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Abstract

Einstein’s General Relativity, while extraordinarily successful in explaining gravitational phe-

nomena, faces challenges in reconciling with quantum mechanics and addressing certain cosmo-

logical observations. I present a higher order model of gravitation that reframes the gravitational

field in terms of the connection, with the curvature tensor as the field strength. The action in this

model is based on the squared norm of the field strength, mirroring the structure of other Standard

Model interactions. This approach offers potential advantages for quantization and renormaliz-

ability. Through analysis of the Euler-Lagrange equations in the gravitational sector, particularly

focusing on the metric equations, I demonstrate that Einstein’s field equations emerge as a limiting

case within a more comprehensive theoretical framework. This broader theory may provide expla-

nations for observed experimental discrepancies in cosmology while maintaining consistency with

established gravitational phenomena. This model thus offers a promising avenue for addressing

current challenges in gravitational physics and cosmology.
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INTRODUCTION

Einstein’s field equations (EFEs), the cornerstone of General Relativity (GR), have stood

as one of the most profound and successful descriptions of gravity for over a century. These

elegant equations relate the geometry of spacetime to the distribution of matter and energy

within it, providing a framework for understanding gravitational phenomena with a precision

far exceeding that of any model previous to their conception [1, 2].

However, as our observational capabilities have advanced and our theoretical understand-

ing has deepened, several critical challenges to the completeness of the EFEs have emerged.

These challenges span both the cosmic and quantum scales, highlighting the need for a more

comprehensive theory of gravity [3].

The Cosmological Constant Problem: A staggering discrepancy of significant orders of

magnitude exists between quantum field theory predictions for vacuum energy and the ob-

served cosmological constant. This discrepancy has been dubbed “the worst theoretical

prediction in the history of physics”. It suggests a fundamental gap in our understanding of

how vacuum energy interacts with gravity at cosmological scales [4, 5].

Dark Matter and Dark Energy: The necessity of dark matter to explain galactic rotation

curves and dark energy to account for the universe’s accelerating expansion suggests that

the EFEs may not fully describe gravitational phenomena on cosmological scales. These

additional components, constituting most of the universe’s content, are not predicted by

the original equations [6, 7]. This discrepancy points to a significant incompleteness in our

current gravitational theory.

Quantum Gravity: The EFEs, while extraordinarily successful in describing gravity at

macroscopic scales, are fundamentally classical in nature. They do not incorporate quantum

mechanics, leading to breakdowns at very small scales and high energies, such as those found

in black holes or the early universe. Moreover, GR has resisted attempts at quantization,

suggesting that a more fundamental theory—one that is naturally amenable to quantization

and renormalization—may be necessary [8–10].

In this paper, I present a mathematical framework that builds upon Einstein’s founda-

tional work while addressing these critical challenges. My approach aims to reconcile the

observed cosmological differences with theoretical predictions without resorting to the in-

troduction of exotic forms of matter or energy. Furthermore, it lays the groundwork for a

2



theory that is more naturally suited to quantization, potentially bridging the gap between

gravity and quantum mechanics.

In the following section, I will introduce the mathematical framework, which extends the

EFEs in a way that naturally accommodates the observed cosmological phenomena. This

approach paves the way for a more complete description of gravitational interactions across

all scales—from the quantum realm to the largest structures in the universe.

I. FROM EINSTEIN TO A MODERN FIELD THEORY

Einstein Field Equations

When Einstein first wrote down the field equations of his general theory of relativity in

action form, he proposed the Lagrangian [1, 11],

L = gµν

 α

µβ


 β

να

 (1)

where gµν is the metric tensor and

 α

µβ

 is the Christoffel symbol defined as,

 α

µβ

 =
1

2
gασ (∂βgσµ + ∂µgσβ − ∂σgµβ) (2)

Later, Einstein, Hilbert, and others reformulated the action of the theory as [2, 12],

S =

∫
R
√
−gd4x (3)

where R = Rα
µβνg

β
αg

µν ,

Rα
µβν is the Riemann curvature tensor,

R is the curvature scalar,

g is the determinant of the metric,
√
−gd4x the canonical invariant volume element on a

manifold. Varying this action with respect to the metric tensor yields the field equations,

Rα
µβνg

β
α = Rµν = 0 (4)

here, Rµν is called the Ricci curvature tensor.
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This result, however, was derived assuming that the spacetime is torsion-free [1, 2, 11, 13].

Including torsion T , the full affine connection is expressed as,

Γα
µν =

1

2
gασ(∂νgσµ + ∂µgσν − ∂σgµν + Tσµν + Tµνσ − Tνσµ) (5)

In any holonomic basis, the affine connection completely describes the covariant derivative

up to metric compatibility [2]. Recognizing this, Cartan showed that varying the action of

GR with respect to torsion yields the torsion tensor field equations [14],

T α
µν + gαµT σ

νσ − gαν T σ
µσ = 0 (6)

Here one must find themselves at a crossroads. The field equations of Einstein-Cartan

theory (4 & 6) are found by varying with respect to the two parts of the connection inde-

pendently, while treating the metric and torsion each as gravitational potential fields. One

should ask: why not treat the entire affine connection as the gravitational potential and find

an invariant action to vary with respect to the field represented by the affine connection?

An action can be constructed in a form similar to that seen in other field theories.

Specifically, I take a first-order derivative of the dynamic field and square it appropriately

so as to ensure invariance with respect to some local symmetry [15, 16], in this case, general

coordinate transformations.

In examining equation (1), I notice it appears that Einstein may have initially approached

his model with this formulation in some manner, considering he treated the metric as the

gravitational potential. However, given the limited exploration and popularization of this

approach at the time, it is understandable that he was persuaded to adopt a more minimal

scalar quantity. While this historical interpretation is intriguing, it is purely speculative on

my part and not well-documented.

Construction of The Affine Field Equations

I will start with the affine connection and take a derivative as follows,

Rα
µβν = ∂βΓα

νµ − ∂νΓα
βµ + Γα

βσΓσ
νµ − Γα

νσΓσ
βµ + Γσ

βνΓα
σµ − Γσ

νβΓα
σµ (7)

Rα
µβν is the complete curvature tensor in the presence of torsion or any other antisymmetric

contributions to the connection [13].

Rα
µβν = Rα

µβν + T σ
βνΓα

σµ (8)
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Let us define Rα
µβν as the gravitational field strength. The Lagrangian density will be built

from the field strength in a manner similar to modern geometric field theories [15, 16], by

taking the inner product of the field strength with itself,

S =

∫
Rα

µβνRµβν
α D4x (9)

where D4x is a generalized invariant volume form. This Lagrangian and its associated Euler-

Lagrange equations with respect to the gravitational field Γ will yield the gravitational field

equations,
∂

∂Γα
νµ

(
Rα

µβνRµβν
α

)
− ∂ρ

∂

∂(∂ρΓα
νµ)

(
Rα

µβνRµβν
α

)
= 0 (10)

the field equations are,

DβRµβν
α = 0 (11)

In addition to the field equations, one must pair with equations of motion to provide a

description of the motion of a test particle in the field solved for in the field equations. In

Einstein’s general theory of relativity, the geodesic equation serves the role of this equation

of motion [17–19],

d2xµ

dλ2
+ Γµ

αβ

dxα

dλ

dxβ

dλ
= 0 (12)

This is found by varying the path interval with respect to the position of a free particle. In

the model presented here, the path interval for a free particle is given by,

S =

∫
mc2Dλ (13)

where Dλ is an invariant path element such that,

Dλ → Dλ

dxµ
dxµ → dλ + Γµ

µν

dxν

dλ
dλ (14)

For a discussion on how this is similar to the canonical invariant element (
√
−gdλ), but more

generalized, and a comparison with other models see Appendix A. Varying with respect to

xµ, one finds,
d2xα

dλ2
+ Rα

βµν

dxβ

dλ

dxµ

dλ
Xν = 0 (15)

where X is the seperation vector between events on geodesics, this is canonically called the

geodesic deviation [20, 21].
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II. METRIC FIELD EQUATIONS OF THE SQUARED NORM

Field Equations of the Metric

The model presented establishes the gravitational field equations and equations of motion.

However, in Einstein’s GR he considers the metric field equations [1, 11]. I will examine

the metric field equations in the presented model to compare with Einstein’s equations and

present any corrections to the Einstein model in the regime where it could be considered a

valid approximation.

Using the action based on the field Lagrangian density Rα
µβνRµβν

α , we can also derive the

field equations of the metric,

2D[aDb]Rnmab + RabRnamb = 0 (16)

for a detailed derivation of these metric field equations using a variational principle approach

see Appendix B.

In the rest of this paper I will generalize the notion of the curvautre tensor such that I

refer to R as the Riemann tensor, it’s contraction the Ricci tensor, and the trace of this

form of the Ricci tensor as the curvature scalar.

The Einsteinian Limit

Under what conditions would one expect this to reduce to the Einstein equations, where

we can consider the Einstein equations as an approximation? I expect that the Einstein

equations would emerge as a weak field limit of (16), when the local curvature becomes

negligible. I would not necessarily restrict the global curvature, however. These conditions

correspond to a maximally symmetric space, i.e., where the curvature is isotropic and ho-

mogeneous everywhere in the universe [22–24]. This would imply that in regions where the

gravitational field is weak, we can ignore local effects on the geometry and focus on the

solutions for the global geometry [25], which I hypothesize can be reduced to Einstein’s

equations.

In a maximally symmetric space the metric is not a function of space, and in a nearly

maximally symmetric space the metric can be decomposed into a maximally symmetric
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background and a local part,

gab(x) = ηab + hab(x) (17)

where η is the maximally symmetric metric (this could be η0 the metric of a ‘flat’ Minkowski

spacetime, η+ the metric of a ‘positively curved’ de Sitter space, or η− the metric of a

‘negatively curved’ anti-de Sitter space). The global geometry of spacetime is captured

in η and the local geometry is described by h(x). This approach, the background field

method, is commonly used in perturbative treatments of gravity and quantum field theory

in curved spacetime [26, 27]. It allows us to separate the large-scale structure of spacetime

from local fluctuations or perturbations. The term h(x) represents small deviations from

the maximally symmetric background. In the context of GR, these deviations represent

localized gravitational effects. Most commonly, these localized effects are used to describe

gravitational waves [28]. I do not take that wave interpretation here since gravitational

waves should be fully described by the gravitational field equations for Γ. Instead, I view

this as local deviations from the background metric due to the local mass content in a region

of spacetime.

The Riemann tensor can be decomposed in general [29],

Rabcd = Cabcd +
1

2

(
ga[cRd]b − gb[cRd]a

)
− 1

6
ga[cgd]bR (18)

where Cabcd is canonically called the Weyl tensor. The Weyl tensor vanishes in maximally

symmetric spaces [30], so one obtains,

Rabcd(η) =
1

2

(
ηa[cRd]b(η) − ηb[cRd]a(η)

)
− 1

6
ηa[cηd]bR (19)

furthermore, the Ricci tensor in a maximally symmetric space is trivially Rab(η) = 1
4
ηabR.

Therefore, the Riemann tensor in a maximally symmetric space becomes,

Rabcd(η) =
1

12
ηa[cηd]bR (20)

thus, the field equations can be simplified as follows,

2D[aDb]

(
1

12
ηn[mηa]bR

)
+

(
1

4
ηabR

)(
1

12
ηn[aηm]bR

)
= 0 (21)

notice that neither η nor R are functions of space in this context, and therefore the derivative

term vanishes,

D[aDb]

(
ηn[mηa]bR

)
= 0
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the remaining part of the field equations must then also vanish in this context,(
1

4
ηabR

)(
1

12
ηn[aηm]bR

)
= 0

1

16
ηnmR2 = 0 (22)

The proposal of Einstein’s equations as a weak-field limit under these conditions would

imply the following,
1

16
ηabR2 = Gab + Hab (23)

where Gab is the Einstein tensor, and Hab represents a correction. The Einstein tensor in a

maximally symmetric vacuum [31] is given by,

Gab(η) = Rab(η)

=
1

4
ηabR

(24)

from equations 23 and 24 one can conclude that,

Hab =
1

16
ηabR2 − 1

4
ηabR

Hab =
1

4
ηabR

(
R
4
− 1

)

Hab = Rab

(
R
4
− 1

)
(25)

when Einstein’s equations do not require correections Hab ≈ 0 and the right hand side of (25)

should also vanish,

Rab

(
R
4
− 1

)
≈ 0 (26)

therefore either,

Rηab ≈ 0

or

R
4
− 1 ≈ 0

however, since the metric is not generally null either the scalar curvature is vanishing, R ≈ 0,

or R ≈ 4, for Einstein’s field equations to require no corrections.
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III. COMPARISON TO EMPIRICAL COSMOLOGY

Global Curvature and Dark Energy

On scales large enough that the maximally symmetric condition holds, one can examine

the differences in the expected and observed average curvature of the universe in the form

of the cosmological constant Λ. Since this is an observed quantity, slightly positive number

near zero [6], I expect the correction H might be sufficient to account for the effects currently

attributed to dark energy, potentially eliminating the need to invoke exotic explanations for

cosmic expansion.

Consider the corrections H to be equivalent to Λη when comparing the EFEs with a

cosmological constant to the metric field equations. In this context, it is evident that the

metric field equations do not require additional factors to account for the phenomena typi-

cally attributed to dark energy,

Hab
!

= Ληab

Rab(η)

(
R
4
− 1

)
= Ληab

1

4
Rηab

(
R
4
− 1

)
= Ληab

R2 − 4R = 16Λ (27)

solving for R,

R ≈ 2 ± 2
√

1 − 4Λ (28)

one can approximate
√

1 − x ≈ 1 − x
2

for small x, therefore,

R ≈ 2 ± (2 − 4Λ) ⇒

4Λ

4(1 − Λ)
(29)

A scalar curvature of R ≈ 4(1 − Λ) ≈ 4 corresponds to a mass density on the order of

1010kg/m3, which is approximately that of a white dwarf star [32]. This represents an

extremely large average curvature/mass density for a maximally symmetric universe and is

therefore ruled out as non-physical. I now turn to the case of vanishing scalar curvature as

the other solution where Einstein’s equations require no correction. R ≈ 4Λ ≈ 0 aligns with

current observations [33]. Thus, this model naturally produces a term that behaves like the
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cosmological constant, but replaces it with purely geometric terms. This could explain the

phenomenon currently attributed to dark energy without the need to invoke exotic materia.

Local Curvature and Dark Matter

The corrections due to h(x) from a specific mass will require an analysis of the perturba-

tions in the field equations by considering a non-vanishing h. To begin this process, I will

express the field equations in terms of the metric decomposition given in equation (17),

Rabcd = Rabcd(η) + Rabcd(h) + Rabcd(O(h)) (30)

where Rabcd(η) is the curvature due to only the background metric (as found in equation 20),

Rabcd(h) is the curvature arising from the first-order corrections due to h, and Rabcd(O(h))

represents the curvature corrections of second order or higher in h, which I will treat as

small and negligible. Let’s now write out all the terms of the connection to first order in h,

Γabc(h) =
1

2
(∂bhac + ∂chba − ∂ahbc) (31)

now the curvature to first order in h, neglecting the quadratic terms ΓΓ (since they are at

minimum second order in h and therefore negligible for small h), can be expressed as,

Rabcd(h) = ∂cΓabd(h) − ∂dΓabc(h)

Rabcd(h) =
1

2
(∂c∂bhad + ∂c∂dhba − ∂c∂ahbd − ∂d∂bhac − ∂d∂chba + ∂d∂ahbc) (32)

Rab(h) =
1

2

(
∂n∂(ahb)n −□hab − ∂b∂atr(h)

)
(33)

where □ is the d’Alembertian, ∂n∂n, and tr(h) is the trace of h, i.e. hn
n.

I am going to substitue this result (33) into the metric field equations (16), but be-

cause I am only considering very small h the derivatives D[aDb]Rnmab(η) are negligible. So

substituting (33) into just the second part of (16),

1

4

(
∂n∂(ahb)n −□hab − ∂b∂atr(h)

)
×

(
∂m∂ahnb + ∂m∂bhan − ∂m∂nhab − ∂b∂ahnm − ∂b∂mhan + ∂b∂nham

)
= 0

(34)

When the first term in (34) is equal to zero, it is not novel because it arises in standard GR

from the EFEs representing a well-established result consistent with the predictions of GR

in weak-field limits or in maximally symmetric spaces [34]. Novel solutions to the metric

will be found by looking at the second part of (34).
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Modified Schwarzschild Metric

I want to find solutions to the metric that satisfy,

∂m∂ahnb + ∂m∂bhan − ∂m∂nhab − ∂b∂ahnm − ∂b∂mhan + ∂b∂nham = 0 (35)

where h vanishes at infinity. The general solution will take the form,

hab = e−αrAab (36)

In the simplest case of the metric outside a spherically symmetric mass, the background

metric is that of Schwarzschild [35] and the perturbation would give a correction to each

part of the background,

hab = ηabAe−αr (37)

h =


h1(r) 0 0 0

0 h2(r) 0 0

0 0 h3(r) 0

0 0 0 h4(r)

 (38)

the time and radial components, h1 and h2,

h1(r) = − 1

h2(r)
= Ae−αr (39)

Adding this to the Schwarzschild metric,

ds2 = −
(

1 − 2GM

c2r
− Ae−αr

)
c2dt2 +

(
1 − 2GM

c2r
− Ae−αr

)−1

dr2 + r2dΩ2 (40)

dΩ captures the metric on the 2-sphere including any contributions that might arise from

h3 and h4.

Modified Newtonian Potential

Based on the corrections to the Schwarzschild metric found, the gravitational potential

is modified with corrections to the Newtonian potential,

Φ(r) = −GM

r
− c2

2
Ae−αr (41)
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observational limits on the value of A and α in the perihelion of Mercury [36], orbiting binary

pulsar timing [37, 38], deflection of light around the sun and other massive bodies [36], and

gravitational wave propagation exist to constrain these parameters in order to agree with

current data [39–41]. I wish to explain all the effects we see in cosmology without the need

to invoke dark matter. This requires the exponential term dominates the potential for r

greater than a characteristic distance rd, where rd is the distance where the transition from

being dominated by the Newtonian to being dominated by the corrections occurs. Setting

the terms equal at r = rd to find the characteristic distance there the transition occurs,

GM

rd
=

c2

2
Ae−αrd (42)

rd =
2GM

c2A
eαrd (43)

ln(rd) = ln

(
2GM

c2A

)
+ αrd (44)

let A =
(
2GM
c2

)
and solve for α at the characteristic distance rd,

α =
ln(rd)

rd
(45)

so,

Φ(r) = −GM

r
−GMe

− ln(rd)

rd
r

(46)

Notice for small masses at short distances the 1/r term is a good approximation, but for

large M the exponential term dominates at large distances. The characteristic distance rd

becomes an undetermined free parameter to be measured to satisfy experimental data.

Modified Keplerian Orbital Velocities

One place the Newtonian potential is insufficient to explain the gravitational effects of

the visible baryonic matter is in the orbital velocities in spiral galaxies [42, 43]. Modifying

the Keplerian expectation based on the modified potential I found might help explain the

difference in theory and measurement. The modified orbital velocity due to this modified

potential are,

v =

√
GM

r
+ GMr

ln(rd)

rd
e
− ln(rd)

rd
r

(47)
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FIG. 1. Plot of Orbital Velocities vs. r

the modified orbital velocity tends to the Keplerian expectation for large or small r, but

around rd the orbital velocity has a bump (FIG. 1). Observations of orbital velocities show

that velocities do not fall off purely exponentially as is the Keplerian expectation, but rather

flatten out at some distance near the outer edges of the galactic spiral [44, 45]. The bump

in orbital velocity calculated with corrections could align with the cosmological observations

for the right choice of rd. The exact value of rd for a given galaxy is a free parameter

to be determined exactly by experiment. The calculated orbital velocities will need to be

compared to empirical data to determine if the excepted and measured orbital velocities

match without the need to add additional sources of mass such as dark matter.

IV. THIS MODEL OF GRAVITY AS A GAUGE THEORY

I would like to take this opportunity to present a brief review of the model presented and

its comparison to the differential geometry of Standard Model gauge theory, highlighting

why it might be better prepared for quantization compared to GR. This model reframes

gravity in terms of the affine connection as the fundamental field, with the curvature tensor

serving as the field strength. This approach bears striking similarities to the gauge theories

of the Standard Model. In this model, the gravitational potential is represented by the affine
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connection Γ, analogous to the gauge potential A in Yang-Mills theories [15, 17–19]. The

curvature tensor R serves as the gravitational field strength, similar to the field strength

tensor F in gauge theories. The equations based on the squared norm of the field strength

(Rα
µβνRµβν

α ), mirrors the Yang-Mills action (F a
µνF

µν
a ) [15].

This formulation offers several advantages for quantization. The model naturally in-

corporates the geometric nature of gravity while maintaining a structure similar to other

quantum field theories. The squared field strength in the action is a promising starting

point for renormalization, as it is of the same form as renormalizable gauge theories. The

model respects general coordinate invariance, analogous to gauge invariance in the Stan-

dard Model [17–19]. The background field method used in this model (gab = ηab + hab) is

well-suited for perturbative quantum calculations [27]. This approach potentially allows for

a more unified treatment of gravity with other fundamental forces.

In contrast, GR’s action (based on the Ricci scalar R) and its direct quantization face

several challenges. GR is notoriously difficult to renormalize due to its non-polynomial

dependence on the metric [46]. Traditional approaches to quantizing GR often struggle with

background independence [47–50]. Perturbative expansions in GR can lead to divergences

that are challenging to handle [51]. My model’s closer alignment with the structure of gauge

theories potentially offers a more promising path towards a quantum theory of gravity,

addressing some of the key obstacles faced in quantizing GR directly.

Appendix A: About the Invariant Element

In standard GR the invariant element is commonly written as
√
−gdλ. Writing Dλ is

more than merely a suppression of the invariance into a different symbolic notation. I write

this to explicitly display it as similar to the covariant derivative,

Dλ = dλ + Γµ
µν

dxν

dλ
dλ

notice the similarity to the commonly used version through the following,

d

dxν

√
−g = Γµ

µν

so, this version is equivalent in the case used in this paper. But this version is more versatile

and ready to be used in a unified field theory where the invariant element is more compli-

cated, and the advantage comes in the way of using the covariant derivative to expand one’s
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understanding,

DµV
ν =

dV ν

dxµ
+ Γν

µαV
α + AµV

ν

Dλ = dλ + Γµ
µν

dxν

dλ
dλ + Aν

dxν

dλ
dλ

where A is another connection such as that of a gauge group in the Standard Model.

Appendix B: Derivation of the Metric Field Equations of the Squared Norm

L = RabcdR
abcd

δL = 2δRabcd ·Rabcd

δRabcd = DcδΓabd −DdδΓabc

δΓabc =
1

2
δ(∂agbc + ∂bgca − 2∂cgab)

δ(∂agbc) = Daδgbc

substitute this into δL,

δL = 2

(
1

2
Dc(Daδgbd −Dbδgda − 2Ddδgab) −

1

2
Dd(Daδgbc −Dbδgda − 2Dcδgab)

)
Rabcd

= (Dc(Daδgbd −Dbδgda − 2Ddδgab) −Dd(Daδgbc −Dbδgda − 2Dcδgab))R
abcd

to get similar indices and pull out a variation of the metric tensor let us make the substitution

(note that 1 is an identity matrix): DcDaδgbd → (1n
b1

m
d DcDa)δgnm,

δL = (Dc(1
n
b1

m
d Da + 1n

d1
m
a Db − 2 · 1n

a1
m
b Dd) −Dd(1

n
b1

m
c Da + 1n

c1
m
a Db − 2 · 1n

a1
m
b Dc)) δgnmR

abcd

remembering this is all taking place under an integral we can use integration by parts to

change from a derivative of δgnm to a derivative of Rabcd,

δL =
(
(Dc(1

n
b1

m
d Da + 1n

d1
m
a Db − 2 · 1n

a1
m
b Dd) −Dd(1

n
b1

m
c Da + 1n

c1
m
a Db − 2 · 1n

a1
m
b Dc))R

abcd
)
δgnm

δL
δgnm

=
(
(Dc(1

n
b1

m
d Da + 1n

d1
m
a Db − 2 · 1n

a1
m
b Dd) −Dd(1

n
b1

m
c Da + 1n

c1
m
a Db − 2 · 1n

a1
m
b Dc))R

abcd
)

distributing Rabcd,

δL
δgnm

=Dc1
n
b1

m
d DaR

abcd + Dc1
n
d1

m
a DbR

abcd − 2Dc1
n
a1

m
b DdR

abcd

−Dd1
n
b1

m
c DaR

abcd −Dd1
n
c1

m
a DbR

abcd + 2Dd1
n
a1

m
b DcR

abcd

=DcDaR
ancm + DcDbR

mbcn − 2DcDdR
nmcd

−DdDaR
anmd −DdDbR

mbnd + 2DdDcR
nmcd
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reordering some indices and observing symmetries of the Riemann tensor,

δL
δgnm

=DbDaR
namb −DbDaR

manb − 2DaDbR
nmab

+ DbDaR
namb −DaDbR

mbna + 2DbDaR
nmab

δL
δgnm

=
(
DbDaR

namb + DbDaR
namb

)
−
(
DbDaR

manb −DaDbR
mbna

)
−
(
2DaDbR

nmab + 2DbDaR
nmab

)
= 2DbDaR

namb − 2DbDaR
manb − 2D[aDb]R

nmab

= −2D[bDa]R
namb − 2D[aDb]R

nmab

= −2D[aDb]

(
Rnamb + Rnmab

)
D[aDb]R

namb = −1

2
RabR

namb

δL
δgnm

= RabR
namb + 2D[aDb]R

nmab

Appendix C: Plot Orbital Velocity vs. Radius for Characteristic Radii

The following is the code used to create the plot in figure 1

1 #!/ usr / b in /env python

2 # coding : u t f −8

3

4 # In [ 1 ] :

5

6

7 import numpy as np

8 import matp lo t l i b . pyplot as p l t

9 from matp lo t l i b . l i n e s import Line2D

10

11

12 # In [ 2 ] :

13

14

15 G = 6.67 ∗ (10∗∗( −11) ) #Newtons cons t [mˆ3 ] [ kg ˆ−1][ s ˆ−2]
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16 M = 2 ∗ (10∗∗ (41) ) #average mass o f s p i r a l ga l axy [ kg ]

17 #4.63 ∗ (10∗∗(20) ) #average rad ius o f s p i r a l ga l axy [m]

18 rho 0 = 10∗∗( −21) #average c en t r a l mass d en s i t y o f a s p i r a l ga l axy

[ kg ] [mˆ−3]

19

20

21 # In [ 3 ] :

22

23

24 # Define the parameters

25 c h a r r a d d i i = [ 1 0 , 1000 , 1000000 , 1 ] # Example va l u e s f o r r d

26

27

28 # In [ ] :

29

30

31 # Define the func t i on

32 def v v s r ( r , r d ) :

33 return np . s q r t ( (G∗M) /( r ) + (G ∗ M ∗ r ∗ (np . l og ( r d ) / r d ) ) ∗

np . exp(−np . l og ( r d ) / r d ∗ r ) )

34

35 # Generate r va l u e s

36 # np . l i n s p a c e (min , max , s t e p s )

37 r v a l u e s = np . l i n s p a c e ( 0 . 1 , 10000000 , 100000000)

38

39 # Plot the func t i on f o r each r d

40 for r d in c h a r r a d d i i :

41 v va lue s = v v s r ( r va lue s , r d )

42 p l t . p l o t ( r va lue s , v va lues , l a b e l=f ’ r d  = { r d } ’ + ( ’  (

Keplar ian ) ’ i f r d==1 else ’ ’ ) , l i n e s t y l e =(0 , (4 , 5) ) i f

r d==1 else ’− ’ , c o l o r=’ black ’ i f r d==1 else None)

17



43

44 # # p l o t newtonian f o r comparis ion

45 # v va l u e s = v v s r ( r va l u e s , 0 , 1)

46 # p l t . p l o t ( r va l u e s , v va lue s , l a b e l=f ’ r d = 1 (Newtonian ) ’ ,

l i n e s t y l e =(0 , (4 , 5) ) , c o l o r=’ b l a c k ’ )

47

48 p l t . y s c a l e ( ’ l og ’ ) # Set the y−ax i s to l o ga r i t hm i c s c a l e

49 p l t . x s c a l e ( ’ l og ’ ) # Set the x−ax i s to l o ga r i t hm i c s c a l e

50

51 p l t . x l a b e l ( ’ r  (m) ’ )

52 p l t . y l a b e l ( ’ Orb i ta l  V e l o c i t i e s  (m/ s ) ’ )

53 p l t . t i t l e ( ’ Orb i ta l  V e l o c i t e s  vs .  r ’ )

54 p l t . l egend ( t i t l e=” C h a r a c t e r i s t i c  Radi i  (m) ” , l o c=” lower  l e f t ” )

55 p l t . g r i d ( True )

56

57 p l t . s a v e f i g ( ’ f i g u r e s / graph orbvelVr . png ’ , dpi =300 , bbox inches=’

t i g h t ’ )

58

59 p l t . show ( )

60

61

62 # In [ ] :

63

64

65 import subproces s

66 subproces s . c a l l ( ” jupyte r  nbconvert  −−to  s c r i p t  v e l o c i t y c u r v e s .

ipynb ” )
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