplicative scaling, and exponential iteration—each contributing an independent axis of
internal transformation.

It is important to note that the concept of operations as symmetries is not new. In fact, it is a well-
established concept in the field of algebra. The operations of addition and multiplication in a finite
ring can be viewed as transformations that preserve the structure of the ring. This perspective allows
us to understand the ring’s properties in terms of its symmetries, which can be particularly useful in
applications such as coding theory [22], cryptography [23], and combinatorial design [5].

We would like to furthermore note that the concept of operations, or transitions inherently implies the
possibility of some form of dynamics, or evolution of our mathematical structure, which in turn presumes
the existence of an additional temporal degree of freedom. We should in principle therefore talk about
the embedding of our two-dimensional manifold into some sort of four-dimensional space-time. We,
however, for the sake of incremental clarity, choose to postpone the detailed treatment of this additional
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(a) (b)

Figure 4: State diagram for finite framed field F13 as a 2D manifold in an abstract 3D state space
combining the additive and multiplicative symmetry projections for multiplicative symmetries and
corresponding multiplicative factors of (a) 𝑁 = 3, 𝑎 = 3 and (b) 𝑁 = 4, 𝑎 = 5.

Figure 5: State diagram for finite framed field F13 as a 2D manifold in an abstract 3D state space
combining the additive and multiplicative symmetry projections for multiplicative symmetry and cor-
responding multiplicative factor of 𝑁 = 𝑃 − 1 = 12, 𝑎 = 2.
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degree of freedom for the time being. Instead, we are treating our finite field F𝑃 = {0, 1, . . . , 𝑃 − 1} as
a collection of all possible representations of a static finite mathematical object F𝑃 .

Furthermore, let 𝑃 be a prime number, and let F×
𝑃

denote the multiplicative group of nonzero elements
of the finite field Z𝑄, which is cyclic of order 𝑃 − 1. Let 𝑁 ∈ F𝑃 be a divisor of 𝑃 − 1, i.e., 𝑁 | (𝑃 − 1).
Then:

1. There exists an element 𝑎 ∈ F×
𝑃

such that 𝑎𝑁 ≡ 1 mod 𝑃, and 𝑎𝑘 . 1 mod 𝑃 for any 1 ≤ 𝑘 < 𝑁 .
Such an element is called a primitive 𝑁-th root of unity in F𝑃 .

2. The set

𝐶𝑁 := {𝑎𝑘 mod 𝑃 | 𝑘 = 0, 1, . . . , 𝑁 − 1}

forms a cyclic subgroup of F×
𝑃

of order 𝑁 , isomorphic to the cyclic group Z𝑁 .
3. Each element of 𝐶𝑁 corresponds to a discrete rotational symmetry of order 𝑁 in the multiplicative

structure of F𝑃 . That is, multiplication by 𝑎 acts as a finite rotation on this subgroup:

𝑥 ↦→ 𝑎 · 𝑥 mod 𝑃,

cycling through the 𝑁 elements of 𝐶𝑁 .
4. The collection of all such subgroups 𝐶𝑁 (for various divisors 𝑁 of 𝑃 − 1) encodes the hierarchy of

internal rotational symmetries within Z×
𝑄

, reflecting the subgroup lattice of the cyclic group of
order 𝑃 − 1.

Correspondingly, we will hereby attempt to visualize the symmetries inherent to a finite field F𝑃 as
a two-dimensional manifold—a sphere—embedded in an abstract three-dimensional space. The two-
dimensional manifold is defined by the two independent symmetries of addition and multiplication,
while the third dimension accounts for the relational structure between components—such as shared
identities, ring-theoretic coupling, and interactions via zero divisors or idempotents.

Firstly in Figures 2 and 3 we show the state diagram of a finite field Z13 from the separate perspectives
of additive symmetry dimension (left) and multiplicative symmetry dimension (right) of ranks 𝑁 =

2, 3, 4, 6 and 12. Subsequently, in Figure 4 we combine the two orthogonal 2D perspectives to visualize
the state diagram for finite field Z13 as a 2D sphere in an abstract 3D state space combining the additive
and multiplicative symmetries of ranks 𝑁 = 3 and 𝑁 = 4, and the corresponding multiplicative factors
of 𝑎 = 3 and 𝑎 = 5. In this visualization we omit state labels that lay outside the multiplicative symmetry
ridges for the sake of clarity. Finally, in Figure 5 we show a more complete visualization of the state
diagram for finite Ring Z13 as a 2D manifold in an abstract 3D state space combining the additive and
multiplicative symmetries for 𝑁 = 𝑃 − 1 = 12, 𝑎 = 2.

While the finite field F𝑃 provides a complete and closed algebraic structure, its inherently cyclic
nature eliminates any meaningful notion of ordering or signed magnitude. In contrast, many physical
and informational systems rely on the intuitive structure of the integers Z, with concepts such as positive
and negative values, proximity to an origin, and relational comparison. To bridge this conceptual gap,
we would like to introduce a relativistic, context-dependent construction within F𝑃 that recovers the
essential features of integer arithmetic in a familiar and logically consistent form.
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3. Integers over Finite Framed Field

In the conventional finite field F𝑃 , we can define negative elements −𝑘 ∈ F𝑃 as the unique additive
inverse of 𝑘 , satisfying 𝑘 + (−𝑘) ≡ 0 mod 𝑃 [12]. This definition of negation is algebraically consistent
but is purely modular and lacks any intrinsic ordering. For example, the element −1 in F𝑃 is not
necessarily less than 0, as we can state −1 − 0 = −1 = 12, or greater than 0, as we can also state
0 − (−1) = 1, and the same applies to any other element in the field. The lack of a meaningful ordering
relation in the finite field F𝑃 makes it impossible to define a signed magnitude or compare elements in
a way that aligns with our intuitive understanding of integers.

Let us therefore consider the 3D representation of the finite field F𝑃 as depicted in Figure 5 by
observing it from the top down. We would like to offer a metaphor of the "North Pole" frame of
reference, but it is important to note that the surface of the manifold in Figure 5 does not have any real
special points and the selection of such "North Pole" position and the corresponding frame of reference
is purely arbitrary and subjective.

Correspondingly, the original additive sequence 0, 1, . . . , 𝑃−1 of the ring’s elements are represented
as points located on the latitudinal axis—let us call it the prime meridian—of the F𝑃 2D manifold sphere,
while the multiplicative symmetry elements are now arranged in circular patterns along the longitudinal
axes and around the origin. Now let us imagine a naive local observer that is not aware of the spherical
nature of the surface he is observing. We may need to hereby assume a sufficiently large cardinality
𝑃 such that the local curvature is not apparent to such observer in the exact same way as the local
curvature of the Earth is not apparent to a human observer. For such observer, the F𝑃 manifold surface
would appear as flat, and with the sequence of elements . . . ,−2,−1, 0, 1, 2, . . . forming a horizontal
axis around the observer’s position 0, as illustrated in Figure 6.

Figure 6: Class of signed pseudo-integers Z over the finite framed field Z13. Black labels indicate the
newly defined signed integers 𝑧 ∈ Z, while the purple labels represent the corresponding elements
𝑘 (𝑧) ∈ Z13. The blue line indicates the periodicity of the finite field. The unlabeled gray dots indicate
the off-axis elements of Z13 as they are observed from the top of the 2D manifold described in Figure 5.

Subsequently, from the subjective viewpoint of our local observer situated in the origin 0, the finitude
and periodicity of our relativistic pseudo-integer number axis are effectively imperceptible, particularly
if the system cardinality 𝑃 is very large. The observer, limited to a bounded neighborhood where the
local curvature and closure of the system are negligible, will perceive the axis as an infinite, flat line
extending without bound in both directions from the origin. In this regime, all arithmetic and relational
properties appear indistinguishable from those of the conventional infinite signed integer set Z, and
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the underlying periodicity of the finite field remains hidden. Thus, from the local perspective, it is
both natural and practically justified to assume that the resultant integer number axis is infinite and
non-repeating, mirroring the familiar structure of the integers.

More formally, we can define a class of signed integers Z over the finite field F𝑃 by introducing a
mapping 𝑘 : Z → F𝑃 that assigns each integer 𝑧 ∈ Z to its corresponding element in the finite field.
This mapping is defined as follows:

𝑘 (𝑧) = 𝑧 mod 𝑃 for 𝑧 ∈ Z,

where 𝑘 (𝑧) is the element of F𝑃 corresponding to the integer 𝑧. This mapping effectively wraps the
integers around the finite field, allocating a unique value of 𝑘 ∈ F𝑃 for each value in Z. Importantly
however, the mapping 𝑘 (𝑧) is not injective, as multiple integers can map to the same element in the
finite field due to its periodicity. For example, both 1 and −12 map to the same element in Z13, as they
are congruent modulo 13.

From an ontological perspective, we stipulate that what really exists is the finite field F𝑃 , comprised
of exactly 𝑃 distinct representations. The abstract mathematical constructs—such as the Finite Framed
Field F𝑃 (0, 1) and the Integers Z/F𝑃 (0, 1)—are collections of symbolic labels that serve as epistemic
tools: they are purely relativistic and utilitarian constructions used to observe and describe the finite
field F𝑃 in a manner consistent with the intuitive understanding of numbers by a local observer with
subjective frame of reference and limited horizon of observability.

Nevertheless, the resulting class of relativistic pseudo-integers Z/F𝑃 exhibits all the characteristic
properties of the conventional integer set Z, including sign, order, addition, subtraction and multipli-
cation. This framework allows us to recover the intuitive and logical structure of integers — including
signed quantities and magnitude comparison — entirely within the finite, self-contained system F𝑃 ,
while preserving consistency with its modular arithmetic.

We would like to now revisit the analogy of the flat-Earth model to illustrate the nature of this rela-
tivistic mathematical approach. The flat-Earth model, while intuitively appealing and locally sufficient
for navigation, is ultimately a limited approximation of a more complex reality. It is not that the Earth
is flat, but rather that its curvature is imperceptible at human scales. The spherical Earth is not an alter-
native to the flat-Earth model; it is a more complete and accurate description of the same object, one
that accounts for the global structure and curvature that the flat-Earth model neglects. This analogy
highlights a central principle of the relativistic mathematical approach: apparent absolutes often emerge
from local reasoning applied to globally finite systems. Just as the flat-Earth model was a pragmatic
illusion born of scale, the standard integer structure may itself be a local approximation—emergent from
the deeper, finite, and symmetric substrate of a finite arithmetic universe.

Having recovered the structure of signed integers Z over the finite field F𝑃 , it is natural to ask whether
further extensions of this framework can reproduce the next layer of classical number systems—namely,
the rational numbers Q. Rational numbers emerge from the pragmatic necessity to express and manip-
ulate ratios of integers, and their introduction marks a critical step in the construction of continuous
arithmetic, proportional reasoning, and linear structure. The motivation for this extension is twofold.
First, it allows us to reconstruct the essential properties of Q over F𝑃 , making clear that rationality is
not an intrinsic feature of infinite arithmetic but an emergent relational construct definable within finite
algebra. Second, it enables a more expressive arithmetic language within the finite mathematical system,
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allowing for the representation of proportional relationships, scales, and geometric constructs entirely
within the bounds of a finite and self-contained mathematical system.

This pursuit continues the broader program of developing a relativistic arithmetic—a layered, frame-
dependent construction of number systems in which each extension (integers, rationals, imaginary)
arises as a projection or closure of relations already implicit in a more fundamental finite substrate.

4. Rationals over Finite Framed Field

Taking a step further, we define a class of pseudo-rational numbers Q𝑃 as positions 𝑞 along the prime
meridian of F𝑃 (0, 1) as depicted in Figure 3 and further detailed in Figure 7, namely we have

Q𝑃 :=

{
𝑞 =

𝑎

𝑏

����� 𝑎 ∈ Z, 𝑏 =
∏
𝑖

𝑘𝑖 , 𝑘𝑖 ∈ F×𝑃

}
.

Furthermore, for each element 𝑞 ∈ Q𝑃 we define the equivalent representation 𝑘 ∈ F𝑃 such that

𝑘 (𝑞) := 𝑎 × 𝑏−1 mod 𝑃 = 𝑎 ×
∏
𝑖

𝑘−1
𝑖 mod 𝑃. (4.1)

The validity of the definition in Equation 4.1 is ensured by the fact that all elements 𝑘𝑖 constituting the
denominator product 𝑏 =

∏
𝑖 𝑘𝑖 have a multiplicative inverse 𝑘−1

𝑖
∈ F×

𝑃
. A selection of some simple

examples of such pseudo-rational numbers is depicted in Figure 7, where for each position along the
prime meridian 𝑞 = 𝑎/𝑏 ∈ Q𝑃 indicated as a black label on top, the corresponding finite field element
𝑘 (𝑞) ∈ F𝑃 is indicated as purple label on the bottom.

Figure 7: Few examples of rational numbers 𝑞 ∈ Q13 in a finite framed field Z13 (0, 1). Note the pseudo-
rational numbers 6/5, 12/10 as well as 11/7 that all represent the exact same element 9 ∈ Z13 (0, 1).

It is very important to reiterate the meaning of this construct from an ontological viewpoint. More
specifically, we stipulate that what actually "exists" are the 𝑃 representations of the finite field F𝑃 ,
while the derivative class of pseudo-rationals 𝑞 ∈ Q𝑃 constitute an abstract mathematical construct
derived from the inherent relational properties of the framed instance F𝑃 (0, 1). More specifically, the
multiplicity of labels {𝑞} ∈ Q𝑃 that can be associated with a single representation 𝑘 ∈ F𝑃 is not
contradictory or paradoxical in the exact same way as it is not paradoxical to observe a multitude of
reflections associated with a single real object in a kaleidoscope.

We would like to now propose that the class of pseudo-rational numbers Q𝑃 is dense in Q in the sense
that for any conventional rational number 𝑞 ∈ Q, prime 𝑃 > 2 and any 𝜖 > 0 however small, there exists
a pseudo-rational number 𝑞′ = 𝑎/𝑏 ∈ Q𝑃 such that |𝑞 − 𝑞′ | < 𝜖 . In order to prove our proposition it is
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Figure 8: Uniform grid of rational numbers of the form 𝑞 = 𝑘
(𝑃−1)𝑛 with step size 1

(𝑃−1)𝑛 . Here, we
have 𝑃 = 13 and 𝑛 = 1. Black labels indicate the pseudo-rational numbers 𝑞 ∈ Q13, while the purple
labels represent the corresponding finite field elements 𝑘 (𝑞) ∈ Z13 (0, 1). The blue line indicates the
periodicity of the finite field.

sufficient to characterize the density of the following subset {𝑞 = 𝑎/𝑏} ⊂ Q𝑃 , where the denominator
𝑏 = (𝑃 − 1)𝑛 for some integer 𝑛 ∈ N.

Proposition 3. Let 𝑃 > 2 be an odd prime number, and let 𝑞 = 𝑎/𝑏 ∈ Q be any conventional rational
number. Then for any 𝜖 > 0, there exists an integer 𝑛 ∈ N and an integer 𝑥 ∈ Z such that����𝑎𝑏 − 𝑥

(𝑃 − 1)𝑛

���� < 𝜖.
Proof. Let 𝑎

𝑏
∈ Q be given, and let 𝜖 > 0 be arbitrary small number.

Since 𝑃 is a fixed prime, the expression (𝑃 − 1)𝑛 grows without bound as 𝑛 → ∞. Therefore, there
exists an integer 𝑛 ∈ N such that

1
(𝑃 − 1)𝑛 < 𝜖.

Now consider the set of rational points of the form{
𝑘

(𝑃 − 1)𝑛

���� 𝑘 ∈ Z} ,
as illustrated in Figure 8. This set is a uniform grid of rational numbers with step size 1

(𝑝−1)𝑛 , which is
less than 𝜖 by construction. There exists therefore an integer 𝑥 ∈ Z such that����𝑎𝑏 − 𝑥

(𝑃 − 1)𝑛

���� < 𝜖,
which completes the proof. □

In other words, the resultant field of pseudo-rational numbers Q𝑃 will exhibit all the properties of the
field of conventional numbersQ and can further approximate it with any arbitrary precision. Furthermore,
for an observer with a limited observability horizon and sufficiently large values of cardinality 𝑃, the
pseudo-rational field Q𝑃 becomes completely indistinguishable from its conventional counterpart, as
all the desired rational numbers of the form 𝑞 = 𝑎/𝑏, where 𝑏 < 𝑃 are represented not approximately,
but exactly within the scope of the pseudo-rational numbers Q𝑃 .
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In classical mathematics, the field of real numbers R is introduced to enable the formulation of con-
tinuous functions, calculus, and metric spaces—tools indispensable for modeling physical phenomena
and abstract structures alike. However, the real number line is defined as an uncountable, infinitary
continuum, an ontological commitment that conflicts with the finite and relational framework we adopt
in this study. Nonetheless, our need for continuous approximation and proportional reasoning persists,
particularly in describing geometric constructs, dynamic systems, and analytic behaviors. Our approach
is therefore pragmatic and epistemic rather than metaphysical. We seek to construct a class of pseudo-
real numbers that fulfills the operational role of R without invoking actual infinity. Of particular interest
is the ontological status of the transcendental numbers 𝜋 and 𝑒 that play a special role across numerous
domains of mathematics and physics. We would like to offer a special treatment of these numbers later
in this manuscript.

5. Real Numbers over Finite Framed Field

We introduce the notion of pseudo-real numbers as an emergent structure grounded in two complemen-
tary principles: algebraic solvability within the finite field, and asymptotic approximability through
pseudo-rationals.

Many irrational or real numbers of algebraic origin exist as exact solutions to polynomial equations
within F𝑃 , provided their cardinality 𝑃 satisfies appropriate conditions. For example, the equation
𝑥2 + 1 = 0 admits solutions in F𝑃 if and only if 𝑃 ≡ 1 mod 4, where the field contains elements
±𝑖 ∈ F𝑃 such that 𝑖2 = −1 mod 𝑃. More generally, roots of higher-degree polynomials (such as

√
2,

3√5, or primitive roots of unity) may exist in F𝑃 depending on the field’s cardinality 𝑃.
Thus, we define a pseudo-real number to exist exactly within F𝑃 if it corresponds to a solution of a

polynomial equation over the field. In this view, the ontological status of a real number is not absolute
but conditional—determined by the algebraic closure properties of the specific finite field. Irrationality,
therefore, is reframed not as a metaphysical property but as a question of field compatibility.

For those real numbers not supported directly by F𝑃 , we invoke a pragmatic alternative:
approximability via the class of pseudo-rational numbers Q𝑃 .

Definition 1 (Observation Horizon). Fix a prime 𝑃. An observation horizon is a natural number 𝐻 ≪ 𝑃

that bounds the allowed denominator exponents and hence the precision of any observer in the finite
field setting.

Definition 2 (Truncated Pseudo-Rationals and Metric). Given 𝐻 ∈ N, define

Q≤𝐻
𝑃

:=
{
[𝑥, 𝑛] : 0 ≤ 𝑥 < 𝑃, 0 ≤ 𝑛 ≤ 𝐻

}
,

where the symbol [𝑥, 𝑛] denotes the rational number 𝑥/(𝑃 − 1)𝑛. Equip 𝑄≤𝐻
𝑃

with the metric

𝑑𝐻
(
[𝑥, 𝑛], [𝑦, 𝑚]

)
=

��� 𝑥
(𝑃−1)𝑛 −

𝑦

(𝑃−1)𝑚

���
computed in Q using the common denominator (𝑃 − 1)max(𝑛,𝑚) ≤ (𝑃 − 1)𝐻 .

Proposition 4 (Finite Total Boundedness). For each fixed 𝐻, the metric space
(
Q≤𝐻

𝑃
, 𝑑𝐻

)
is finite and

thus totally bounded.
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Proof. Since 0 ≤ 𝑥 < 𝑃 and 0 ≤ 𝑛 ≤ 𝐻, there are (𝑃) × (𝐻 + 1) elements in Q≤𝐻
𝑃

. Any finite metric
space is trivially totally bounded. □

Theorem 5.1 (Approximation of Computable Reals). Let 𝑟 ∈ R be a computable real number. For any
integer 𝑘 ≥ 1 there exist integers 𝑎𝑘 , 𝑏𝑘 with 𝑏𝑘 ≠ 0 such that��� 𝑟 − 𝑎𝑘

𝑏𝑘

��� < 2−𝑘 .

Moreover, if the observer’s horizon 𝐻 satisfies

𝐻 ≥
⌈
𝑘 log2 𝑃

⌉
,

then one can construct [𝑥𝑘 , 𝑛𝑘] ∈ Q≤𝐻𝑃 with��� 𝑟 − [𝑥𝑘 , 𝑛𝑘] ��� < 2−𝑘−1.

Proof. By computability of 𝑟 there is a rational approximation 𝑎𝑘/𝑏𝑘 with |𝑟 − 𝑎𝑘/𝑏𝑘 | < 2−𝑘 . Since
gcd(𝑃, 𝑃 − 1) = 1, the extended Euclidean algorithm yields an exponent 𝑛𝑘 ≤ 𝑘 log2 𝑃 such that

𝑏𝑘 (𝑃 − 1)𝑛𝑘 ≡ 1 (mod 𝑃).

Set 𝑥𝑘 ≡ 𝑎𝑘 𝑏−1
𝑘
(mod 𝑃). Then

[𝑥𝑘 , 𝑛𝑘] =
𝑥𝑘

(𝑃 − 1)𝑛𝑘

differs from 𝑎𝑘/𝑏𝑘 by at most
(
2 𝑏𝑘 (𝑃 − 1)𝑛𝑘

)−1
< 2−𝑘−1. If 𝐻 ≥ 𝑛𝑘 , then [𝑥𝑘 , 𝑛𝑘] ∈ Q≤𝐻𝑃 and��𝑟 − [𝑥𝑘 , 𝑛𝑘]�� ≤ ��𝑟 − 𝑎𝑘

𝑏𝑘

�� + �� 𝑎𝑘

𝑏𝑘
− [𝑥𝑘 , 𝑛𝑘]

�� < 2−𝑘 + 2−𝑘−1 = 𝑂 (2−𝑘) ,

as desired. □

The resulting pseudo-real field R𝑃 is thus defined as the topological closure of Q𝑃 under modular
convergence. For any finite observer with bounded resolution and limited horizon of observability, R𝑃

is indistinguishable from the conventional real number continuum.
In conclusion, the field of pseudo-real numbers R𝑃 is not a metaphysical continuum but a layered

epistemic utilitarian construct. It combines:

• Exact pseudo-reals that satisfy algebraic equations within F𝑃 , and
• Approximated pseudo-reals that are limits of converging sequences in Q𝑃 .

This framework provides all the functional properties of the real numbers—continuity, density, and
completeness—without invoking actual infinity. It affirms that, in a finite and informationally com-
plete universe, continuum-like behavior is a pragmatic illusion emerging from local reasoning over a
fundamentally finite arithmetic substrate.

Having established the construction of pseudo-integers, rationals and reals over the finite field F𝑃

as relativistic, frame-dependent analogs of their classical counterparts, we seek to further extend this
framework to encompass the algebraic closure of the pseudo-real field. In conventional mathematics,
the introduction of complex numbers C is necessitated by the absence of solutions to certain polynomial
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equations, such as 𝑥2 + 1 = 0, within the real numbers. Analogously, in the finite framed context, we
are motivated to introduce complex-like elements in order to achieve closure under operations that are
otherwise impossible within the pseudo-rational or alone.

Moreover, the construction of a relativistic complex plane enables the representation of rotations,
oscillations, and other phenomena that are fundamental in both mathematics and physics, all within a
finite and self-contained system. This approach not only mirrors the classical extension from R to C,
but also demonstrates that the essential properties and utility of complex numbers can be realized as
emergent features of a finite, relational arithmetic—thereby reinforcing our framework’s central theme
of relativistic, context-dependent number systems.

6. Complex Plane over Finite Framed Field

Figure 9: Pseudo-complex numbers planeC𝑃 in a finite framed fieldZ13 (0, 1). Horizontal axis represents
the pseudo-realsR𝑃 on the prime meridian and the vertical axis represents the imaginary numbers 𝑐 = 𝑧·𝑖
indicated by their respective red labels. The corresponding elements 𝑘 (𝑐) are depicted in purple. The
blue line indicates the periodicity of the finite field.

As is commonly known, the field of real numbers R does not contain any solutions of certain
polynomial equations, such as the prominent equation 𝑥2 + 1 = 0. But that is not the case for many finite
fields F𝑃 , where depending on the value and properties of their cardinality 𝑃, such solutions can readily
exist. For example, in the finite field Z5, the equation 𝑥2 +1 = 0 has two solutions: 𝑥 = 2 and 𝑥 = 3. More
generally, it is evident that the equation 𝑥2 + 1 = 0 can be satisfied in a finite field F𝑃 if and only if 𝑃− 1
is devisable by 4, or in other words 𝑃 ≡ 1 mod 4. This is due to the fact that the multiplicative group
of non-zero elements in such fields is cyclic and contains elements—and the corresponding rotational
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symmetry—of order 4, which allows for the existence of square roots of −1. In this case, we can define
a special element 𝑖 ∈ F𝑃 that satisfies the equation 𝑖2 + 1 = 0. The element 𝑖 is not unique, instead we
have a pair of pseudo-integer elements 𝑖 and −𝑖 in Z/F𝑃 that satisfy the equation, in the same way as
we have pairs 𝑥 and −𝑥 of solutions for quadratic equations in the conventional complex plane C.

Let us now observe the "North Pole" frame of reference of the spherical representation of the finite
field F𝑃 with its prime meridian of pseudo-reals R𝑃 forming the horizontal axis around the origin. The
order-4 rotational symmetry of the finite field F𝑃 can be represented as a vertical axis of imaginary
numbers 𝑐 = 𝑧 ·𝑖, where 𝑧 ∈ Z, that are perpendicular to the prime meridian, as illustrated in Figure 9. The
imaginary numbers 𝑐 are represented by their respective red labels, while the corresponding elements
𝑘 (𝑐) are depicted in purple.

More generally, we can define a class of pseudo-complex numbers C𝑃 as the Cartesian product of
the pseudo-reals R𝑃 and the imaginary numbers 𝑟 · 𝑖, 𝑟 ∈ R. The pseudo-complex numbers are defined
as follows:

C𝑃 := {𝑐 = 𝑎 + 𝑏 · 𝑖 | 𝑎, 𝑏 ∈ R𝑃} , (6.1)

where 𝑎 and 𝑏 are the real and imaginary components of the pseudo-complex number 𝑐, respectively.
The pseudo-complex numbers can be represented as points in the complex plane, where the horizontal
axis corresponds to the pseudo-reals R𝑃 and the vertical axis corresponds to the imaginary numbers
𝑟 · 𝑖. The pseudo-complex numbers form a field and can be added, subtracted, multiplied, and divided in
a manner analogous to conventional complex numbers, with the additional consideration of their finite
field properties.

The pseudo-complex numbers form a relativistic algebraic field and can be added, subtracted, multi-
plied, and divided in a manner analogous to conventional complex numbers, subject to the selection of
the arbitrary frame of reference, as well as the properties and constraints of the underlying finite field.

7. Universal Constants in a Finite Universe

The universal transcendental constants 𝑒 and 𝜋 arise naturally in a variety of mathematical and physical
contexts. Arguably, their existence is not imposed by some metaphysical necessity, but rather motivated
by concrete, utilitarian applications in our pursuit to understand and model the physical reality we
inhabit. We would like to further emphasize that any and all uses of these constants in their conventional
interpretation are always approximate, as their real transcendental, hypothetically infinitely-complex
values can never be realized or utilized in any practical sense. Informed by this motivation, we would
like to explore the meaning and significance of these enigmatic constants in the context of our finite
universe and more specifically in the context of a finite field F𝑃 . In other words, we would like to try and
reconcile the epistemic interpretation and the functional role of these constants across two distinctively
different modes of observation.

7.1. Observer Scenarios

We define two distinct types of observers of the finite field F𝑃 based on their respective observation
horizons. The first scenario is that of an internal observer with a limited observation horizon around its
frame of reference. This scenario can be interpreted as the classical, intuitive vantage point. The second
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scenario is that of a god-like external observer who is capable to access and comprehend the finite field
F𝑃 in its entirety. We would like to associate—currently without detailed explanation—this later mode
with the quantum mechanical view. More formally, the two scenarios are defined as follows.

A. Internal Observer (𝐻int ≪ 𝑃): An observer with horizon 𝐻int ≪ 𝑃 is confined to a small metric
ball in F𝑃 around its origin 0, which is locally indistinguishable from a patch of R2. In this regime the
observer is not aware of the actual value of 𝑃, field operations appear “flat,” and the resultant 𝑃-invarient
constants like 𝑒 and 𝜋 emerge only approximately via truncated pseudo-rational approximations in

Q≤𝐻int
𝑃

=
{
[𝑥, 𝑛] : 0 ≤ 𝑥 < 𝑃, 0 ≤ 𝑛 ≤ 𝐻int

}
,

with errors of order (𝑃 − 1)−𝐻int .

B. External Observer (𝐻ext ≫ 𝑃): An observer with horizon 𝐻ext ≫ 𝑃 views the entire finite field
F𝑃 , including its cyclic/periodic structure, and is aware of the exact value and properties of the field
cardinality 𝑃. From this global vantage, universal constants 𝑖, 𝑒 and 𝜋 emerge as exact elements of the
field, with particular structural roles and the corresponding significance.

7.2. Natural base 𝑒

The universal constant 𝑒 emerges as the base of the natural exponential function, which has the unique
property that its rate of change is equal to its value. It appears to underscore the fundamental principles
by which change and uncertainty emerge in both conventional continuos, and discrete dynamic systems.
At the same time, it plays a crucial role in the theory of complex numbers, where it serves as a generator
for the polar rotation of the complex plane. In this section we would like to attempt to reconcile these
two seemingly distinct interpretations by considering two complementary vantage points on the role of
𝑒 that arise from the two distinct observer scenarios described above.

Let us therefore consider the process of polar rotation of the pseudo-sphere F𝑃 around its primary
axis. To the internal observer, who is confined to a small interval of the prime meridian of F𝑃 around
its origin and is not able to comprehend the entirety of the periodic process, the rotation will manifest
itself as evolution, change and emergence of uncertainty. As we have argued in [1], the uncertainty
experienced by an internal observer is not an intrinsic ontological property of the system but rather a
direct consequence of the observer’s finite horizon; in effect, this “uncertainty” simply quantifies the
limit of observability imposed by a restricted sampling of field elements.

In contrast, to the external observer, the rotation will manifest itself as a discrete deterministic step
in a structured and periodic process, fully determined by the field cardinality 𝑃 and the corresponding
structural properties of F𝑃 . Let us now explore these two interpretations in more detail.

A. Internal Observer: Consider an internal observer who can inspect at most 𝐻 ≪ 𝑃 elements of the
finite field F𝑃 at once, but does not know its exact cardinality 𝑃. Suppose that the pseudo-sphere is
rotated around its primary access, which is equivalent to a multiplication by some element

𝑎
uniform∼ F×𝑃 \ {1}.

Since for every 𝑎 ≠ 1 the equation

𝑥 = 𝑎 𝑥
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has the unique solution 𝑥 = 0, no non-zero element in the observer’s horizon can remain fixed. Thus,
the action of 𝑎 on the set of observed non-zero elements is a derangement. For a sequence {1, 2, . . . , 𝑛},
the number of derangements 𝐷𝑛, also often denoted as subfactorial !𝑛, is given by [31]

!𝑛 = 𝑛!
𝑛∑︁

𝑘=0

(−1)𝑘
𝑘!

, (7.1)

so that the probability that a random permutation is a derangement is

P𝑛 (derangement) = !𝑛
𝑛!

=

𝑛∑︁
𝑘=0

(−1)𝑘
𝑘!
→ 1

𝑒
as 𝑛→∞. (7.2)

The probability that all 𝐻 elements—observed by our observer—move is given by

P𝐻 =

(
1 − 1

𝑃−1

)𝐻
.

Now, the observer does not know the actual value of 𝑃, and the only thing that they do know is that
it is larger than their horizon 𝐻. If the observer assumes the minimum possible value of 𝑃 = 𝐻 + 1, this
yields the classical limit

𝑒𝐻 :=
(
1 − 1

𝐻

)−𝐻
, lim

𝐻→∞
𝑒𝐻 = 𝑒.

Since 𝑃 > 𝐻,

P𝐻 =

(
1 − 1

𝑃−1

)𝐻
≥

(
1 − 1

𝐻

)𝐻
= 𝑒−1

𝐻 ,

it follows that

logP−1
𝐻 ≤ log 𝑒𝐻 .

In other words, the quantity log 𝑒𝐻 represents the lower bound on the measure of information-theoretic
uncertainty (in nats) that can be expected by an observer with a limited observation horizon 𝐻 after a
multiplicative transformation of a finite field F𝑃 that it is observing.

B. External Observer: To the external observer let us further explore the interpretation of the constant
𝑒 as the generator 𝑔 ∈ F𝑃 of the multiplicative polar rotation of the pseudo-sphere F𝑃 around its primary
axis, which can be also regarded as the rotations of the corresponding complex plane C𝑃 . Using the
finite field terminology, 𝑔 is an order-(𝑃 − 1) generator—or a primitive root—of the multiplicative
group F×

𝑃
. More specifically, we can select our primitive root 𝑔 as an element of F𝑃 that satisfies

𝑔 ∈ F×𝑃
�� 𝑔𝑛 = −1 for some 𝑛 ∈ F×𝑃 .

Finally, in order to reconcile the two complementary views experienced by observers A and B, we would
like to recall that Q𝑃 is dense in R, and any finite section in R contains any arbitrary number of copies
of any one element 𝑔 ∈ F𝑃 . We can therefore identify the constant 𝑒𝑃 as the pseudo-rational number
that satisfies the following conditions

𝑒𝑃 ∈ Q𝑃 , 𝑔(𝑒𝑃) ∈ F×𝑃
�� 𝑒 < 𝑒𝑃 < 𝑒𝐻 , 𝑔

𝑛 = −1.



20 Yosef Akhtman

The existence of 𝑒𝐻 is evident by construction. Clearly it is not unique neither in Q𝑃 where an arbitrary
large number of such candidates can be constructed, nor in F𝑃 where the number of qualifying generators
is a subject of the field’s cardinality and structural symmetries. This ambiguity is another immediate
manifestation of the relativistic principle, where the same functional mathematical entities can have
multiple reference frame-depended representation. The selection of any such representation will not
affect the definition, significance and the operational roles of 𝑒𝐻 to both the internal and the external
observers. Furthermore, the resultant pseudo-rational constant 𝑒𝑃 will serve all the familiar practical
purposes associated with the use of the constant 𝑒 to any desired degree of precision in the exact same
way as all conventional approximations of the transcendental constant 𝑒 are used in the state-of-the-art
analysis and computations.

7.3. Mathematical constant 𝜋

Similarly to 𝑒, the universal constant 𝜋 is a transcendental number that appears in a variety of mathe-
matical and physical contexts. It is most commonly associated with the geometry of circles, where it
represents the ratio of the circumference to the diameter. However, its significance extends far beyond
this simple definition, as it also plays a crucial role in complex analysis, number theory, and quantum
mechanics, were it emerges as a generator of the harmonic rotations of the complex plane. In this section
we would like to explore the meaning and significance of 𝜋 in the context of our finite universe and
more specifically in the context of a finite field F𝑃 . We will once again consider two complementary
vantage points on the role of 𝜋 that arise from the two distinct observer scenarios described above.

A. Internal Observer: Once again, consider an internal observer who can comprehend at most 𝐻 ≪ 𝑃

elements of the finite field F𝑃 at once, but does not know its exact cardinality 𝑃. The subjective
experience of the internal observer is that of a flat surface, extending seemingly indefinitely in all
directions. Suppose now that the pseudo-sphere F𝑃 is rotated around its primary access by some small
angle 𝜃. The subjective experience of our observer will be that all points in its environment are now
displaced by a small increment 𝜋𝑟, where 𝑟 represents the distance of the point from the origin 0. In
order to estimate the value of 𝜋, the observer will be able to define a circle as a set of points that are
equidistant their position at the origin 0. The approximate value of 𝜋 will be then given by the ratio of
the half-circumference of the resultant circle and the selected circle 𝑟 .

Let us recall that our observer has a limited observation horizon and therefor a limited resolution
of its environment. The observer will therefore be able to define a circle as a finite set of 𝐻 points
that are equidistant from the origin of its frame of reference. Correspondingly, they may try to invoke
the Leibniz-Gregory-Madhava formula [6, 16] that emerges when approximating the perimeter of a
circle by repeatedly adding and subtracting areas associated with squares and rectangles inscribed and
circumscribed around the circle. Specifically, they may use the following series that alternates between
adding and subtracting terms, each smaller than the last, slowly converging toward the exact length of
the quarter-circle arc, which equals 𝜋

4 . Multiplying by 4 yields the horizon 𝐻 approximation of the full
circumference-to-diameter ratio 𝜋 as follows

𝜋𝐻 = 4
𝐻∑︁
𝑘=0

(−1)𝑘
2𝑘 + 1

= 4
(
1 − 1

3
+ 1

5
− 1

7
+ 1

9
− . . .

)
→ 𝜋 as 𝐻 →∞.
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B. External Observer: To the external observer we can identify 𝜋 as the half-period generator of the
harmonic—i.e. exponentiation—rotations of F𝑃 around its primary axis, and we can further recognize
it as the rank-2 generator in Z+

𝑃−1. More specifically, we can simply formulate our rank-2 additive 𝑔𝜋
generator as an element of F𝑃 that satisfies

𝑔𝜋 ∈ F𝑃

�� 2 × 𝑔𝜋 = −1.

In order to reconcile the two complementary views of the constant 𝜋 experienced by observers A and
B, we, once again, recall that Q𝑃 is dense in R, and any finite section in R contains any arbitrary
number of copies of any one element 𝑔 ∈ F𝑃 . We can therefore identify the horizon-𝐻 pseudo-rational
approximation 𝜋𝐻 of the transcendental constant 𝜋 as the pseudo-rational number that satisfies the
following conditions

𝜋𝐻 ∈ Q𝑃 , 𝑔𝜋 = 𝑘 (𝜋𝑃) ∈ F𝑃

�� min(𝜋, 𝜋𝐻 ) < 𝜋𝑃 < max(𝜋, 𝜋𝐻 ), 2 × 𝑔𝜋 = −1.

The existence of 𝑒𝐻 is evident by construction. Clearly it is not unique neither in Q𝑃 where an arbitrary
large number of such candidates can be constructed, nor in F𝑃 where the number of qualifying generators
is a subject of the field’s cardinality and structural symmetries. This ambiguity is another immediate
manifestation of the relativistic principle, where the same functional mathematical entities can have
multiple reference frame-depended representation. The selection of any such representation will not
affect the definition, significance and the operational roles of 𝑒𝐻 to both the internal and the external
observers. Furthermore, the resultant pseudo-rational constant 𝑒𝑃 will serve all the familiar practical
purposes associated with the use of the constant 𝑒 to any desired degree of precision in the exact same
way as all conventional approximations of the transcendental constant 𝑒 are used in the state-of-the-art
analysis and computations.

7.4. Imaginary unit 𝑖

The epistemic and structural roles of the imaginary unit 𝑖 for the external observer have been addressed
in detail in Section 6. Here, we would like to point out that for our internal observer, the true value of
𝑖—that is always a relatively large number for large 𝑃—would remain beyond the scope of observation
for as long as 𝐻 ≪ 𝑖. In order to fulfil the structural and utilitarian gap, our observer would likely
need to invent it as an abstract mathematical instrument, as they actually did, and thus is the name
“imaginary”! We would venture a step further and suggest—currently without a detailed explanation—
that the approximate real number value of 𝑖 to the internal observer is indeed known, but its identity is
not associated with its imaginary equivalent in the state-of-the-art scholarly literature.

To summarize, we define the following three constants in the finite field F𝑃:

𝜋𝑃 , 𝑒𝑃 , 𝑖𝑃 ∈ F𝑃

�� 𝜋𝑃 =
𝑃 − 1

2
, 𝑒

𝜋𝑃

𝑃
= −1, 𝑖2𝑃 = −1.

Let us note that we get the identity of 𝑒𝜋𝑃

𝑃
by construction. Furthermore, the square roots of −1 in F𝑃—

when they exist, i.e. 𝑃 = 1 mod 4—always come in pairs of odd and even. This important observation
breaks the dual symmetry for the selection of 𝑖𝑃 that is required for our reconciliation of the finite field
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solution and the experience of our internal observer that is described by the familiar Euler’s formula

𝑒𝑖 𝜋 = −1.

Once again, we would like to make a far-reaching statement—currently without a detailed explanation—
that the breaking of symmetry in the selection of 𝑖𝑃 differentiates between the clockwise and the
counter-clockwise rotations of F𝑃 and the corresponding direction of the passage of time for the internal
observer.

7.5. Infinity as the unknowable “far-far away”

Let us revisit the ontological concept of infinity as described in [1]. In the previous sections, we have
established the finite field F𝑃 as an abstract pseudo-sphere F𝑃 (0, 1) with a limited-horizon observer
at its origin 0. We would like now to consider the geometric point on our pseudo-sphere that is the
furthest away from the observer. This point is evidently the South Pole—the antipodal point on the prime
meridian—of the pseudo-sphere, which we will denote as 𝑠𝑃 for now. We would like to emphasize the
following important properties of 𝑠𝑃 .

1. 𝑠𝑃 is a unique point on the pseudo-sphere that is the farthest away from the observer at 0.
2. 𝑠𝑃 is invisible to the observer at 0, that is to say that is located beyond any conceivable definition of

the observer’s limited observability horizon.
3. Finally, 𝑠𝑃 is algebraically inaccessible to the observer at 0, in the sense that 𝑠𝑃 ∉ F𝑃 ,Q𝑃 , and

cannot be reached by any finite number of arithmetical steps along the surface of the pseudo-sphere.

We would like to provide a formal proof of the less evident Property 3 as follows.

Theorem 7.1 (No South Pole in F𝑃). Let 𝑃 > 2 be an odd prime. Then the only solution 𝑠 ∈ Z𝑃 to

2𝑠 ≡ 0 (mod 𝑃)

is 𝑠 ≡ 0. Equivalently, there is no nonzero pseudo-rational 𝑞 ∈ 𝑄𝑃 whose image in Z𝑃 has additive
order 2.

Proof. 1. Since 𝑃 is prime, the additive group (Z𝑃 , +) is cyclic of order 𝑃. An element 𝑠 ∈ Z𝑃 has
order 2 precisely if

2 𝑠 ≡ 0 (mod 𝑃).

2. Because gcd(2, 𝑃) = 1, multiplication by 2 is invertible in Z𝑃 . Hence, from 2𝑠 ≡ 0 (mod 𝑃) it
follows immediately that 𝑠 ≡ 0 (mod 𝑃). There is no nontrivial order-2 element.

3. By definition, each pseudo-rational 𝑞 = 𝑎
𝑏
∈ Q𝑃 is represented in the field by

𝑘 (𝑞) = 𝑎 𝑏−1 mod 𝑃 ∈ Z𝑃 ,

so Q𝑃 ⊆ Z𝑃 under the embedding 𝑘 . If some 𝑞 ∈ Q𝑃 mapped to a nonzero order-2 element
𝑠 = 𝑘 (𝑞) ≠ 0, then 2𝑠 ≡ 0 would force 𝑠 ≡ 0, a contradiction.
Therefore, no “South Pole” antipodal point exists in Q𝑃 or Z𝑃 , completing the proof. □
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These properties of the geometrical point 𝑠𝑃 are unmistakably consistent with the properties of the
concept of infinity in its conventional sense. This gives us the justification to identify the relativistic
antipodal point 𝑠𝑃 with the concept of infinity in the context of Z𝑃 , and thus denote it as∞.

Figure 10: State space of a finite framed field F13, visualized as a circle on a 2D plane with the major
structural elements 𝑒13, 𝑖13, 𝜋13, as well as∞ indicated.

To exemplify, let us now consider the concrete example of 𝑃 = 13 and the corresponding finite
framed field F13. We can identify the following values for the constants 𝑖, 𝑒 and 𝜋 in F13:

𝑃 = 13, 𝑖13 = 5, 𝑒13 = 2, 𝜋13 = 6.

Naturally and in line with our expectations, we get the following result for the Euler’s formula

𝑒
𝑖13 𝜋13
13 = 25×6 =

(
26
)5

= 645 = (−1)5 = −1,

where we assume all operations to be modulo 13 operations in F13 and in particular 26 = 64 ≡ −1
mod 13.

The corresponding visual representation of the finite field F13 is shown in Figure 10. The figure
shows the state space of the finite field F13 as a circle on a 2D plane, with the major structural
elements 𝑒13, 𝑖13, 𝜋13, as well as ∞ indicated. The antipodal point ∞ is located at the South Pole of the
pseudo-sphere, which is the farthest point from the observer at 0.

8. Unification in Finite Relativistic Algebra

8.1. Harmonic Analysis in Finite Fields

Harmonic analysis is a well-established and rigorously developed theory in both classical infinite
domains—such as R,C and T—and finite fields such as F𝑃 . In the classical setting, it provides the foun-
dational tools for understanding signal decomposition, spectral theory, and partial differential equations,
with standard references including [27], and [32]. Independently, the discrete analogs over finite fields
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have been extensively studied, particularly in coding theory, cryptography, and number theory, as doc-
umented in works such as [20], and [33]. What remains lacking, however, is a unified framework
that conceptually and algebraically reconciles these two domains—one grounded in continuous infini-
tary constructs, the other in finite cyclic structures—under a common epistemological and operational
paradigm.

The motivation to bridge this divide arises naturally in the context of a finitely constructed universe,
as articulated in this manuscript, where all observable structures are projections of finite rings and
fields. By reinterpreting classical Fourier tools—such as complex exponentials and spectral kernels—as
emergent constructs within cyclic multiplicative groups of finite fields, one can recover the essential
machinery of harmonic analysis without invoking actual infinity. This unified treatment holds promise
for a complete, frame-relative theory of symmetry, oscillation, and information in both physical and
computational systems.

A detailed treatment of such a reconciliation lies beyond the scope of this manuscript. However,
we would like to note the following important equivalence that explicitly bridges the gap between the
corresponding finite field and the classical infinite domains. Specifically, the foundational component
of harmonic analysis in the infinite setting is the complex exponential function, which forms a generator
of a cyclic group of rotations in a complex plane:

𝑔𝑁 = 𝑒−𝑖2𝜋
𝑛
𝑁 ,

where 𝑁 is the period of rotation, and 𝑛 ≤ 𝑁 ∈ N is an integer. This generator can be interpreted as a
rotation of the complex plane by the minimum possible angle of 2𝜋𝑛/𝑁 . If we furthermore want to make
the cardinality 𝑁 of the cyclic group arbitrary large —or presumably even infinite—we can assume a
continuous version of the generator:

𝑔∞ = 𝑒−𝑖2𝜋𝑑𝑥
�� ∫ ∞

−∞
𝑑𝑥 = 1,

where 2𝜋𝑑𝑥 is an infinitesimally small increment in the angle of rotation that satisfies the appropriate
normalization condition. Once again this generator can be interpreted as a rotation of the complex plane
by an infinitesimally small rotation. The exponential function 𝑒−𝑖2𝜋𝑥 describes a continuous clockwise
rotation around the unit circle, and the infinitely-large-order rotational group T = {𝑒𝑖2𝜋𝑥 : 𝑥 ∈ R} is
generated accordingly.

The purpose of harmonic analysis is to reveal inherent relational and structural properties of a
sequence of elements within a target field F—be it finite or infinite—by decomposing and projecting
this sequence onto characters (homomorphisms) of cyclic groups associated with F, commonly referred
to as harmonics. In this context, the entire complex formalism that enables classical harmonic analysis
can be naturally re-established within a finite field F𝑃 . Specifically, the multiplicative group F×

𝑃
, of order

𝑃 − 1, possesses a cyclic rotational structure generated by a primitive root 𝑒𝑃 ∈ F𝑃 .
Correspondingly, the continuous version of the Fourier analysis becomes a standard harmonic analysis

over F𝑃 , where we establish that the quantized equivalent of the minimum possible angular rotation of
the pseudo-complex plane C is

𝑔∞ = 𝑒−𝑖2𝜋𝑑𝑥 ≈ 𝑒𝑃
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and furthermore, a discrete Fourier analysis can be carried out for any finite rotational group of cardinality
𝑁 , such that 𝑁 is a divisor of 𝑃−1, and therefore we can establish the equivalence of the discrete generator

𝑔𝑁 = 𝑒−𝑖2𝜋/𝑁 = 𝑒𝑚𝑃

�� 𝑚 =
𝑃 − 1
𝑁

.

8.2. Approximate Lie Group over Finite Field

Lie groups provide the mathematical framework for continuous symmetries in physics and geometry.
Concretely, a Lie group is a set 𝐺 that is simultaneously a smooth manifold and a group, so that the
multiplication and inversion maps are infinitely differentiable in local coordinates [19]. However, any
real-world experiment or numerical computation only ever probes finitely many points to finite precision.
This observation motivates seeking finite structures whose “local” behavior is indistinguishable from
that of a genuine Lie group up to an arbitrarily small error 𝜀.

The pseudo-sphere F𝑃 (0, 1)—a finite set of 𝑃 labels arranged in a fractal-like pattern on a surface of
a sphere—can be covered by a finite collection of small “tiles,” each of which embeds into R2 as a patch
of diameter 𝛿 ≪ 1. Each tile contains arbitrary large number of labels, and the finite-field addition and
multiplication (mod 𝑝) induce a map

𝜑𝑘
(
𝜇(𝑝, 𝑞)

)
= 𝜑𝑖 (𝑝) + 𝜑 𝑗 (𝑞) +𝑂 (𝜀),

where 𝜑𝑖 , 𝜑 𝑗 , 𝜑𝑘 are local coordinate charts [15]. In this way, the group law “looks like” the smooth
addition of tangent vectors to within any prescribed 𝜀, reflecting the idea of almost-flat or almost-Lie
structures.

From the perspective of additive combinatorics, such finite sets with approximate closure and asso-
ciativity properties are known as approximate groups [7]. In our setting, the finite pseudo-sphere satisfies
associativity, identity, and inverses exactly in the modular arithmetic, and the coordinate-chart errors can
be made arbitrarily small by choosing 𝑃 and the observation horizon 𝐻 appropriately. Hence, F𝑃 (0, 1)
qualifies as an 𝜀-Lie group: a discrete model that, for all practical (finite-precision) purposes, behaves
identically to a true 2-sphere Lie group up to error 𝜀.

Definition 3 (𝜀–Lie group at finite horizon). Let 𝐺 be a set, 𝑑 a metric on 𝐺, and let

𝜇 : 𝐺 × 𝐺 → 𝐺, 𝜄 : 𝐺 → 𝐺

be binary “multiplication” and inversion maps. Fix integers

𝑛 ∈ N, 𝜀 > 0, 𝛿 > 0.

We say that
(
𝐺, 𝑑, 𝜇, 𝜄

)
is an (𝑛, 𝜀, 𝛿)–Lie group if there exists a finite atlas of charts

{(𝑈𝑖 , 𝜑𝑖)}𝑁𝑖=1, 𝜑𝑖 : 𝑈𝑖

≃−→ 𝑉𝑖 ⊂ R𝑛,

covering 𝐺, such that:
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1. Approximate smoothness of multiplication. For every 𝑝 ∈ 𝑈𝑖 , 𝑞 ∈ 𝑈 𝑗 , there is some chart
(𝑈𝑘 , 𝜑𝑘) with 𝜇(𝑝, 𝑞) ∈ 𝑈𝑘 and𝜑𝑘 (𝜇(𝑝, 𝑞)) − [

𝜑𝑖 (𝑝) + 𝜑 𝑗 (𝑞)
] ≤ 𝜀.

2. Approximate smoothness of inversion. For every 𝑝 ∈ 𝑈𝑖 , there exists a chart (𝑈ℓ , 𝜑ℓ) such that𝜑ℓ (𝜄(𝑝)) + 𝜑𝑖 (𝑝)
 ≤ 𝜀.

3. Group axioms up to 𝜀. Denote 𝑒 ∈ 𝐺 the identity element. Then

sup
𝑎,𝑏,𝑐∈𝐺

𝑑
(
𝜇(𝜇(𝑎, 𝑏), 𝑐), 𝜇(𝑎, 𝜇(𝑏, 𝑐))

)
≤ 𝜀,

and

sup
𝑎∈𝐺

[
𝑑 (𝜇(𝑒, 𝑎), 𝑎) + 𝑑 (𝜇(𝑎, 𝑒), 𝑎) + 𝑑 (𝜇(𝑎, 𝜄(𝑎)), 𝑒)

]
≤ 𝜀.

Proposition 5 (Pseudo-sphere as an 𝜀–Lie group). Fix a prime 𝑃 and a finite observation horizon
𝐻 ∈ N. Define

𝐺 = Q≤𝐻
𝑃

=
{
𝑥 (𝑝 − 1)−𝑛 : 0 ≤ 𝑛 ≤ 𝐻, 0 ≤ 𝑥 < 𝑃

}
,

endowed with the metric 𝑑𝐻 induced by embedding local charts into R2. Let 𝜇 and 𝜄 be the truncated
group operations mod 𝑃. Then:

• The set 𝐺 admits a finite atlas of coordinate patches of diameter ≤ 𝛿𝐻 , with 𝛿𝐻 → 0 as 𝐻 →∞.
• The maps 𝜇 and 𝜄 satisfy the three conditions of Definition 1 with

𝑛 = 2, 𝜀𝐻 = (𝑝 − 1)−𝐻 , 𝛿𝐻 = 𝑂 (𝜀𝐻 ).

Hence,
(
𝐺, 𝑑𝐻 , 𝜇, 𝜄

)
is a

(
2, 𝜀𝐻 , 𝛿𝐻

)
–Lie group. In particular, for any finite observer resolution 𝐻,

the structure behaves like a genuine 2-dimensional Lie group up to error 𝜀𝐻 → 0.

8.3. Finite Langlands Program

In the usual Langlands philosophy one relates two vast worlds: on the one hand the (infinite) Galois
representations of a global field, and on the other the automorphic representations of a reductive group
over that field. If one accepts that only finite rings Z𝑄 can exist, then every “infinite” Galois group must
be replaced by its finite quotient

Gal(𝐹/𝐹) −→ Gal(𝐹/𝐹)
/
𝑁 � Gal(𝐹𝑁/𝐹) ⊂ Perm(𝐹𝑁 ),

and every automorphic representation must likewise factor through a finite group of points

𝐺
(
A𝐹

)
−→ 𝐺

(
A𝐹

)
/𝐾𝑁 � 𝐺

(
Z𝑄

)
for some level 𝐾𝑁 . In this “finite-Langlands” perspective all objects—Galois data and automorphic
forms—are built from the same finite base ring Z𝑄, and the conjectural correspondence becomes a
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bijection between{
finite-quotient Galois representations into 𝐺𝐿𝑛 (Z𝑄)

}
←→

{
irreducible representations of 𝐺 (Z𝑄)

}
.

From the function-field side one already has a prototype: Drinfeld and Lafforgue proved a global
Langlands correspondence for 𝐺𝐿𝑛 over F𝑄 (𝑇), where F𝑄 is a finite field, and automorphic forms live
on 𝐺𝐿𝑛 (F𝑄 [𝑇]) [11, 17]. There, both Galois representations and automorphic sheaves are intrinsically
finite objects—perverse sheaves on moduli stacks over F𝑄 and ℓ-adic representations of 𝜋1. This suggests
that a genuinely finite-universe version of the Langlands program would reorganise every classical
component (Hecke operators, 𝐿-functions, trace formulas) into purely combinatorial operations on
Z𝑄-modules and finite group characters.

In summary, if one accepts that Z𝑄 is the only ontologically primitive object, then the Lang-
lands correspondence reduces to an equivalence of categories between Z𝑄-linear Galois modules and
Z𝑄-linear automorphic modules. All “infinite” phenomena (analytic continuation, spectral decomposi-
tions) become emergent from the finiteness of Z𝑄 through limiting processes within finite-dimensional
Z𝑄-vector spaces. Such a viewpoint collapses the traditional dichotomy and recasts Langlands duality
as a statement about different frames of reference on a single finite ring.

9. Conclusions

The primary objective of this work has been to devise an algebraic framework that (1) does not
contradict our conventional arithmetic and geometric intuitions, (2) enables all practical applications of
modern mathematics, and (3) completely disposes of the ontological need for actual infinity. We have
shown that by interpreting addition, multiplication and exponentiation as internal symmetries of a finite
framed field F𝑃 (0, 1), one can reconstruct signed integers, pseudo-rationals, pseudo-reals and pseudo-
complex numbers in a way that matches classical behavior up to any desired precision, without ever
invoking an infinite set. This construction preserves the familiar algebraic laws and analytic operations
that underpin standard number systems, ensuring full compatibility with intuition and established
mathematical practice.

Moreover, our finite relational algebra supports the full spectrum of modern mathematical
techniques—solving polynomial equations, performing limit-like approximations via dense pseudo-
rationals, and modeling continuous symmetries through 𝜀-Lie-group approximations—while entirely
replacing classical infinities with context-dependent finite representations. In doing so, it provides
exact algebraic analogs for roots, exponentials and trigonometric relationships, and offers a discrete
yet arbitrarily precise scaffold for differential-geometric and analytic constructions. By eliminating any
ontological reliance on actual infinity, this framework retains the power and flexibility of conventional
mathematics in a fully finitary setting, while also offering an avenue towards the resolution of classi-
cal paradoxes of logic and set theory imposed by the infinitude conjecture. The resulting structure is
not merely a mathematical curiosity; it is a coherent and physically grounded alternative to standard
formalism, suitable for the description of discrete, informationally finite physical systems.

Looking forward, extending our framework to composite moduli, and exploring the implications
for the analysis of dynamic physical systems, will further strengthen and broaden its applicability. We
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anticipate that this relational, finite approach will serve as both a conceptually coherent foundation and
a practical computational paradigm across mathematics, physics and computer science.
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