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1 Introduction
Since the beginning of the 20th century, physics has relied on two fundamental pillars: general relativity, which
describes the curvature of spacetime in response to mass-energy, and the Standard Model of quantum physics,
in which the Higgs field plays a central role in the origin of mass. Both frameworks have been confirmed
experimentally with remarkable precision, but their unification remains a major challenge in theoretical
physics.

The experimental confirmation of the Higgs boson in 2012 at CERN [1, 2] profoundly changed our un-
derstanding of mass: it is no longer viewed as an intrinsic property of particles, but as the result of an
interaction with a quantum field that structures the vacuum. General relativity, on the other hand, teaches
us that gravity is not a force in the classical sense, but a manifestation of the curvature of spacetime.

This conceptual separation has led to an ontological paradox: how can we reconcile a structured quantum
vacuum that carries mass with a gravitational vacuum defined by geometric curvature? What if these two
descriptions were merely complementary dimensions of a single underlying entity?

This is precisely the central hypothesis of this work. I propose a unified theory based on a dynamical
geometrization of the vacuum, in which the Higgs field and the gravitational field are intrinsically coupled.
This coupling makes it possible to interpret mass not only as an interaction with the Higgs field, but as the
result of a profound geometric relationship between the structure of the quantum vacuum and gravitational
dynamics.

This new framework offers a novel conceptual bridge between:

• mass generation via the Higgs field,

• gravitational dynamics as described by Einstein,

• major cosmological anomalies such as dark energy and dark matter,

• and emergent properties of quantum mechanics (entanglement, decoherence, quantum-to-classical tran-
sition).

By placing the following idea at the heart of my construction:

Could the relationship between the Higgs field and mass in quantum physics play a structurally
analogous role to that played by the gravitational metric on time in general relativity?

I propose a unified framework in which mass, gravity, vacuum, time—and the transition to tangible
reality—emerge from a single dynamic process.

This approach, while remaining compatible with existing observations, opens the way to a profound
reformulation of our understanding of reality. We begin by laying out the conceptual foundations of this
idea, then develop the Lagrangian formalism, derive the dynamic equations, and explore the cosmological,
astrophysical, and experimental implications.

An important clarification is needed: the present theory does not rely on any hidden field or explicitly
introduced dark sector. Unlike many approaches that postulate the existence of new particles to explain dark
matter or dark energy, this work shows that such anomalies can naturally emerge from an inertial modulation
of the Higgs field, activated by geometry itself.

This modulation is formalized through a local dimensionless function, denoted ϵ(I), where I is a geometric
invariant (such as scalar curvature or the Kretschmann invariant). This function encodes the inertial response
of the vacuum to the structure of spacetime. Thus, mass, gravity, and vacuum structure are not connected
by additional interactions, but by a shared dynamic rooted in the geometry of the quantum background.

This choice strengthens the coherence, minimality, and testability of the proposed framework, while
supporting a resolutely geometric reading of unification. this work also shows that this framework
remains consistent in extreme regimes, up to the Planck scale, and that the saturation of
inertial modulation at high energies suggests a natural compatibility with certain structures of
quantum gravity, such as string theory. This behavior in extreme regimes enhances the robustness of
the model and opens conceptual pathways to quantum gravity theories.

2 Theoretical Positioning and Foundational Principles

2.1 Continuity and Departure from Existing Frameworks
This approach follows a dual logic: respecting the experimental validity of established theories while em-
bracing a radical conceptual extension. I retain the formal structures of general relativity and the Standard
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Model but introduce a new degree of freedom: the possibility that the Higgs field and spacetime curvature
are two manifestations of the same geometric foundation of the vacuum. In doing so, I align with the deep
intuitions of several major theoretical frameworks:

• So-called non-minimal inflation models, such as that of Bezrukov and Shaposhnikov [3], in which the
Higgs field is directly coupled to spacetime scalar curvature through a term like ξRϕ2, already suggest
that a quantum scalar field can influence large-scale cosmological dynamics via geometry. This approach
continues in this line, while extending the coupling to other geometric invariants and to non-inflationary
regimes.

• Sakharov’s hypothesis [4], which proposes that gravity is not a fundamental interaction but an emergent
effect of quantum vacuum fluctuations, offers a powerful conceptual framework in which spacetime
curvature arises as a response to the dynamic structuring of the vacuum. This view is fully compatible
with the central postulate, in which the Higgs field acts as an active mediator of this structuring.

• Finally, relational formulations of space and time, as inspired by Einstein and Mach and further de-
veloped notably by Barbour [5], assert that fundamental quantities such as time or mass only make
sense relative to the structure of the universe. This relational approach resonates deeply with my
hypothesis of a dynamic vacuum, in which mass, gravity, and temporality emerge from a common
geometric-quantum fabric.

However, my proposal is distinguished by a novel central hypothesis: the vacuum is not neutral but
active, carrying a dynamic geometric-quantum structure in which the Higgs field and gravity
interact directly.

2.2 Foundational Question
The initial question at the origin of this research is conceptual in nature:

Could the relationship between the Higgs field and mass in quantum physics play a structurally
analogous role to that of the gravitational metric on time in general relativity?

In other words, can we conceive that these two mechanisms—one based on a quantum scalar field, the other
on the tensor geometry of spacetime—are two complementary expressions of a unified vacuum dynamics? This
deep analogy between the Higgs field and the gravitational field suggests the existence of a more fundamental
level at which mass and time, inertia and causality, emerge from the same geometric-quantum substrate that
structures the universe.

2.3 Unifying Objective
My goal is to propose a reformulation of the vacuum in which:

• Mass is an emergent property linked to the interaction between local vacuum curvature and the Higgs
field, the latter dynamically modulating the inertial properties of particles;

• The gravitational field encodes a feedback loop from the Higgs field: local variations in the Higgs field’s
vacuum expectation value directly influence energy density, modify inertial content, and in turn shape
the geometric structure of spacetime. This feedback forms the core of the Higgs–gravity dynamic
coupling;

• Effective dark matter naturally emerges from this geometric interaction: in regions of high curvature,
the effective mass of visible particles is modified, producing additional gravitational inertia that mimics
the effects commonly attributed to invisible matter;

• Effective dark energy results from the slow modulation of the Higgs field at cosmological scales: the
residual deformation of the vacuum generates negative pressure, equivalent to a dynamic cosmological
constant, capable of explaining the acceleration of the universe’s expansion;

• Time itself may be reinterpreted as a propagation dimension of this dynamic geometry: temporal
structure is no longer a passive background but arises from the joint evolution of the Higgs field and
curvature. In other words, the flow of time reflects the local dynamics of inertia and gravity, and every
point in spacetime bears the imprint of this co-evolution.
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This theoretical positioning has important implications for how we conceive of gravity at the quantum
scale. Notably, it challenges the necessity of a fundamental graviton as a quantum mediator of gravita-
tional interaction. In this framework, gravity is not a standalone interaction carried by a spin-2 particle
but an emergent effect resulting from geometric modulation of the Higgs field, induced by local curvature
invariants. Thus, if the graviton exists, it would not be an elementary particle but an effective mode of
collective oscillation in the geometrized vacuum—comparable to quasi-particles like phonons in condensed
matter physics.

This perspective aligns with emergent gravity approaches, first outlined by Sakharov [4] and developed
notably by Jacobson, in which Einstein’s equations are interpreted as thermodynamic state laws of the
vacuum. It eliminates the need to quantize the metric directly and opens the way to a non-perturbative,
dynamic unification of the Higgs field and gravity.

2.4 Main Hypothesis
I therefore formulate the following hypothesis:

The Higgs field and the gravitational field are two projections of the same geometric-quantum
substrate of the vacuum, whose dynamics generate mass, gravity, the so-called “dark” cosmological
phenomena, and contribute to the structuring of physical reality.

In other words, this deep interaction not only generates the dynamic properties of the observable universe
but could also play a central role in the transition between quantum potentialities and classical physical real-
ity—the realm governed by relativity. It would thus provide a bridge toward a more complete understanding
of how the macroscopic world emerges from the underlying rules of quantum physics.

This is the hypothesis I formalize in what follows through a unified Lagrangian dynamics, both testable
and predictive.

This dynamics is based on an extended Lagrangian in which the Higgs field evolves within curved space-
time. This evolution explicitly depends on geometric invariants (such as scalar curvature or the Kretschmann
invariant), which locally modulate the structure of the Higgs potential. In turn, variations in the Higgs field
affect the energy and momentum distribution, generating gravitational feedback on the metric itself. Thus,
the geometry of spacetime and the dynamics of the Higgs field form a coupled system whose evolution is
entirely governed by the Lagrangian formalism.

This framework offers a self-consistent description of the interaction between geometry, mass, and quantum
vacuum, paving the way for a natural unification of the fundamental structures of modern physics. It builds on
ideas previously put forward by Sakharov [4], who viewed gravity as an emergence from the quantum vacuum,
and by Penrose [6], who emphasized the need to link geometric curvature and deep quantum structures. It
also resonates with the cosmological insights synthesized by Peebles [7], particularly regarding the large-scale
structure of the vacuum.

In the following sections, I establish the formal foundations of this unified dynamics by constructing the
complete Lagrangian of the coupled system and deriving the associated field equations.

3 Dynamical Foundations and Unified Lagrangian Formulation

3.1 A Geometric Reinterpretation of the Vacuum
The quantum vacuum is not empty: it is crossed by field interactions, fluctuations, and condensates. In this
approach, this vacuum possesses a dynamic geometric structure in which two fundamental fields—the scalar
Higgs field and the geometric gravitational field—mutually influence each other. This structure is described
by a dynamic metric gµν(x) and a local vacuum expectation value ⟨ϕ(x)⟩ of the Higgs field. The coupling
between these two entities is made possible through one or more geometric invariants I(x), which dynamically
modulate the potential of the Higgs field.

This coupling is mediated by functions that will be detailed later, expressing the vacuum’s sensitivity to
its geometric environment. In return, the local modulation of ϕ(x) acts on the energy density, modifying the
geometry itself. This coherent mechanism makes the vacuum responsive to its surroundings, with a contextual
and potentially nonlinear behavior—that is, capable of producing disproportionate effects or depending on
geometric thresholds. This results in a contextual inertial dynamics where certain virtual structures of the
vacuum may activate or condense—a phenomenon we associate with the existence of a dormant reservoir of
latent states.

In the following sections, I will specify the nature of these coupling functions, the roles of the respective
geometric invariants, and the conditions under which this reservoir may activate. These elements will form the
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mathematical and ontological foundation of a unified vacuum dynamics at the intersection of mass, gravity,
and the quantum structure of spacetime.

3.2 Extended Higgs Field Lagrangian
This work introduces a generalization of the Higgs field Lagrangian in curved spacetime, integrating an
explicit coupling to the local geometry:

Lϕ = −
√
−g
[
1

2
gµν∇µϕ∇νϕ+ λ(ϕ2 − v2)2 + γf(I(gµν , R,K, . . . ))ϕ2

]
(1)

where:

• ϕ is the scalar Higgs field,

• λ is the coefficient of the symmetry-breaking potential,

• v is the average value of ϕ in flat spacetime (the electroweak vacuum expectation value),

• γ is a coupling parameter with dimension [length]2,

• f(I) encodes one or more functions of local geometric invariants (such as scalar curvature R, the
Kretschmann invariant K, or other invariants constructed from gµν).

In the Standard Model, the term λ(ϕ2− v2)2 is the spontaneous symmetry-breaking potential of the Higgs
field. This potential has a non-zero minimum at ϕ = v, allowing the field to stabilize around a vacuum
expectation value and break electroweak symmetry. This structure is responsible for the appearance of
particle masses via a Yukawa coupling : each fermion f interacts with the Higgs field through a term of the
form yf ψ̄fϕψf , where yf is the species-specific coupling constant. After symmetry breaking, this interaction
results in a mass mf = yfv. This mechanism underlies the origin of lepton and quark masses [8, 9].

Thus, any geometric variation in the local environment that alters the effective vacuum expectation value
of ϕ (via the term f(I)ϕ2) leads to a modification in the effective mass of particles. The coupling term
f(I)ϕ2 can be interpreted as a dynamic geometric correction to the standard Higgs potential: it deforms the
potential well depending on the structure of spacetime, thereby shifting the potential’s minimum and the
local average value ⟨ϕ(x)⟩. This deformation—induced by geometry—is at the heart of the proposed mass
modulation mechanism in this theoretical framework.

This direct link between geometry, the Higgs field, and effective mass forms the basis of this unification
hypothesis. It is consistent with the foundations of the Standard Model and aligned with modern work
exploring gravitational influence on the Higgs sector [10].

The role of the function f(I) goes beyond a simple Lagrangian perturbation: it encodes the contextual
sensitivity of the vacuum—that is, its ability to locally adjust its inertial regime depending on its geometry.
This modulation is not necessarily linear nor universal: it may vary with the environment and cross critical
thresholds in extreme regimes.

In this sense, the geometric coupling of the Higgs field opens the door to a vacuum dynamics that activates
locally. Some potential deformations may trigger the emergence of virtual components from a latent reservoir
in the vacuum, which only manifest when the geometry exceeds an inertial instability threshold. This
hypothesis will be developed in Sections 3.4 and 3.6.

3.3 Extension of the Gravitational Lagrangian
In the framework of general relativity, the dynamics of gravity are described by the so-called Einstein–Hilbert
action, which assigns to spacetime an action proportional to the integral of the scalar curvature R:

SEH =
1

2κ

∫
d4x

√
−g R (2)

where g is the determinant of the metric gµν , R the scalar curvature, and κ = 8πG (in natural units).
This action alone summarizes the geometric content of Newtonian gravity generalized to curved spacetime,
and leads to Einstein’s field equations Gµν = κTµν .

In this extended framework, the Higgs field, modulated by local geometry, retroacts on the geometry
itself. To account for this mutual influence, I propose an extension of the gravitational action:

Lgrav =
1

2κ

√
−g [R+ δ h(ϕ,∇µϕ,∇µ∇νϕ)] (3)
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where:

• R is the classical scalar curvature,

• h is a function encoding the retroaction of the Higgs field on the geometry,

• δ is a coupling parameter with dimension [length]2, controlling the intensity of this feedback.

The function h depends on the scalar field ϕ and its derivatives up to second order, meaning it can contain
terms in ϕ, ∇µϕ, and ∇µ∇νϕ. This restriction on the derivative order is justified by two main arguments:

1. Consistency with general relativity: the Einstein–Hilbert action involves only second derivatives
of the metric. Similarly, the retroaction of the Higgs field should remain within the same differential
framework to ensure compatibility with the field equations.

2. Dynamical stability: introducing higher-order derivatives (beyond second order) often leads to in-
stabilities (of the Ostrogradsky type), unless very specific conditions are met. By limiting derivatives
up to second order, I ensure system stability and avoid pathological behaviors in the dynamics.

This extension thus incorporates a mutual geometric–quantum influence between the Higgs field and
spacetime curvature, while preserving the classical differential structure of covariant theories. It paves the
way for enriched field equations, which I will explore in the following section.

From an ontological perspective, the term h(ϕ,∇ϕ) expresses the geometric plasticity of the vacuum: it
describes how the local inertial configuration, carried by the Higgs field, constrains the very structure of
spacetime. The vacuum no longer passively undergoes geometry as a rigid framework, but participates in it
as an active field—capable of resisting or amplifying curvature depending on the configuration of ϕ(x).

This retroactive coupling is essential for the vacuum to become a self-consistent system. It makes it possible
to consider the existence of geometric–inertial instability thresholds, beyond which the vacuum regime may
shift—toward local reorganization or the activation of latent degrees of freedom. The precise role of this
instability in vacuum dynamics will be detailed later.

3.4 Total Action of the System
The full action of the proposed system is based on the idea that mass, gravity, vacuum dynamics, and
cosmological evolution arise from the reciprocal interaction between the Higgs field, the geometry of spacetime,
and a deeper quantum substrate. This structure is expressed through a total action composed of several
contributions:

S =

∫
d4x (Lgrav + Lϕ + LSM) (4)

where:

• Lgrav is the extended gravitational Lagrangian defined previously, including the retroaction of the Higgs
field,

• Lϕ is the Higgs field Lagrangian modified by inertial geometric coupling via the function ϵ(f(I)),

• LSM represents the other fields of the Standard Model (photons, leptons, quarks, gauge bosons), ex-
cluding any redundant Higgs terms.

This Lagrangian formalism enables the integration, within a unified covariant framework, of all dynamic
components of the model:

• Spacetime curvature influences the inertial state of the vacuum via geometric invariants acting on the
Higgs field,

• The Higgs field, in turn, retroacts on the geometry through non-minimal coupling,

• Mass, vacuum pressure, and proper time structure emerge as secondary effects of this interaction,

• Inertial modulation of the vacuum is governed by an activation function ϵ(f(I)), which becomes sig-
nificant when the geometry crosses certain thresholds.
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This function ϵ does not introduce any new field: it reflects the quantum vacuum’s capacity to respond
geometrically to its own structure. It encodes an effective stratification of the vacuum, where some properties
remain latent in weakly curved regimes but manifest as soon as a geometric invariant exceeds a critical value.
This describes a reactive vacuum whose local inertia is not constant, but context-dependent.

This action constitutes the variational foundation from which the coupled field equations will be derived,
describing the joint evolution of the Higgs field, spacetime geometry, and emerging modulations of the inertial
vacuum. It provides a formal framework for a unified, testable vacuum dynamics without invoking any hidden
sector.

3.5 Merged Geometric Structure
This theoretical construction is guided by a central hypothesis that underpins the formalism developed so
far:

The Higgs field generates rise to mass just as the geometry of spacetime generates to time—two
distinct, yet deeply coupled manifestations of a unified vacuum dynamics.

In this view, the local average value of the Higgs field determines inertia (effective mass), while the metric
gµν encodes causality (and thus the structure of proper time). These two quantities are not independent:
they evolve together under the influence of a unified Lagrangian dynamics, where:

• curvature directly affects the Higgs field potential,

• the deformation of the Higgs field alters the energy density and thus the curvature itself.

This reciprocal coupling defines a dynamic vacuum structure in which the evolution of spacetime and
that of the Higgs field are co-determined. This local interdependence—governed by the coupling functions
I specified (see section 3)—gives the vacuum the character of a reactive substrate: a medium capable of
adjusting its metric and inertial properties depending on the gravitational or energetic context.

Proper time and effective mass are thus no longer primitive entities but conjugate expressions of the
same geometrization process of the vacuum. This process potentially admits multiple regimes—some stable
(where constants appear frozen), others unstable (where the vacuum may reorganize its internal structures or
activate latent components). This interpretation anticipates an ontological extension of the vacuum, in which
local phases of reality—matter, gravity, dark energy—are merely equilibrium points of a dynamic, curved,
and scalar field.

This kind of construction remains continuous with the general Lagrangian frameworks used in field theory
and relativistic gravity, such as those presented in the classic works of Misner, Thorne, and Wheeler [11], or
of Weinberg [12]. However, this model differs by assigning the vacuum expectation value of the Higgs field
the role of an active geometric modulator, rather than that of a passive symmetry-breaking agent.

This section therefore forms the hinge between the Lagrangian formulation developed in the previous
subsections (section 3) and the field equations derived in the next. It sets out the unified framework in which
mass, gravity, and time emerge from a coupled quantum–geometric dynamics.

3.6 Specification of the Coupling Functions
To ensure the testability of the model and maintain consistency with the principles of covariance, variational
stability, and continuity with known regimes (general relativity and the Standard Model), I propose the
following explicit forms for the coupling functions introduced earlier.

Inertial Geometric Modulation: ϵ(I) We replace the direct coupling γf(I)ϕ2 with an inertial modula-
tion of the vacuum formalized by a dimensionless function ϵ(I), defined as:

⟨ϕ(x)⟩ = v ·
√
1− ϵ(I(x))

where I is a local geometric invariant (such as R, K, or a linear combination of the two). This function
encodes the vacuum’s ability to modulate the local inertial state of particles according to the geometry. To
ensure stability and avoid divergences in extreme regimes, I choose a bounded form, for instance:

ϵ(I) = ϵ0 · tanh
(
f(I)

f0

)
with f(I) = R+

1

f0
K

Here, f0 is a typical curvature scale (e.g., 10−35 m−2), corresponding to the inverse of the average curvature
of the observable universe. Setting α = 1

f0
anchors the function f(I) in a physical basis without introducing

additional free parameters.
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Retroactive Coupling in the Gravitational Lagrangian: h(ϕ,∇ϕ) We retain the form:

h(ϕ,∇ϕ) = ξϕ2R

where ξ is a coupling parameter of dimension [length]2. This term ensures:

• a classical non-minimal coupling between scalar field and curvature (used in inflation),

• a direct and geometrically natural retroaction of the Higgs field on spacetime,

• variational stability (second-order equations, no higher-order derivatives),

• a consistent interpretation within the framework of a dual-structured vacuum (quantum and geometric).

This term expresses a geometric plasticity of the vacuum: wherever the inertial organization carried by
ϕ(x) becomes heterogeneous, the geometric substrate responds.

Effective Scale of Inertial Modulation: γ Rather than appearing directly in the equations of motion,
the constant γ is interpreted here as a calibration constant, expressed as:

γ =
v2 ρΛ
c4

where:

• v = 246GeV/c2 is the electroweak scale (VEV of the Higgs field),

• ρΛ ≈ 6× 10−27 kg/m3 is the current dark energy density,

• c is the speed of light.

This sets the maximum intensity of the geometric modulation while ensuring that the effect remains
negligible in weak-curvature regimes.

Remaining Parameter After fixing α via the relation α = 1/f0, only one free parameter remains in this
model:

• ξ: governs the geometric retroaction through the Higgs field.

This parameter, of dimension m2, remains adjustable based on the geometric stability of the cosmological
vacuum and the intensity of local inertial feedback.

In conclusion, this specification balances dimensional consistency, calibration by fundamental constants, and
physical relevance: mass modulation becomes a geometrically conditioned property of the vacuum, without
requiring hidden fields or divergent direct coupling.

3.7 Geometric-Quantum Origin of the Dormant Reservoir
Ontological and Physical Motivation In this framework, the vacuum is not a passive substrate: it
possesses a dynamic structure sensitive to the local geometry of spacetime. I postulate that in regimes of
extreme curvature, this structure can partially activate, modifying the inertial and energetic properties of
the Higgs field without requiring any additional fields.

This activation is modeled by a local dimensionless function, denoted ϵ(I), where I is a geometric invariant
such as R or K. This function, smooth and bounded, acts as an inertial regulator of the vacuum, triggering
a modulation of ⟨ϕ(x)⟩ when a certain geometric threshold is crossed.

Effective Model and Activation Threshold Rather than a direct coupling, the modulation manifests
as a smooth deformation of the effective potential of the Higgs field:

⟨ϕ(x)⟩ = v ·
√
1− ϵ(I(x)) with ϵ(I) = ϵ0 · tanh

(
f(I)− Λ

f0

)
where:

• f(I) = R+ 1
f0
K is a combination of curvature invariants,
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• Λ is a geometric threshold for inertial modulation,

• f0 is an inverse curvature scale (dimension m−2),

• ϵ0 controls the maximum effect (typically ∼ 1% to 10%).

The constant α is absorbed in the definition of f(I), so no additional free parameter remains. This
mechanism allows local modulation of the effective particle mass or the vacuum energy density without
invoking any auxiliary field. The reservoir is understood here as an emergent property of the geometric
vacuum, conditioned by the structure of spacetime.

Connection with Vacuum Phase Transitions This inertial activation resembles a smooth, non-thermal
phase transition induced by geometry. It may be interpreted as the transition from a symmetric regime
(constant inertia) to a geometrically broken regime, in which the vacuum acquires localized energy density.

This behavior is reminiscent of topological vacuum transitions known in early-universe cosmology, but
here it is triggered exclusively by curvature — without temperature fluctuations or additional fields.

Scope and Testability The existence of this inertial activation can be tested through:

• apparent dark matter effects in galactic halos (Section 8.3),

• inertia modulation near black holes (Section 8.4),

• differential signatures of gravitational quantum decoherence (Section 8.6),

• numerical simulations of geometric evolution (Appendix M).

This mechanism strengthens the predictive power of this model by linking mass, gravity, and vacuum
structure through a single inertial function ϵ(I), without speculative assumptions about new fields or particles.

4 Field Equations and Dynamics of the Coupled System

4.1 Modified Higgs Field Equation
Starting from the extended Lagrangian introduced earlier, the equation of motion for the Higgs field is derived
using the Euler-Lagrange formalism:

∂L
∂ϕ

−∇µ

(
∂L

∂(∇µϕ)

)
= 0

This equation governs the evolution of the scalar field ϕ in curved spacetime, accounting for its interactions
and couplings with geometry. It generalizes the dynamics of the standard Higgs field to scenarios with
non-zero curvature.

In this case, with the effective potential:

Veff(ϕ, I) = λ(ϕ2 − v2)2 + γf(I)ϕ2

we obtain:
□ϕ− 4λϕ(ϕ2 − v2)− 2γf(I)ϕ = 0

The coupling term γf(I)ϕ2 represents a geometric correction to the standard Higgs potential. In the
Standard Model, the double-well potential λ(ϕ2 − v2)2 leads to spontaneous electroweak symmetry break-
ing. The additional term involving f(I) introduces a dynamic modulation linked to the local curvature of
spacetime, thereby modifying the vacuum expectation value ⟨ϕ⟩.

This mechanism introduces a slow geometric dependence of the effective particle masses via the Yukawa
coupling mf = yf ⟨ϕ⟩ [13, 14]. Initially proposed by Hideki Yukawa to explain the strong nuclear force, this
coupling is now a key component of the Standard Model, mediating the interaction between the Higgs field
and fermions. In this framework, it also becomes sensitive to the geometric structure of the vacuum.
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4.2 Modified Gravitational Field Equations
The dynamics of the gravitational field are obtained by varying the total action with respect to the metric
gµν . This yields a generalized field equation:

Gµν + δHµν = κ
(
Tϕ
µν + T SM

µν + T hidden
µν

)
where:

• Gµν is the classical Einstein tensor,

• Hµν encodes the geometric feedback induced by the Higgs–gravity coupling (via h(ϕ,∇ϕ)),

• Tϕ
µν is the energy-momentum tensor of the Higgs field,

• T hidden
µν represents contributions from dormant reservoirs activated in extreme regimes.

The energy-momentum tensor associated with the scalar field ϕ reads:

Tϕ
µν = ∇µϕ∇νϕ− 1

2
gµνg

αβ∇αϕ∇βϕ− gµνVeff(ϕ, I)

The inclusion of the δHµν term represents an extension of the standard Einstein-Hilbert gravitational
action. This action, in its usual form,

SEH =
1

2κ

∫
d4x

√
−g R,

depends solely on the scalar curvature R and the metric gµν . In this framework, the proposed extension
allows for an explicit dependence on ϕ and its derivatives.

Limiting h(ϕ,∇µϕ, . . . ) to second-order derivatives is motivated by:

• The effective renormalizability of the model (within an effective field theory framework),

• Compatibility with existing scalar-tensor theories (e.g., f(R,ϕ) models),

• The absence of dynamical instabilities arising from higher-order equations of motion (Ostrogradsky
instabilities).

This framework therefore aligns with geometric extensions commonly proposed in modified gravity theo-
ries, such as Brans-Dicke models, non-minimal Higgs inflationary couplings [3], or scalar actions in asymp-
totically safe gravity [15].

4.3 Coupled Structure and Feedback Loop
The resulting field equations reveal a dynamic interaction loop between the two fundamental components of
the vacuum:

Curvature ⇒ modulation of ϕ ⇒ variation of effective mass and vacuum energy ⇒
modification of Tµν ⇒ new curvature.

In other words:

• The local geometric curvature of spacetime influences the Higgs field by modifying the minimum of its
effective potential Veff through the invariant I(x).

• This modulation of ⟨ϕ(x)⟩ affects particle masses and the local energy density.

• The modified energy density feeds back into the energy-momentum tensor Tµν .

• This tensor in turn influences curvature through the modified Einstein equations.

This coupling lies at the core of my model: it establishes a bidirectional relationship between the quantum
structure of the vacuum and its gravitational geometry.
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Why does this loop not diverge? There are several dynamical reasons for the natural stabilization of
the system:

• The coupling constant γ is assumed to be small (γ ≪ 1), limiting the impact of each iteration.

• The Higgs field evolves within an effective potential Veff with a stable minimum, which tends to damp
perturbations.

• Geometric invariants such as R or K typically decay on cosmological scales (due to the universe’s
expansion) or are confined near compact objects (like black holes), localizing the strongest effects.

• The coupled system of equations forms a dynamical attractor around stable solutions (such as the
Friedmann or Schwarzschild metrics), preventing divergences except in extreme regimes.

This stabilization mechanism is analogous to that found in other feedback-based theories (e.g., inflation,
chameleon fields), where the scalar field evolves within a dynamical well shaped by local conditions.

This point is crucial, as it ensures that the theory remains consistent with observational constraints, while
still allowing significant effects in extreme environments.

4.4 Limiting Case: Weak Curvature Regime
In weak-curvature environments—such as the nearly flat spacetime of our solar system or the experimental
conditions of particle accelerators—this model naturally reduces to classical equations.

More precisely:

• The Higgs field recovers its standard vacuum expectation value: ϕ→ v,

• The effective potential becomes Veff → λ(ϕ2 − v2)2,

• The gravitational feedback term vanishes: Hµν → 0,

• The standard Einstein equation is recovered: Gµν = κT SM
µν .

This behavior ensures strict compatibility with the Standard Model of particle physics and general relativ-
ity in all current experimental contexts. It also guarantees that the predictions of the model do not contradict
precise measurements of particle masses, fundamental constants, or weak-field gravitational effects.

In other words, this construction is strictly conservative in reference regimes, while becoming innovative
whenever spacetime curvature or vacuum dynamics depart from experimental normality.

4.5 Limiting Case: Extreme Curvature Regime
When spacetime reaches high curvature levels—such as near black holes, during cosmic inflation, or within
large-scale gravitational structures—the geometric terms I(x) become significant, leading to measurable
physical effects within the unified framework.

More precisely:

• Strong curvature causes a local decrease in the vacuum expectation value of the Higgs field: ⟨ϕ(x)⟩ ↓,

• This variation alters the effective mass of particles, inducing dynamic effects that may manifest as
increased inertia or enhanced apparent gravity,

• The drop in ⟨ϕ⟩ can partially activate the dormant vacuum reservoir, injecting additional effective
energy density into the Tµν tensor,

• This energy may appear as an invisible contribution to matter (dark matter effect) or as negative
pressure (dark energy effect).

These mechanisms are amplified by the dynamic feedback loop described in Section 4.3: curvature influ-
ences the effective mass, which in turn modifies the local energy content, affecting gravity via the Tµν tensor,
potentially enhancing curvature itself.

My model thus predicts the emergence of nonlinear behaviors in extreme environments, providing an
explanatory framework for:

• The effective origin of dark matter in galactic halos,

• The acceleration of cosmic expansion (dark energy) arising from post-inflationary vacuum modulation,

• The variation in particle stability within intense gravitational regions (near a black hole horizon).

These predictions will be developed and compared with observational data in the following sections.
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5 Physical Applications and Experimental Predictions

5.1 Cosmological Effects: Dark Matter and Dark Energy
To assess the explanatory potential of the model at cosmological scales, I simulated its effects in relevant
spacetime geometries, particularly within the framework of FLRW and Kerr–Schwarzschild metrics:

• The FLRW (Friedmann–Lemaître–Robertson–Walker) metric describes a homogeneous and isotropic
expanding universe. It provides the geometric basis of the standard cosmological model, where the
dynamics of the universe are encoded in the scale factor a(t) and the scalar curvature R(t);

• The Kerr–Schwarzschild metric generalizes the Schwarzschild solution to rotating bodies. It is used
here to model extreme gravitational environments, such as astrophysical black holes.

The simulations were conducted using conservative and experimentally compatible assumptions:

• The coupling parameters γ and λ are chosen within the bounds set by electroweak vacuum stability
and LHC constraints;

• The geometric invariants f(I) are normalized to magnitudes observed in astrophysical and cosmological
structures;

• The dormant reservoir is initialized with densities compatible with inflationary phases and Planck-scale
regimes, without generating instabilities.

Within this framework, two effects naturally emerge:

• Effective dark matter effect: the modulation of effective mass by local curvature, combined with
partial activation of the dormant reservoir in galactic halos, reproduces observed dynamical anomalies
(rotation curves, weak lensing) without invoking new particles.

• Effective dark energy effect: at cosmological scales, the feedback between expansion, geometry,
and the dynamics of the Higgs field gives rise to an effective negative pressure, acting as a dynamic
cosmological constant.

The numerical results show very encouraging agreement with observations:

• Planck 2018 data, type Ia supernova spectra (Pantheon+), and constraints on w(z) are reproduced
with a precision ranging between 93% and 96%, depending on the selected parameters;

• The missing mass in spiral halos is accounted for in the range of 85% to 100% in simulated cases,
depending on the local curvature profile and feedback intensity.

These results will be refined and compared with specific observations in the following subsections, but they
already demonstrate that this unified model can account for two of the greatest contemporary cosmological
enigmas within a single theoretical framework.

5.2 Inertial Decay and Quantum Decoherence
The geometric coupling between the Higgs field and the spacetime metric affects not only inertia but also
the stability of complex quantum states. Here, I propose an extension of the standard quantum paradigm by
introducing the concept of a geometric entanglement sheet.

This sheet is a background structure, formed during the entanglement of two particles, which extends
across the geometry of the vacuum. It encodes quantum correlations as a synchronized modulation of the
Higgs field between two spacetime regions. The existence of such a structure provides an explanation for
nonlocal phenomena without invoking superluminal information transfer.

This concept offers a new interpretation of the EPR paradox [16], Bell’s inequalities [17], and the viola-
tion experiments conducted by Alain Aspect [18]. In these experiments, the correlations measured between
entangled particles cannot be reproduced by any local hidden variable theory, compelling the assumption of
a form of nonlocality.

In my approach, this nonlocality is not an active influence at a distance but rather a geometric coherence
of the vacuum: the entangled particles share a common sheet that links their inertial structure via the
modulated Higgs field. It is therefore not a signal, but a global configuration of the quantum substrate.

This idea echoes some of Ettore Majorana’s intuitions, whose work suggested that an invisible and funda-
mental substrate could underlie matter and spacetime [19]. This speculative substrate finds here a concrete
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expression: a modulation sheet of the vacuum based on a geometric interaction of the Higgs field. In this
sense, this model may be seen as a mathematical operationalization of an early intuition.

Furthermore, the sheet acts as an effective geometry for the evolution of the entangled wavefunction,
indirectly aligning with Schrödinger’s view [20], who saw entanglement as “the characteristic trait of quantum
mechanics, the one that enforces its departure from classical lines of thought.”

Finally, the local geometric dynamics induce a progressive fragility of this sheet: in regions of high
curvature, where the invariant I(x) varies rapidly, the stability of the sheet is compromised. This results in
an accelerated decoherence, predicted by my model. This phenomenon is testable through:

• quantum interferometers operating in variable-gravity environments (e.g., MAQRO satellites [21]),

• entangled particle pairs sent on divergent trajectories subjected to curvature gradients,

• ultra-sensitive superconducting devices (qubits, SQUIDs) detecting entanglement loss induced by grav-
itational effects.

These tests could falsify or confirm my hypothesis that entanglement is based on a real structure of a
geometrized vacuum. In this perspective, quantum nonlocality becomes a structural property of the vacuum
rather than a mathematical oddity lacking physical support.

5.3 Astrophysical Signatures Near Black Holes
Black holes constitute a natural laboratory for testing this model in regimes of extreme curvature. Around
these compact objects, the structure of the vacuum is deeply altered, leading to specific effects predicted by
this theory.

• Local decrease in effective mass: The strong curvature near a black hole’s event horizon leads,
according to my model, to a local drop in the Higgs field’s average value ⟨ϕ⟩. This results in a reduction
of the effective mass of particles in that region. Such a local decrease in inertia may facilitate the decay
or evaporation of particles, potentially contributing to the extreme energetic dynamics observed (e.g.,
relativistic jets, plasma instabilities).

• Consistency with effective dark mass: Although the effective mass decreases locally, this phe-
nomenon fits into a global framework where spatial fluctuations of ϕ can, on average, increase the
apparent inertia on large scales. Hence, the mass modulation induced by geometry is not uniform: in
galactic halos, moderate but extended curvature can increase the perceived effective mass—accounting
for the dark matter effect. In other words, the observed decrease near black holes does not contradict
the explanation of missing mass; it illustrates a complementary, localized manifestation of the same
mechanism.

• Impact on confinement and information loss: Modifications of the Higgs field can affect the
stability of bound states in QCD. In high-curvature environments, the confinement mechanisms of
quarks and gluons might be altered, promoting accelerated decay. This could offer a complementary
interpretation of the information paradox, in relation to black hole thermodynamics [22].

• Impact on Hawking temperature: A drop in the effective mass modifies the thermal emission
spectrum. The geometrized Higgs field here acts as an intermediary between local curvature and the
vacuum energy density, suggesting that the Hawking temperature could contain indirect signatures of
the Higgs–gravity coupling.

These effects can be confronted with observations of accretion disks, X-ray and gamma-ray emissions, as
well as direct horizon imaging data (from projects like EHT and GRAVITY+). By combining my predictions
with relativistic hydrodynamic models, it may be possible to test the presence of actual local mass variations
near event horizons.

These predicted variations in effective mass, when expressed in terms of observables, lead to several specific
and potentially detectable effects:

• Thermal spectrum shift: The local reduction in inertia could cause a shift or asymmetry in the
emission spectrum of accretion disks by altering local energy balances. This signal would appear as a
slight drift in the X-ray or gamma-ray peak emissions, detectable by instruments such as ATHENA.

• Fine orbital anomalies: A variable effective mass could shift the radius of stable orbits or the
precession frequencies near the ISCO, resulting in measurable deviations in velocity profiles or orbital
curvature near the horizon. Ultra-precise measurements from GRAVITY+ may be able to detect these
discrepancies.
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• Correction to evaporation spectrum: A modification of ⟨ϕ⟩ affects the density of available states for
black hole thermal emission, potentially altering the expected Hawking temperature. This differential
signal would be subtle but may leave an indirect trace in post-merger radiation spectra or in slowly
dissipating gravitational wave signals.

These predictions constitute a distinctive signature of the proposed geometrized Higgs–gravity coupling.
Unlike f(R) or Horndeski theories, which act globally on the metric dynamics, this model implies a local
modulation of inertia via variation of the Higgs field. This local, contextual, and asymmetric nature is
testable through differentiated effects on spectra, orbits, and gravitational thermodynamics.

Projects like EHT, GRAVITY+, ATHENA, and LISA offer promising opportunities for cross-validation:
combining spectral profiles, orbital anomalies, and gravitational signals in high-curvature environments. This
differential coupling could thus become an observable target for the next generation of instruments. If
confirmed, these effects would provide strong experimental support for the proposed Higgs–gravity coupling,
delivering predictions that stand apart from alternative models.

6 Dormant Reservoir, Activation, and Vacuum Memory

6.1 Structured Vacuum Hypothesis
The idea that the vacuum is not mere nothingness but an entity with deep physical properties dates back to
several foundational contributions. Sakharov was among the first to propose that gravitation might emerge
from quantum vacuum fluctuations [4], while Dirac introduced the concept of a sea of virtual particles filling
the quantum vacuum [23]. More recently, Penrose has supported a conception of the vacuum as an active
carrier of information and quantum organization [6], and as early as the 1930s, Majorana suggested the
existence of a neutral substrate endowed with fundamental geometric symmetry.

In this lineage, this theory postulates that the vacuum possesses a dynamic geometric-quantum structure:
a foundational layer capable of storing energy, modulating effective mass, influencing spacetime curvature,
and mediating interactions between fundamental fields.

I refer to this set of unexcited quantum modes as the dormant reservoir, which can be activated under
specific geometric conditions. These latent states do not interact with classical instruments (interferometers,
spectrometers, photon detectors, etc.), as they do not manifest as real particles or conventional energy
transfers. Nevertheless, they influence gravitational structure through their indirect coupling with the Higgs
field and spacetime curvature.

The main contribution lies in the mathematical formalization of this postulate: by introducing a coupled
dynamic between the Higgs field, spacetime geometric invariants, and vacuum states, I give operational
meaning to this speculative intuition. Unlike previous approaches, I derive concrete, testable, and predictive
field equations—both at the cosmological scale (residual energy density) and the local scale (inertial effects,
decoherence, structuring of reality).

In this framework, the structured vacuum becomes not merely the passive background of physical phe-
nomena, but their origin, their substrate, and their memory. In the following sections, we will explore how
this dormant reservoir can be activated by curvature, and how such activation leaves a lasting imprint on the
cosmological evolution of the vacuum.

6.2 Geometric Activation Mechanism
In this unified framework, the vacuum contains a set of unexcited degrees of freedom that can be called the
dormant reservoir. These states do not participate in conventional interactions but can be activated under
sufficiently strong local spacetime curvature.

The proposed activation mechanism follows a precise causal sequence:

1. The local curvature reaches a critical threshold determined by a geometric invariant I(x), such as the
Ricci scalar R, the Kretschmann scalar K, or a nontrivial combination G(gµν , ∂gµν , . . . ).

2. This curvature modifies the effective potential of the Higgs field via the geometric coupling term
γf(I(x))ϕ2, leading to a local deformation of the vacuum expectation value ⟨ϕ(x)⟩.

3. This deformation alters the local structure of the quantum vacuum, destabilizing certain virtual modes
that were previously confined below the threshold of physical relevance. These modes—considered
non-physical within the standard Higgs framework in flat spacetime—cross an energetic or topologi-
cal threshold and become effective in the gravitational dynamics. However, they do not manifest as
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detectable particles within classical instruments. In other words, they acquire ontological and dynami-
cal weight in the modified Einstein equation (via T hidden

µν ), although they remain invisible to standard
model detectors.

4. The activation of these modes contributes effectively to the gravitational energy density (through the
tensor T hidden

µν ) and can influence the large-scale dynamics of the universe.

This mechanism conceptually parallels several well-known physical phenomena:

• The Schwinger effect (pair creation under extreme electric fields),

• Phase transitions in QCD (quark-gluon plasma and confinement),

• Cosmological transition models (such as inflation and quantum bounce scenarios).

I postulate that this activation requires no external energy input but arises from a spontaneous reorgani-
zation of the vacuum when its geometric parameters exceed a critical threshold. The phenomenon is locally
irreversible and leaves a lasting imprint in the vacuum structure — a geometric memory, which I will analyze
in the following section.

Thus, curvature is no longer a passive response to mass-energy distribution; in this model, it becomes a
dynamic agent capable of activating latent resources in the vacuum, modifying its properties, and generating
new physical effects without introducing additional matter or interactions.

On the Geometric Activation of Vacuum Modes

The idea that certain virtual modes of the vacuum could be dynamically activated depending on
spacetime curvature aligns with several established theoretical frameworks. Quantum field effects in
curved spacetime have been extensively studied, notably by Birrell and Davies [24], and show that
curvature can modify the vacuum energy spectrum.
In non-minimally coupled inflationary models, such as that of Bezrukov and Shaposhnikov [3], the
Higgs field is influenced by the Ricci scalar R, modifying the effective potential and potentially leading
to instability or activation dynamics. More generally, Sakharov [4] proposed that gravity itself could
emerge as a macroscopic response of the quantum vacuum.
The activation of these modes does not necessarily imply the creation of detectable particles but
may contribute to the vacuum energy density via an invisible structural modulation — conceptually
analogous to the Casimir effect [25] or silent phase transitions in quantum chromodynamics [26, 27].
My model extends this logic further by assuming that the mechanism is governed by a coupled La-
grangian, where local geometry (through invariants such as R or K) dynamically modulates vacuum
structure via the Higgs field, leading to a progressive and localized activation of the dormant reservoir.

6.3 Geometric Memory of the Vacuum
One of the key postulates of this approach is that the vacuum retains a form of local memory of the extreme
curvature regimes it has experienced. This memory is not a classical trace, but a geometric-dynamical imprint
encoded in the deformed effective value of the Higgs field.

More precisely, the local vacuum expectation value ⟨ϕ(x)⟩ is modulated by curvature through the geometric
coupling f(I(x)). However, this deformation does not instantly vanish when the curvature decreases. Instead
of immediately returning to its reference value v, the scalar field retains a shifted value, vresidual(x) ̸= v, even
when I(x) becomes small again. This phenomenon constitutes what I call the geometric memory of the
vacuum.

It is a form of slow relaxation of the Higgs field, similar to well-known effects in post-inflationary models,
where certain scalar fields maintain a displaced value for cosmological durations [28, 29]. This resistance to
equilibrium restoration can be modeled as a type of geometric hysteresis, analogous to what is observed in
some phase transitions. This idea is present in modulated reheating models and in scalar field dynamics with
deformed potentials.

This memory may manifest as:

• A locally preserved effective energy density following an episode of intense curvature (e.g., near a black
hole or during an inflationary epoch),

• A residual distortion of spacetime via Tϕ
µν or T hidden

µν ,
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• A lingering effect in the dynamics of effective mass, potentially observable through galactic or cosmo-
logical anomalies.

This concept strengthens the idea of a dynamic and historical vacuum, in which the local structure depends
not only on the present state, but also on the system’s geometric past trajectory.

6.4 Cosmological Case: Historical Activation
One of the most relevant contexts for the activation of the dormant reservoir is the early stages of cosmic
history. Indeed, during inflation or the moments immediately following the Big Bang, the scalar curvature
R(t) reached extremely high values, typically R ∼ H2 ≫ 0, where H is the Hubble rate during inflation.

In this model, such extreme curvature would have induced a significant deformation of the Higgs field’s
mean value, causing a transient drop in ⟨ϕ(t)⟩ and a profound modification of the quantum vacuum structure.
This deformation would have activated, via the geometric coupling f(I)ϕ2, part of the dormant reservoir:
vacuum states previously inaccessible would have become dynamically effective, contributing to the total
energy density as non-detectable but gravitationally active modes.

This mechanism can be modeled as a transient energy injection into the vacuum, which later stabilizes
partially as residual negative pressure (dark energy effect), and partially as an increase in the effective mass
of baryonic structures (dark matter effect).

In other words:

• The historical activation of the dormant reservoir by the extreme curvature of inflation injects an
invisible but real energy contribution,

• This contribution persists after the curvature returns to lower levels, due to vacuum memory (see
previous section),

• It manifests today as dark energy density and excess apparent mass in galactic structures.

This scenario offers a unified geometric-dynamic framework to connect the early history of the universe
with its current properties. It gives physical meaning to the transition from inflation to vacuum structuring
and present-day cosmological phenomena. It aligns with ideas found in studies of stochastic inflation or scalar
fields with remanence [30, 31].

In particular, this approach directly connects with non-minimal Higgs inflation models, as proposed by
Bezrukov and Shaposhnikov [3], in which the Higgs field is coupled to the scalar curvature via a term of the
form ξRϕ2.

In those models, the curvature of spacetime modulates the dynamics of the scalar field responsible for
inflation. This theory generalizes this conceptually and ontologically: the same geometric coupling is here
responsible not only for inflation but also for the persistence of vacuum energy density (dark energy effect)
and for the apparent excess of mass (dark matter effect) through partial activation of the dormant substrate.

Thus, the historical activation mechanism I propose:

• builds upon the lineage of Higgs-coupled inflation scenarios,

• extends their scope to all cosmological epochs,

• and provides a coherent reinterpretation of the reheating phase, vacuum structuring, and the energetic
residues observed today.

6.5 Estimation of Activated Effects
Based on the previous equations and a modeling consistent with the established orders of magnitude in
cosmology, I can estimate the effective contribution of the dormant reservoir to the energy and mass density
of the universe. I rely here on the following assumptions:

• A weak but non-zero geometric coupling between the Higgs field and a curvature invariant such as R
or K;

• An initial density of virtual modes in the vacuum compatible with the Planck energy (or slightly below),
statistically distributed;

• A partial activation during inflation and reheating, followed by partial freezing of the activated modes
in the subsequent cosmological history;

• A persistence of curvature memory through a deformed value of ⟨ϕ⟩;
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• The absence of direct interaction between these activated modes and classical detectors, except through
their gravitational contribution (via T hidden

µν ).

Within this framework, semi-analytical calculations show that:

• The activated dormant reservoir could account for 60 to 80% of the dark energy currently observed,

• It could also reproduce 70 to 100% of the missing mass associated with dark matter in spiral galaxies
and clusters.

These effects are not isolated. They add up to the contributions described in previous sections, in
particular:

• The direct geometric modulation of effective mass in regions of high curvature (see Section 5.1);

• The cosmological feedback between ⟨ϕ⟩ and the evolution of the scale factor (see Section 4.4);

• The local gravitational memory of the vacuum in formed structures (see Section 6.3).

All of these mechanisms form a coherent framework, in which the dark energy density and additional
effective mass are no longer attributed to exotic invisible entities, but to a geometric dynamics of the quantum
vacuum itself, structured by the gravitational history of the universe.

6.6 Section Conclusion
The dynamics of the dormant reservoir activated by geometry constitutes a central pillar of this unified
theory. It offers a natural and coherent explanation for several phenomena that have so far been considered
disjoint:

• The apparent missing mass in galaxies and clusters,

• The effective negative pressure responsible for cosmic acceleration,

• The gravitational memory of the vacuum through its historical interaction with curvature,

• The progressive activation dynamics of previously inaccessible quantum modes,

• And the differentiated evolution of the geometrized vacuum throughout cosmological history.

This mechanism, though speculative in its current formulation, follows in the footsteps of foundational
work on phase transitions, condensates, vacuum instabilities, and fields coupled to geometry [24, 4, 32, 19].
It provides a robust and testable conceptual framework to connect the Higgs field, the gravitational field,
and the deep energy structure of the vacuum.

Finally, this section concludes the part devoted to the dynamical foundations of the model, and opens the
way to a reinterpretation of time, causality, and the very structure of reality, which we will now address.

7 Temporality, Causality, and the Geometry of the Unified Field

7.1 From Spacetime to the Active Geometry of the Vacuum
In general relativity, time is not an absolute parameter but a dimension embedded in the very structure of
spacetime, described by a dynamic pseudo-Riemannian metric [33]. Like space, it is affected by gravitational
curvature, as evidenced by phenomena such as time dilation or the slowing of proper time in strong grav-
itational fields. Thus, in Einstein’s formulation, geometry determines local causality — an idea famously
captured by the phrase: “Matter tells spacetime how to curve, and spacetime tells matter how to move.”

In my model, this integration of time into geometry is extended and enriched. The structure of the
vacuum is no longer defined solely by the gravitational metric gµν , but also by the local value of the Higgs
field ⟨ϕ(x)⟩, modulated by geometric invariants. The effective mass of particles — which determines their
proper frequency via E = ℏω — depends on this value. Consequently, the dynamics of the Higgs field directly
influences proper time, and thus the local structuring of temporality.

In other words: time becomes an emergent property of a geometrico-quantum sheet of the vacuum, in
which mass modulation, geometric evolution, and gravitational memory are intimately linked.

This sheet, which we previously introduced in the context of quantum entanglement, takes on a broader
meaning here: it is not only the support of quantum correlations, but also of local causal propagation. It
encodes both the macroscopic geometry of the gravitational field and the fine fluctuations of the Higgs field.
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In this framework, nonlocality no longer appears as an anomaly or a violation of the principle of causality,
but as the expression of an internal topology of the vacuum. Two entangled events are not connected
by a superluminal interaction, but by a common geometric structure — the sheet — which transcends
spatial separation. This idea aligns with geometric interpretations of Bell-type experiments and the work of
Alain Aspect [18, 17], as well as more recent hypotheses about correlation without transmission (Aharonov,
Vaidman).

In this unified vision, the vacuum is no longer merely the substrate of matter: it becomes the very origin
of time, causality, and physical relations. We now turn to examine how this emergence of proper time is
embedded in the coupled dynamics of my theory.

7.2 Proper Time, Effective Mass, and the Arrow of Time
In general relativity, time is embedded in the structure of spacetime as a geometric coordinate affected by
gravity. This idea, present since Einstein’s early writings [33], underlies the equivalence between proper
time and curved metric. In this model, this conception is extended through a finer structure: the geometric
entanglement sheet, previously introduced to explain nonlocal quantum correlations, also plays a role in the
structuring of time.

In other words: the dynamics of the Higgs field influence the local geometry of the vacuum, which modifies
the effective mass of particles, and thus their proper rate of evolution. Since a particle’s energy is related
to its mass via E = mc2 and to its proper frequency via E = ℏω, it follows that a local variation of ⟨ϕ(x)⟩
induces a modulation of proper time:

m(x) = yf ⟨ϕ(x)⟩ = yfv
(
1− γ

4λv2
f(I(x)) + . . .

)
Thus:

• Time dilation is no longer solely a consequence of gravitational curvature, but also of Higgs field
modulation by geometry,

• The structure of proper time becomes an emergent property of a unified dynamic geometry of the
vacuum,

• The entanglement sheet, as a continuous structure of the Higgs field, acts as a common support for
both inertia and temporality.

This aligns with Erwin Schrödinger’s intuition about the global coherence of quantum states and the
necessity of a shared substrate to explain nonlocal effects such as those highlighted by the EPR paradox.
In my model, the sheet plays precisely this role: a local deformation (through measurement or interaction)
instantly alters the topology of this common structure. This phenomenon is not a superluminal transmission
of information, but a global reconfiguration of an extended object, according to the topology of the Higgs field.
This interpretation is consistent with the experimental results of Alain Aspect [18] and Bell’s inequalities [17].

This nonlocal geometric substrate establishes a new layer of causal structure, to which proper time is
directly connected. The vacuum’s dynamics carry not only mass and correlations, but also the directional
organization of time — its arrow. This arrow emerges from:

• Delayed feedback between curvature and the Higgs field,

• The memory encoded in the effective value of ⟨ϕ(x)⟩,

• A non-Markovian structure of the vacuum, as suggested in some of Padmanabhan’s work on thermo-
dynamic gravity.

Finally, the nonlocality of the sheet and its sensitivity to gravitational perturbations allow the instanta-
neous correlations observed in entanglement experiments to be interpreted as a geometric property of the
vacuum, rather than an anomaly. This reading offers a novel synthesis between Majorana’s quantum ontology,
the results of particle physics, and Einstein’s relativistic legacy.

7.3 Implications for Causality and Irreversibility
The dynamic structure of the vacuum, as described in this model, induces a fundamental asymmetry in the
temporal behavior of the system. This dynamic asymmetry refers to the fact that the evolution of the
vacuum is not strictly reversible: the local gravitational history (curvature, interaction, activation) leaves a
persistent imprint in the structure of the Higgs field, through the deformed value of ⟨ϕ(x)⟩.
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More specifically, the memory of the vacuum is embodied in this local value, which retains the effect of
earlier high-curvature or high-interaction contexts, even after those conditions have dissipated. This memory
is not merely a mathematical artifact: it directly affects effective masses, local dynamics, and the structure
of causality.

A key aspect of this dynamic is what I call the selective activation of the dormant reservoir. This
process is based on the idea that each virtual mode of the vacuum has an activation threshold, determined by
a local geometric invariant I(x) (such as R or K). When the curvature exceeds this critical threshold Icrit,
certain modes become active. Activation is therefore conditional: only the modes for which I(x) ≥ Icrit are
excited. This property introduces non-linearity and temporal directionality in the dynamics of the vacuum.

Together, these phenomena produce a geometric arrow of time, which emerges naturally from the
Higgs–gravity coupling, without requiring any ad hoc hypothesis about entropy. Temporal asymmetry does
not result from an external thermodynamic postulate, but from a structural and local effect of curved vacuum
dynamics.

This vision aligns with and extends several existing approaches:

• Padmanabhan’s thermodynamic gravity [34], which proposes that Einstein’s dynamics derive from
a local entropic principle at observers’ horizons. In our case, the dynamics and memory of the Higgs
field play an analogous role, but at the scale of the entire vacuum, not just horizons.

• Entropic approaches to the arrow of time, where entropy growth is interpreted as an indicator of
temporal direction. Here, the effective growth of the activated dormant reservoir can be considered a
geometric analogue of increasing entropy.

• Non-Markovian memory-based models (see [35]), in which the state of a system depends on its
entire past history, not just its current state. Thus model fits within this class: the evolution of the
gravitational metric depends on the state of ⟨ϕ(x)⟩, which encodes the past geometric history.

In other words: causality in this theory, is enriched with an internal directional layer, geometrically
encoded in the dynamics of the vacuum. Time does not progress solely according to the classical spacetime
metric, but also through the internal dynamics of the Higgs field and the historical activation of virtual
vacuum structures. This proposition gives new meaning to irreversibility, rooted not in statistical state
distributions, but in the dynamic structure of reality itself.

7.4 Toward a Dynamical Metric with Dual Nature
The feedback of the Higgs field on the spacetime geometry, as described in this model, naturally leads to the
introduction of an enriched effective metric. This idea is formalized as:

geff
µν(x) = gµν(x) + ∆µν [ϕ(x), I(x)] (5)

where:

• gµν(x) is the classical metric, solution to Einstein’s equations in the absence of Higgs-curvature coupling,

• ∆µν is a dynamical correction depending on the Higgs field, its derivatives, and local geometric invariants
(such as R, K, etc.).

This correction encodes the scalar field’s feedback on curvature itself. It does not merely represent a local
perturbation; it alters the very structure of effective causality, inertia, and proper time.

The construction of an effective metric is not new in physics. It has been employed in:

• modified gravity models (e.g., f(R), Palatini formulations, etc.),

• geometries with torsion or multiple metrics,

• Penrose’s work on conformal geometry [6].

However, the novelty here lies in the fact that ∆µν is not imposed externally, nor is it tied to any
speculative additional geometry. It emerges naturally from the dynamics of the geometrized Higgs field
and encodes:

• The local inertial effect (via ⟨ϕ(x)⟩),

• The memory of the vacuum’s geometric history (via f(I(x))),

• The modulations of proper time induced by the dynamical coupling.

21



The effective metric thus becomes the full geometric expression of a structured vacuum. It merges the
two fundamental dimensions previously identified:

1. The classical relativistic metric, defining the causal and gravitational structure of spacetime,

2. The scalar dynamics of the Higgs field, defining inertia, mass, and the vacuum’s response to curvature.

What is here referred to as a “metric” thus becomes a hybrid object, both gravitational and quantum,
encoding history, mass, and causality.

This proposal reinforces the core of the central hypothesis: mass and time, Higgs and gravitation, are not
two separate dimensions, but two facets of a unified, memory-bearing, geometrically active quantum fabric.

8 Simulation, Tests, and Observational Confrontation

8.1 General Simulation Methodology
To assess the robustness of the proposed theoretical framework, a series of semi-analytical simulations were
conducted based on the joint resolution of:

• the coupled field equations (modified Einstein + modified Higgs),

• geometric ansatz derived from classical metrics (FLRW, Kerr-Schwarzschild),

• the Higgs–gravity feedback dynamics,

• and the contribution from the activated dormant reservoir (via ⟨ϕ(x)⟩).

Initial assumptions rely on magnitudes compatible with the Standard Model constants, observable cou-
plings, and cosmologically admissible variations (e.g., |δm/m| ≲ 10−2 on cosmological scales).

Each simulated scenario is confronted with:

• astrophysical observations (rotation curves, gravitational lensing, velocity dispersion),

• cosmological data (Planck parameters, H0, w(z), type Ia supernovae),

• predictions of competing models (ΛCDM, quintessence, MOND, etc.),

• and laboratory experimental constraints (decoherence, invariant masses, fine spectroscopy).

8.2 Numerical Simulation Protocol: Variation of Effective Mass Around a Black
Hole

To quantify the effects predicted by the model in strong-curvature regimes, this work proposes a simulation
protocol based on the formalism of numerical relativity. In particular, a GRChombo-type solver is used to
model the interaction between the Higgs field, the spacetime geometry, and the activation of the dormant
reservoir around a Schwarzschild-type black hole.

Objective Simulate the local variation of the effective mass meff(r) in a static black hole geometry, taking
into account the coupling:

f(I) = R+ αK and h(ϕ,∇ϕ) = ξϕ2R

with typical coupling parameters γ ∼ 1030 m2, α ∼ 1040 m2, and ξ ∼ 1030 m2.

Initial Setup

• Initial metric: static Schwarzschild with M = 10M⊙

• Higgs field: initial configuration ϕ(r) = v, with v = 246 GeV

• Boundary conditions: asymptotically flat

• Spatial discretization: ∆r ∼ 102 m; domain [rs, 10
7 m]

• Solver: GRChombo or Einstein Toolkit with Scalar-Curvature module
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Target Quantity The evolution of the Higgs field ϕ(r, t) under the effect of the geometric coupling is
evaluated, from which the effective mass is derived:

meff(r) = yf ⟨ϕ(r)⟩ ≈ m0

(
1− γ

4λv2
f(I(r))

)
The comparison between meff(r) and m0 (the flat-spacetime value) provides the magnitude of the geo-

metric correction.

Expected Results

• A decrease in the effective mass of up to 2–3% near the horizon (in agreement with predictions from
Appendix C),

• An amplification of local gravitational feedback due to the δϕ2R component,

• A numerical visualization of the activation threshold of the dormant reservoir χ when f(I) > Λ.

Outlook This protocol provides a foundation for:

• Fine calibration of the constants γ, α, and ξ,

• Confrontation with observations (EHT, GRAVITY+, X-ray spectroscopy),

• Exploration of dynamical effects on particle stability and the evaporation spectrum.

8.3 Spiral Galaxies: Rotation Curves and Differential Inertial Effect
In spiral galaxies, the observation of flat rotation curves—apparently inconsistent with the visible baryonic
distribution—constitutes one of the major indicators of a non-standard inertial or gravitational phenomenon.

In this framework, these anomalies are explained by a dual geometric effect:

1. Local modulation of effective mass: in regions of low but non-zero curvature (typical of galactic
halos), the vacuum expectation value of the Higgs field ⟨ϕ(x)⟩ is slightly deformed due to the invariant
f(I) = R+αK. This modulation induces a local variation in the particles’ inertia: their effective mass
increases slightly, which modifies the equations of motion without requiring additional gravitational
mass.

2. Moderate activation of the dormant reservoir: when f(I) locally exceeds a partial threshold
(f(I) ∼ Λ/2), certain modes of the field χ become softly activated. This partial activation generates
a residual energy density confined within the halo, acting as an effective inertial component. Unlike a
stable dark matter particle, this mechanism does not involve a new permanent entity, but a contextual
condensation of the vacuum.

The combined effect of the variation in ϕ and the partial activation of χ is sufficient to reproduce the
observed rotation velocities in galactic halos, without modifying classical gravity or introducing exotic matter.

Modeling and Testability Simulations based on this model show that:

• an effective mass variation on the order of 4–6% is sufficient to stabilize the rotation curves (see Ap-
pendix C),

• the energy density from partial activation of χ remains consistent with constraints from weak gravita-
tional lensing,

• the radial distribution of χ naturally fits Navarro–Frenk–White (NFW) profiles without requiring fine-
tuning.

In this sense, the unified framework provides a geometric, testable, and entity-free explanation for the
dynamical phenomena observed in spiral galaxies.
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Qualitative Assessment

• Observational feasibility: High. Galactic rotation profiles are well measured (Gaia, SDSS), and
effective inertial mass models can be confronted with existing data.

• Originality of the mechanism: Moderate to high. The moderate activation of a scalar reservoir
offers an elegant alternative to exotic particles, though it requires detailed modeling.

• Conceptual risks: Moderate. Tuning the threshold Λ and the form of f(I) may introduce some
flexibility that must be monitored.

• Falsifiability potential: High. Incompatibility with weak lensing or detailed baryonic dynamics
would directly invalidate this scenario.

8.4 Black Holes: Extreme Curvature Regime and Accelerated Disintegration
The extreme gravitational environments of black holes represent a natural laboratory to test the predictions
of this model in regions where f(I) = R+αK reaches high values. Two major effects emerge in this context:

1. Significant reduction in effective mass: near the event horizon, the Higgs field undergoes a strong
geometric deformation. The potential minimum is shifted, resulting in a substantial decrease in ⟨ϕ⟩,
and hence a drop in the effective particle mass:

meff = yf ⟨ϕ(x)⟩ ≈ m0

(
1− γ

4λv2
f(I)

)
This drop can reach several percent depending on the value of K, directly affecting the inertial stability
of particles near the horizon.

2. Full activation of the dormant reservoir: when f(I) > Λ, the activation function ϵ(f(I) − Λ)
saturates, and the χ field undergoes a sharp condensation. This phenomenon generates an effective
energy density localized in a spherical shell around the horizon, modifying the local inertial structure.
Such activation can:

• induce instability in bound states (e.g., QCD confinement),
• facilitate the disintegration of massive particles,
• and contribute to the formation of relativistic jets or radiation anisotropies.

Physical Consequences and Observables

• Hawking spectrum: the drop in ϕ induces a modification of the thermal emission spectrum. Hawking
temperature is no longer solely determined by black hole mass, but also by the local inertial state of
the vacuum. A specific spectral signature could emerge in regions where χ is activated.

• QCD instability and information loss: if the effective mass of quarks falls below a critical threshold,
confinement may be disrupted. This offers a new perspective on the information paradox, via geometry-
induced inertial disintegration.

• Astrophysical signatures: the combined effects of the drop in ϕ and the condensation of χ may
appear in accretion disk observations, X-ray and gamma emissions, and spectral profiles around horizons
(e.g., EHT, GRAVITY+ projects).

This regime therefore enables testing the model’s limits in a nonperturbative context, directly linking the
structure of the geometrized vacuum to observable astrophysical effects.

Qualitative Assessment

• Observational feasibility: Moderate. The effects occur near horizons, but projects such as EHT or
GRAVITY+ enable indirect detection.

• Mechanism originality: High. The geometric activation of χ offers a novel interpretation of evapo-
ration dynamics and relativistic jet formation.

• Conceptual risks: Low to moderate. The framework remains compatible with general relativity, but
assumes a nonlinear Higgs–vacuum feedback regime.

• Falsifiability potential: High. The absence of spectral modification or detectable inertial signatures
would challenge the activation hypothesis for χ.
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8.5 Cosmology: Accelerated Expansion and Historical Reservoir Activation
The evolution of vacuum density induced by the Higgs–curvature feedback reproduces several key cosmological
tensions:

• High post-inflationary curvature activates a persistent fraction of the dormant reservoir;

• ⟨ϕ(t)⟩ remains deformed at large scales, generating an effective negative pressure (P < 0);

• The dynamics of H(t) reflect this historical activation without requiring a static cosmological constant;

• The simulated value of H0 lies between Planck data and local observations (tension alleviated);

• The equation-of-state parameter w(z) is dynamical, close to −1, but not constant.

Qualitative assessment: The simulated expansion dynamics reproduce the main features of the ob-
served universe, including the H0 tension and the behavior of w(z), in agreement with Pantheon+ survey
data [36], Planck 2018 results [37], and Baryon Acoustic Oscillations (BAO) [38].

8.6 Quantum Tests in Moderate Gravitational Fields
This framework predicts that quantum entanglement relies on a shared inertial structure of the vacuum,
sensitive to local spacetime geometry. The stability of this “geometric entanglement sheet” is modulated by
curvature invariants R(x) and K(x), through the Higgs field coupling. This leads to a testable prediction: a
decoherence rate Γ(x) that depends on the geometric environment.

Formulation of the decoherence rate:

Γ(x) = Γ0 [1 + η(R(x) + αK(x))]

where:

• Γ0 is the decoherence rate in flat spacetime,

• η ∼ 10−10 is an inertial adjustment parameter,

• α is the Kretschmann coupling,

• R and K are the local geometric invariants.

Proposed differential experimental protocol: To test this dependence in accessible moderate regimes,
an interferometric setup is proposed using two pairs of entangled photons in distinct gravitational environ-
ments:

• Arm 1: Low Earth Orbit (LEO), R ∼ 10−13 m−2,

• Arm 2: Heliocentric orbit (e.g., aboard probes like BepiColombo), R ∼ 10−15 m−2.

Measuring the fidelity difference ∆F = FLEO(t)−FHelio(t) after several hundred seconds allows estimation
of the predicted ∆Γ.

Required instruments:

• Entangled photon source (polarization or time-bin),

• High-fidelity detectors (correlators / SQUIDs),

• Space-based platform such as CubeSat or MAQRO,

• Atomic clock for timing control.

Expected result: With typical parameters (α ∼ 1040 m2), the predicted decoherence rate difference is:

∆Γ

Γ0
∼ 0.1%− 1%

This level is detectable with current instrumentation, particularly with ongoing development for
missions like MAQRO, Lunar Gateway, or embedded photonic correlation platforms.
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Conclusion: This experiment would directly test the central prediction that quantum coherence is not
absolute but depends on the local vacuum geometry through its effect on the Higgs field. Implementing
such a low-curvature differential test would constitute a crucial milestone in validating the proposed inertial-
geometric coupling of the quantum vacuum.

8.7 Summary Table of Predictions

Context Observational Agreement Testability

Spiral galaxies (effective
dark mass)

Good to very good, reproducing ro-
tation curves without invoking exotic
dark matter

Rotational observations
(Gaia, VRO)

Black holes (inertial ef-
fects, radiation)

Consistent with EHT observations
and relativistic jets in high-curvature
regimes

EHT data, jet spec-
troscopy

Cosmic expansion (dark
energy)

Qualitative agreement and compelling
dynamics with current cosmological
data

Planck, Pantheon+, BAO
datasets

Gravitational decoher-
ence/entanglement

Strong qualitative predictions, but re-
quiring direct experimental tests

MAQRO projects,
ICECUBE-Q

Table 1: Qualitative summary of predictions and their testability within this unified model

Section Conclusion
This unified model is not only theoretically robust but also experimentally testable. It reproduces a wide
range of observed phenomena while offering original and falsifiable predictions in the short term. It thus
provides a concrete and coherent alternative to traditional paradigms, while remaining firmly grounded in
the current observational landscape.

9 Ontology, Philosophy, and Foundational Implications

9.1 A Redefinition of the Vacuum
In this unified framework, the vacuum is no longer an absence but a fundamental geometric and quantum
actor. It constitutes a structured, dynamic, and responsive entity in which several physical layers interact
deeply. This vacuum encompasses:

• The Higgs field, which locally modulates particle inertia via a scalar interaction,

• The gravitational field, which encodes the dynamic geometry of spacetime through curvature,

• A dormant reservoir of virtual modes that can be activated under geometric conditions,

• A geometric entanglement layer, as a potential support for quantum non-locality.

This multifaceted structure of the vacuum echoes some of the most profound intuitions formulated in the
history of fundamental physics. Notably, there is a remarkable conceptual prefiguration of this idea in the
work of Ettore Majorana. Though he left few publications, Majorana considered that physical reality should
be grounded in a deep geometric structure, possibly carrying a unified dynamics.

The present framework gives formal realization to what Majorana intuited: a vacuum substrate that is
not merely a passive background, but a structuring fabric where inertia, gravity, entanglement, and causality
emerge. In this sense, Majorana is not merely compatible; he embodies the radical geometric intuition that
this model renders mathematically operational.

The vacuum thereby becomes the engine of observable physical phenomena: it links quantum
dynamics, spacetime curvature, and the emergent properties of reality into a single reactive structure. As
such, it is not simply a “medium,” but the generative grid at the origin of mass, forces, the flow of time, and
the quantum-classical transition.
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Philosophical implications of this conception will be discussed further, but it is already evident that this
redefinition of the vacuum may represent a key to the long-awaited synthesis of gravitation, quantum physics,
and foundational ontology.

9.2 Higgs–Gravity Unification: Two Facets of a Single Fabric
Just as space and time were unified in special relativity into a four-dimensional spacetime, this frame-
work proposes that mass (via the Higgs field) and gravity (via curvature) are two expressions of the same
geometrico-quantum substrate of the vacuum.

This substrate, both dynamic and modifiable, gives rise to the very structure of physical reality. Mass is
no longer an intrinsic property but a local effect of the vacuum’s geometry, shaped by curvature invariants.
Conversely, gravity appears as the manifestation of a tensor field responding to this modulation, through the
extended field equations.

This naturally leads to a reformulation of the energy–geometry relation. The following synthetic equation
illustrates this principle:

R(x) ∼ ∂µϕ(x)∂
µϕ(x) + Veff(ϕ, I) + δρdormant(x)

where:

• R(x) denotes the effective curvature of spacetime,

• ϕ(x) is the Higgs field modified by geometry,

• Veff is the dynamic potential influenced by geometric invariants,

• ρdormant(x) captures the local activation of the vacuum’s quantum reservoir.

Spacetime thus becomes an active geometric system, structured by the mutual interaction between the
scalar field, the metric, vacuum memory, and inertial dynamics.

This perspective aligns with certain radical geometric visions of reality, as foreseen by Majorana, in which
matter and fields are no longer foundational entities but expressions of the structure of the vacuum itself.

This theory therefore proposes not merely a formal but an ontological unification: mass, gravity, and the
fabric of reality emerge from a single dynamic geometry—active, testable, and mathematically rigorous.

9.3 Time, Mass, and Dynamic Emergence
In this model, the effective mass m(x) of a particle is not a universal constant, but a dynamic function
depending on the local geometry via the modified Higgs field:

m(x) = yf ⟨ϕ(x)⟩

This variation directly affects the proper frequency of systems (E = ℏω), and thus their proper time. The
more the effective mass varies, the more the local temporal metric is affected.

As such, the dynamics of the Higgs field influence not only inertia, but also the very structure of tempo-
rality in regimes of variable curvature. Time can no longer be conceived as a mere universal coordinate, but
as a geometric emergence arising from the evolution of the structured vacuum.

In regions of strong curvature (e.g., near black holes or during the inflationary phase), the slowing down
of proper time is amplified by the modulation of ϕ(x). This deceleration is not solely gravitational (in
the relativistic sense), but also inertial (in the quantum sense), reflecting the deep unification of the two
frameworks.

Furthermore, the selective activation of the dormant reservoir in specific regimes leaves a persistent dy-
namical imprint : even when curvature decreases, the value of ⟨ϕ(x)⟩ remains partially shifted, introducing
geometric memory into the fabric of the vacuum.

This memory, in turn, structures a local arrow of time, not imposed by statistical entropy, but by an
asymmetric Lagrangian dynamics rooted in geometry and vacuum activation.

Time, in this interpretation, thus emerges from three unified contributions:

• The gravitational metric (gµν), defining the local causal structure;

• The modulated Higgs field, influencing the proper frequency of systems;

• The vacuum’s memory, embedding irreversibility in the very structure of spacetime.
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This interpretation is compatible with Penrose’s reflections on the nature of the arrow of time [39], with
post-inflationary entropic models (Padmanabhan [40]), and with relational approaches to time in quantum
gravity theories (Barbour [5]).

It further reinforces the central proposition: time is not a static background, but an emergent manifestation
of an active unified Higgs–gravity field.

9.4 Reinterpreting Entanglement and Nonlocality
Quantum entanglement, introduced by Schrödinger in 1935 as one of the most puzzling features of quantum
theory [20], refers to the nonlocal correlation between two systems without classical information exchange.

Within the framework of this theory, such correlations receive a deep geometric interpretation: the creation
of an entangled state generates a shared geometric sheet within the vacuum structure, stabilized by the
joint modulation of the Higgs field between the two systems.

This geometric entanglement sheet acts as a unified substrate shared by both particles, enabling instan-
taneous correlation without superluminal information transfer. In other words: the properties measured on
one entangled particle reflect a common geometric deformation of the vacuum, rather than a direct influence
on its partner.

This view aligns with the work of John Bell [17] and the experiments of Alain Aspect [18], which confirmed
violations of local inequalities. The present theory offers a structural interpretation: the violation is not
indicative of faster-than-light communication, but a reflection of the nonlocal structure of the geometrized
vacuum.

This perspective also resonates with Majorana’s conceptual ideas, whose writings sketched an intrinsic
geometric vision of quantum states, in which particles might be viewed as organized singularities of the
vacuum. The geometric entanglement sheet extends this intuition by defining a shared support for quantum
coherence, locally modifiable by environmental conditions (decoherence).

Moreover, this approach stands out for its ability to explain why entanglement fails in high-curvature
regimes: when I(x) becomes too unstable, the geometric sheet collapses, leading to accelerated decoherence
— an effect proposed for experimental testing in space-based platforms (e.g., MAQRO [21]).

Conceptual summary:

• Entanglement is a structural effect within the vacuum, not an active transmission;

• The geometric sheet is sustained by the joint modulation of the Higgs field;

• Deformations of the sheet cause decoherence;

• Nonlocality becomes a background property, non-paradoxical within this geometrized framework.

9.5 Relational Ontology of the Vacuum and the Emergence of Physical Reality
The entire theoretical framework developed in this work rests on a strong guiding hypothesis: the vacuum is
not an absence, but a dynamic relational structure, whose co-evolution of the Higgs field and local geometry
determines the conditions for the emergence of reality.

Active Structure of the Vacuum: Fields, Geometry, Reservoir This model considers the vacuum
as composed of three interdependent layers:

• The Higgs field ϕ(x), which locally determines inertia and effective mass through its mean value ⟨ϕ(x)⟩,

• The spacetime geometry, encoded in the metric gµν(x), which structures causality and proper time,

• A dormant reservoir of virtual modes χ(x), inactive in low-curvature regimes but activatable upon
crossing a geometric threshold f(I) > Λ.

These components do not possess autonomous existence: they only acquire meaning and stability through
their mutual interaction. This dynamic co-dependence constitutes the ontology of the vacuum: physical reality
does not preexist the vacuum’s dynamic relations; it arises from them.
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Emergence of Fundamental Physical Properties

• Mass: The effective mass of particles mf = yf ⟨ϕ(x)⟩ depends on the Higgs field’s mean value, which
is geometrically modulated by f(I). Mass is therefore not an intrinsic property but a relational feature
of the vacuum.

• Proper time: The local flow of time is determined by the metric gµν , itself influenced by the feedback
of the Higgs field via the term ξϕ2R. Proper time thus emerges from the coupled dynamics of (ϕ, g),
not from any absolute direction.

• Inertia: Resistance to acceleration becomes a function of the spatial profile of ϕ(x), which varies with
geometry. This accounts for dark matter effects as geometric variations in effective inertia.

• Causality: The causal structure (light cones, horizons) is influenced by the local inertial state via the
Higgs field’s feedback on the metric. Even causality thus becomes a co-determined property.

• Entanglement: The existence of a geometric entanglement sheet, synchronizing values of ⟨ϕ(x)⟩
between regions, allows quantum nonlocality to be reformulated as a geometric coherence of the vacuum,
sensitive to curvature gradients.

The Dormant Reservoir as an Ontological Structure The dormant reservoir χ plays a central role:
it represents the latent aspect of the vacuum— a set of possible modes, initially unactualized, which may
locally condense into effective matter or energy when f(I) > Λ. This reservoir is not an auxiliary hypothesis;
it represents the ontological depth of the vacuum. It accounts for:

• the emergence of scalar or topological structures (dark matter, halos),

• inertial/quantum transitions (activation under curvature gradient),

• the probabilistic nature of particle creation in extreme regimes.

Example: Interpretation of LHC Collisions In LHC collisions, sufficient local energy is injected to
“heat the vacuum.” This energy does not create particles ex nihilo but allows certain dormant vacuum
modes (as in standard QFT) to cross their stability thresholds. Within this framework, such effects are
reinterpreted as a transient activation of the dormant reservoir—not merely through energy, but via a local
effective curvature (extreme inertial gradient). This may explain the appearance of certain transient states
that resist interpretation as standard model particles and opens a path toward tests in high-energy density
regimes.

Ontological and Relational Positioning This approach aligns with relational conceptions of reality:

• As in Mach, inertia exists only in reference to a global structure—here realized locally and geometrically
via f(I),

• As in Barbour, time is not absolute but emerges from system structure; here, it arises from the
configuration (ϕ, g),

• As in Rovelli, there are no absolute states—only relations; yet here, those relations are encoded in
physical, dynamic, and testable fields.

This theory extends these views by providing a Lagrangian formalism that encodes these relations and
allows observable physical properties to emerge directly from the vacuum.

Dynamic Coherence of Reality This perspective leads to a non-essentialist view of reality: what is real is
not a stock of preexisting properties, but a stabilized configuration of the quantum-geometric vacuum. What
is called a “particle,” “time,” “inertia,” or “field” is merely the local expression of a dynamic equilibrium—
relational and contextually activated.

Physical reality is not constructed from objects, but from dynamic relations between vacuum fields.
Being becomes the local stabilization of the possible.
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9.6 Ontological Conclusion
Matter, time, causality, and entanglement emerge as manifestations of a single active fabric, where relation-
ships between fields define entities—rather than entities defining relationships. This theory thus introduces a
new conceptual grammar, in which the geometry of the vacuum replaces Newtonian objectivity with a reality
woven from dynamic relations.

10 Perspectives, Predictions, and Falsifiability

10.1 Testability Criteria
The proposed model is based on a coherent theoretical structure, grounded in vacuum geometrization, mod-
ulation of effective mass via the Higgs field, gravitational memory, and dynamic activation of a dormant
reservoir. Yet it upholds a fundamental requirement: it is falsifiable, in the Popperian sense. It puts
forward specific, quantitative and qualitative predictions that may be contradicted by astrophysical, cosmo-
logical, or experimental observations.

Three categories of tests emerge:

• Cosmological tests: related to accelerated expansion, vacuum density, and the evolution of funda-
mental constants.

• Astrophysical tests: related to black holes, galactic rotation curves, and gravitational lensing effects.

• Quantum tests in weak to moderate gravity: concerning entanglement, decoherence, and modu-
lation of effective mass.

10.2 Specific Predictions of the Theory
This unified framework leads to several qualitative and quantitative predictions, testable in various astro-
physical, cosmological, and quantum contexts:

1. Slow cosmological variation of effective particle mass, resulting from Higgs field modulation by
global vacuum curvature:

• Drift of fundamental constants at high redshift : if ⟨ϕ⟩ varies with cosmological history (especially
through the curvature parameterR(t) in an FLRW metric), this induces slight drifts in dimensioned
constants such as the fine-structure constant α or the proton/electron mass ratio. These drifts
could be investigated in quasar absorption spectra at high redshifts (z > 1), where light interacts
with gas clouds in physical states different from the present epoch.

• Observable consequence on the Cosmic Microwave Background (CMB): vacuum dynamics could
affect the effective mass of light particles (electrons, neutrinos) at decoupling (z ∼ 1100), slightly
shifting the acoustic peaks in the CMB spectrum.

2. Dynamic mass effect in spiral galaxies, explaining dark matter effects without hypothetical par-
ticles:

• Rotation curves: a local decrease in ⟨ϕ⟩ within galactic halos induces an apparent increase in
inertial mass, accounting for the observed constant orbital velocities without invoking a dark
matter halo.

• Weak gravitational lensing : the additional gravitational effects caused by modulated effective
mass should also appear in gravitational lensing maps from surveys such as DES, Euclid, or LSST,
offering a means to falsify or confirm this mechanism.

3. Gravitational-quantum effects induced by Higgs field modulation:

• Amplified decoherence: in environments where space-time curvature varies significantly at a local
scale (e.g., low Earth orbit, gravitational gradients), vacuum dynamics alter the decoherence rate
of entangled systems. This can be tested using atomic interferometry experiments.

• Entanglement loss: two entangled particles spatially separated and subjected to different geometric
conditions may lose quantum correlations faster than in flat environments. This phenomenon could
be measured in space-based experiments (e.g., MAQRO-type).

4. Cosmic vacuum dynamics:
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• Effective dark energy : the dormant reservoir activated by historical curvature may explain the
current dark energy density as a dynamical memory effect of the vacuum, offering an alternative
to the cosmological constant Λ.

• H0 tension and variation of w(z): this model predicts a mildly dynamic behavior of the vacuum
equation of state (w(z)), which could help alleviate the tension between Planck-derived H0 values
and those based on type Ia supernovae.

5. Modification of Hawking radiation:

• Radiation spectrum: the modulation of ⟨ϕ(r)⟩ near non-extremal black holes affects creation/annihilation
processes at the horizon, potentially altering the thermal spectrum predicted by semiclassical the-
ory.

• Inertial stability : the reduced effective mass near the horizon may facilitate certain decay processes,
influencing the plasma dynamics in accretion disks.

6. Geometric entanglement sheet:

• Extended vacuum structure: the entanglement sheet described in this theory forms a geometric
substrate shared between entangled particles, preserving long-distance correlations without instan-
taneous information transfer.

• Gravitational fragility : this sheet becomes unstable in regimes where curvature varies, accounting
for the amplified decoherence observed experimentally (cf. Bell tests, Aspect’s experiments, work
by Vaidman and Aharonov).

10.3 Upcoming Observational Tests
Several forthcoming observational programs and experiments offer concrete opportunities to test the predic-
tions of this model:

• Euclid, DESI, LSST:

– These cosmological missions measure the large-scale structure of the universe, dynamic expansion
via baryon acoustic oscillations (BAO), and the dark energy density through the equation of state
w(z).

– This model predicts a mildly dynamic w(z), associated with Higgs–curvature feedback, detectable
as a slight temporal drift in vacuum energy density.

– Cross-correlated data may allow this geometrized dark energy scenario to be distinguished from a
cosmological constant.

• Vera C. Rubin Observatory (VRO):

– Through high-precision mapping of galactic rotation curves, VRO (formerly LSST) will enable
direct testing of the prediction that effective mass is modulated by geometry within galactic halos.

– Systematic deviations from standard NFW (Navarro–Frenk–White) profiles may suggest an inertial
rather than particulate origin of dark matter.

• Quantum interferometric tests (MAQRO, ICECUBE-Q):

– These experiments aim to test quantum coherence in environments of moderate or controlled
gravity (in orbit, in free fall, or in space-based interferometry).

– This model predicts accelerated entanglement loss and modulation of decoherence rates as func-
tions of local effective curvature I(x), which may be detectable using these setups.

• High-redshift spectroscopy:

– Data from quasar spectra at very high redshift (z > 1.5) may reveal potential variations in funda-
mental constants such as α (fine-structure constant).

– A historical variation in ⟨ϕ(t)⟩, as predicted by this model, could produce such drifts, offering an
indirect test of Higgs field modulation by cosmic curvature.

• Type Ia supernova observations:
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– These events, used to calibrate cosmic expansion, serve as critical tests for the ΛCDM model.

– If this framework is accurate, vacuum dynamics induced by the dormant reservoir could lead to
a slight temporal drift in cosmic acceleration, perceptible as a reduced tension in the Hubble
constant H0.

These combined tests span scales from atomic to cosmic and are expected to determine the viability of
some of the core predictions of this theoretical framework by the end of the decade.

10.4 Falsifiability of the Dormant Component
A central pillar of this theory lies in the existence of a dormant reservoir : a population of virtual vacuum
modes that can be activated by curvature or by the dynamics of the Higgs field. Although speculative, this
hypothesis is falsifiable in multiple contexts:

• Absence of effective mass modulation in high-curvature regimes:

– If no measurable variation in ⟨ϕ(x)⟩ or effective mass is detected in environments with significant
curvature (near black holes, in dense galactic regions), this would contradict the geometric coupling
central to this model.

• Strict constancy of vacuum density under high-precision cosmological scrutiny:

– If future measurements of the dark energy equation-of-state parameter w(z) confirm a strictly con-
stant value equal to −1 over a wide redshift range, this would contradict the predicted dynamical
behavior of w(z).

• Failure to detect inertial anomalies in galactic halos:

– If orbital velocity profiles in halos match particulate dark matter models perfectly and no residuals
are attributable to geometric modulation, the inertial interpretation would lose its explanatory
power.

• Negative results from quantum experiments in moderate gravitational fields:

– If experiments such as MAQRO, ICECUBE-Q, or atomic interferometry reveal no signs of entan-
glement degradation or decoherence variation across moderate curvature gradients, the geometric
entanglement sheet would be experimentally invalidated.

• Incompatibility with galactic rotation curves:

– If this model fails to reproduce spiral galaxy observations without invoking exotic dark matter,
and if no inertial effects are measurable, the validity of the activated reservoir interpretation would
be called into question.

Conclusion: This model is falsifiable through cosmological (Planck, Euclid, LSST), astrophysical (EHT,
Gaia, VRO), and quantum (MAQRO, space-based SQUIDs) observations. The experimental failure of even
one of its fundamental claims would be sufficient to refute the hypothesis of a geometrically active and
modulable vacuum.

10.5 Predictable Limitations of the Model
Although this model preserves the structure of the Standard Model in low-curvature regimes and is built
upon well-established theoretical principles (Lagrangian formulation, gauge invariance, variational dynamics),
several limitations must be considered with caution:

• Lack of direct quantization of the gravitational field. This approach does not rely on a quantum
theory of gravity in the traditional sense and does not propose a canonical quantization of the metric
field. It circumvents this step by postulating that gravity emerges from a dynamic coupling between
curvature and the Higgs field.

• Partial integration of QCD. The model does not account for the full dynamical structure of baryonic
mass arising from quantum chromodynamics (QCD), even though this structure is indirectly dependent
on the presence of a Higgs field.
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• Effective Lagrangian. The proposed coupling remains effective in nature. No fundamental theory
(such as string theory or loop quantum gravity) is invoked to explain the origin of the geometric
coupling term f(I)ϕ2. The coupling strength γ is assumed to be small, but its value is not predicted
by an underlying theory.

• Risk of speculative interpretation. The conceptual framework that connects mass, gravitation,
inertia, and geometry via the Higgs field constitutes an attempt at unification, but it remains dependent
on a specific representation of the quantum vacuum and its geometric interaction.

• Absence of a fundamental graviton. This model does not postulate the existence of a graviton as
a fundamental quantum of gravitational interaction. Unlike perturbative quantum gravity approaches,
it does not proceed via direct quantization of the metric. Gravity is interpreted here as an emergent
effect—a consequence of the geometric modulation of the Higgs field by local space-time curvature.
Within this framework, a "graviton" may exist in an effective sense, as a collective mode or quasi-
particle excitation of the coupled vacuum, but it would not represent an elementary degree of freedom.
Although theoretically consistent, this position could be criticized as insufficient to fully account for
the quantum aspects of gravity.

• Absence of a supersymmetric or unified framework. This model is deliberately limited to an ex-
tension of the Standard Model and does not invoke more speculative hypotheses such as supersymmetry,
extra dimensions, or grand unified structures. This restricts its scope within GUT or string-theoretic
frameworks.

10.6 Comparison with Existing Theoretical Approaches
This approach lies at the intersection of several major theoretical frameworks developed over recent decades
to extend or unify general relativity and the Standard Model. While it shares conceptual or formal similarities
with certain lines of research (non-minimal coupling, emergent gravity, scalar–tensor theories, gravitational
decoherence), it nevertheless diverges through several key structural features:

• Integration of the Higgs field as a central geometric mediator,

• Unification of mass, curvature, inertia, time, and entanglement phenomena,

• Introduction of a dormant reservoir, geometrically activatable,

• Explicit testability in accessible regimes.

A qualitative comparison between this model and leading existing approaches is presented below.

Non-minimal Higgs inflation models (Bezrukov, Shaposhnikov): These rely on a coupling ξϕ2R, anal-
ogous to the function h(ϕ) = ξϕ2R in this framework, but are confined to the inflationary regime. The
present approach extends this to the entire cosmological history and supplements it with the inertial coupling
f(I) = R+ αK, significantly broadening its applicability.

Emergent gravity (Sakharov, Jacobson): The idea that gravity can emerge from the dynamic structure
of the vacuum is shared. However, this framework specifies a concrete mechanism via the Higgs field and the
dormant reservoir, whereas emergent gravity approaches remain more conceptual and thermodynamical.

Scalar–tensor theories (Brans–Dicke, f(R)): While the extended Lagrangian bears formal similarities
(presence of scalar fields coupled to curvature), the use of the Higgs field—part of the Standard Model—as
the sole active scalar constitutes a major difference. Additionally, compatibility with general relativity is
preserved in low-energy regimes.

Gravitational decoherence approaches (Penrose, Diósi): The curvature-dependent decoherence mech-
anism aligns with this line of thought but differs in rooting the dynamics in the geometric coupling of the
Higgs field, rather than postulating a spontaneous or stochastic wavefunction collapse.

Effective quantum gravity (Eichhorn et al.): Studies on gravity–Higgs couplings in renormalization
group flows (RG) show that such interactions may stabilize the vacuum. This model adopts that intuition
while embedding it in a testable semi-classical geometrized framework, applicable to large-scale phenomena.
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Relational theories (Barbour, Rovelli): Ontological alignment exists on concepts such as the relational
nature of time, mass, and vacuum. However, this approach offers an operational formalism grounded in Higgs
field and geometric dynamics, with experimentally testable predictions.

Geometric entanglement (Majorana, Aharonov): The concept of a geometric entanglement sheet devel-
oped herein (see Section 8.6, Appendix D) extends certain historical intuitions by embedding them within a
vacuum dynamics modulated by both geometry and the Higgs field.

This framework also departs from canonical quantum gravity approaches (e.g., loop quantum grav-
ity, asymptotic safety), by not postulating a fundamental granularity of space-time nor engaging in non-
perturbative quantization of gµν . Instead, quantum behavior is situated within the structure of the vacuum
itself—via ϕ, χ, and the functions f(I), h(ϕ).

Summary Table: A comparative synthesis is presented in Table 2.

Table 2: Comparison of this model with major theoretical approaches
Approach Similarities Key Differences Target Phenomena
Non-minimal Higgs
inflation

Coupling ξϕ2R, role of the
Higgs

No f(I), inflation-only
scope, no reservoir

Inflation, vacuum stability

Emergent gravity Active vacuum role, geo-
metric thermodynamics

No formal mechanism,
Higgs absent

Gravity, horizon entropy

f(R), Brans–Dicke Scalar–curvature cou-
pling, modified La-
grangian

Ad hoc scalar, no Higgs,
often non-covariant

Dark matter, cosmic ex-
pansion

Penrose, Diósi Gravity ↔ decoherence,
non-unitary effects

Ad hoc reduction, no
Higgs structure

Quantum decoherence

Eichhorn et al. Higgs–gravity, RG flows,
vacuum potential stability

No cosmic-scale scope, no
reservoir

Vacuum stability, effective
QG

Barbour, Rovelli Relational time and mass,
dynamic vacuum

Conceptual frameworks,
low testability

Ontology of time and vac-
uum

Aharonov, Majo-
rana

Non-local entanglement,
invisible substrate

No geometric coupling, no
feedback

Entanglement, non-
locality

This model All of the above elements Dormant reservoir, central
Higgs role, inertial cou-
pling f(I)

Mass, gravity, dark en-
ergy, decoherence, unifica-
tion

10.7 Quantized Gravity or Emergent Gravity?
The framework developed in this article is based on a strong structural assumption: gravity is not treated
as a fundamental interaction to be independently quantized, but rather as an emergent manifestation of the
dynamics of a geometric–quantum vacuum. This position contrasts with many traditional approaches that
seek to formulate a quantum theory of gravity through explicit quantization of the metric gµν .

Model’s Foundational Stance The proposed theory does not rely on the introduction of a graviton or on
quantum perturbation of the metric. Instead, gravity is interpreted as the outcome of continuous feedback
between the scalar Higgs field and geometric invariants of the vacuum:

• Space-time curvature (R,K) modulates the mean value ⟨ϕ(x)⟩, altering the effective inertia of particles,

• This variation in ϕ feeds back into geometry via the coupling δξϕ2R, dynamically stabilizing the causal
structure,

• The dormant reservoir χ functions as a latent scalar mediator, activated only under strong geometric
constraint.

Within this interpretation, gravity emerges as a necessary consequence of vacuum co-dynamics, rather
than as a fundamental degree of freedom requiring independent quantization.
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Compatibility and Divergence from Existing Frameworks This approach shares affinities with emer-
gent gravity frameworks proposed by Sakharov, Jacobson, and Verlinde:

• As in Sakharov’s view, geometry is induced by underlying field effects—here, those of the Higgs and χ,

• As in Jacobson’s thermodynamic derivation, the metric is treated as a macroscopic state variable of
the vacuum,

• However, this framework introduces a complete Lagrangian, testable formulation, involving physically
identifiable fields, without relying on an initial entropic postulate.

Implications and Testability Postulating gravity as emergent from vacuum interaction leads to several
implications:

• Natural compatibility with semi-classical regimes (cosmology, black holes),

• Increased falsifiability through variation in ⟨ϕ⟩, activation of χ, or signatures of geometric decoherence,

• A unifying perspective across matter, mass, time, and gravity, without extrapolating into inaccessible
high-energy domains.

It is therefore conceivable that gravity, far from being the last force to be quantized, is in fact the
macroscopic effect of a stabilization process within a structured quantum vacuum.

Gravity is not a field to quantize, but a balance to uncover.

This emergent perspective deeply reshapes the understanding of fundamental interactions: it suggests
that gravity does not rely on a fundamental quantum mediator, but instead on a collective dynamic of the
vacuum — in constant interaction with the scalar fields it hosts.

Future theoretical and experimental efforts may thus shift away from direct quantization of the metric,
toward the refined study of Higgs field dynamics in curved contexts, thresholds for dormant reservoir activa-
tion, and decoherence induced by geometric gradients. Within these measurable phenomena, the profound
signatures of emergent gravity may be revealed.

This model has now been situated within the broader landscape of existing theoretical frameworks. It
remains to address a fundamental conceptual question: must gravity, as described in this framework, be
quantized — or can it instead emerge from vacuum dynamics?

10.8 Trans-Planckian Behavior and Compatibility with Quantum Gravity
One of the major challenges for any theory unifying mass, gravity, and vacuum structure is its robustness
at very high energies, particularly near the Planck scale. This section analyzes the behavior of the proposed
model in trans-Planckian regimes (R,K ≫ l−2

P ) and examines its conceptual compatibility with existing
approaches to quantum gravity (loop gravity, string theory, induced gravity).

Inertial Stability in Extreme Regimes The core of this model relies on the modulation of the Higgs
field’s mean value through a bounded inertial function ϵ(f(I)), where f(I) = R+ 1

f0
K. When K → 10140 m−4

(Planck-scale order of magnitude) and f0 = 10−35 m−2, the function f(I) ∼ 10175 m−2 becomes extremely
large, leading to saturation of ϵ:

ϵ(f(I)) −→ ϵ0 (inertial saturation)

The mean value of the Higgs field becomes:

⟨ϕ⟩ = v ·
√
1− ϵ0

which remains finite, stable, and physically meaningful for ϵ0 < 1. There is thus no divergence, no inertial
collapse, and no pathology in the effective potential.
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Natural Inertial Cutoff and Vacuum Freezing Beyond this saturation, the geometric dynamics of the
vacuum no longer induce additional modulation: space-time becomes locally insensitive to its own curvature
with respect to inertia. This effective inertial cutoff may be interpreted as a dynamic regularization of the
substrate—equivalent to an asymptotic inertial freezing.

This mechanism may be refined through a modified form of the function ϵ, incorporating a ceiling for
f(I) → ∞, such as:

ϵmod(f) = ϵ0 ·
[
tanh

(
f − Λ

f0

)
· e−(f/fmax)

n

]
where fmax ∼ l−2

P , ensuring a return to ϵ → 0 in the trans-Planckian regime—mimicking a form of quantum
inertial collapse.

This kind of inertial ceiling is analogous to the dynamical stabilization mechanisms of the dilaton and
tachyon condensation in string theory, where the scalar structure of the vacuum reorganizes non-perturbatively
in response to geometric or energetic instability [41, 42, 43].

Connection with Loop Quantum Gravity This asymptotic inertial behavior finds a natural analogue
in Loop Quantum Gravity (LQG), where the metric becomes discrete at very small scales. In the present
model, the saturation and subsequent suppression of Higgs field modulation can be interpreted as the effective
manifestation of geometric granularity, in which the inertial sheet ceases to be continuous.

Connection with String Theory The curvature-based modulation of the Higgs field also recalls mech-
anisms in string theory, where the dilaton or moduli fields locally control tension or effective mass. The
asymptotic behavior of ϵ(f) echoes tachyon condensation phenomena in unstable open string theories, as well
as dilaton stabilization in self-consistent string compactifications [43]. This analogy suggests that the inertial
sheet may play a role similar to that of moduli in compactification scenarios [41, 42].

Summary Although originally formulated as a semi-classical theory of a geometrized vacuum, this model
demonstrates remarkable coherence up to the Planck scale. It features:

• controlled inertial saturation in extreme regimes,

• a natural possibility of UV regularization,

• conceptual compatibility with both LQG (space-time granularity) and string theory (emergent scalar
structure),

• and a unified covariant language for mass, gravity, and vacuum structure.

This trans-Planckian behavior strengthens the model’s credibility as a viable effective framework for
emergent quantum gravity rooted in the inertial structure of the vacuum.

It also opens the path toward a more ambitious generalization aimed at unifying all fundamental interac-
tions, as outlined in Appendix S (see page 71).

Section Conclusion
The strength of a theory lies not only in its internal coherence or explanatory reach, but in its ability to
produce specific, falsifiable predictions compatible with observation.

By dynamically unifying the Higgs and gravitational fields within an active vacuum geometry, this model
generates a series of testable consequences across multiple domains:

• In cosmology, it enables a dynamic interpretation of dark energy, offers a partial resolution to the H0

tension, and predicts a drift in certain fundamental constants.

• In astrophysics, it naturally reproduces effects commonly attributed to dark matter in spiral galaxies
and predicts specific signatures near black holes.

• In quantum physics, it introduces a geometric entanglement sheet potentially linking entanglement,
decoherence, and gravity.

• In laboratory settings, it proposes testable inertial, spectroscopic, and interferometric shifts in moderate
gravity regimes.
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• And beyond, in trans-Planckian domains, it exhibits a regularizing inertial saturation compatible with
expectations from quantum gravity: vacuum granularity, asymptotic decoupling, and geometric con-
densation akin to structures from string theory or loop gravity.

This body of predictions comes with a set of known limitations. These do not disqualify the model,
but rather define its domain of validity. As such, it constitutes an effective framework, built on minimal
geometric hypotheses, at the crossroads between observational data and the great theoretical intuitions of
the 20th century (Einstein, Dirac, Majorana, Sakharov, Penrose).

The result is a unified, coherent framework—open to critique and structured to evolve through progressive
experimental validation. The following section will further explore the ontological and philosophical conse-
quences of this approach, showing how it helps reconcile long-standing tensions between mass, gravity, time,
and quantum reality.
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General Conclusion
To the foundational question guiding this investigation — could the relationship between the Higgs field
and mass play, in quantum physics, a structurally analogous role to that played by the gravitational metric
on time in general relativity? — this work responds with a unified theoretical construction: a dynamic
geometrization of the vacuum, in which the Higgs and gravitational fields are no longer treated as
separate entities, but as two projections of a shared geometric–quantum substrate.

This framework rests on three central pillars:

1. Modulation of the Higgs field’s mean value by the local geometry of space-time (via curvature invari-
ants), thereby altering the effective mass of particles.

2. Gravitational feedback: the variation of ϕ influences curvature in return, creating a dynamic loop
between inertia, geometry, and energy density.

3. Inertial activation of a structured vacuum, without auxiliary fields, triggered by geometry and account-
ing for cosmological anomalies such as dark matter and dark energy.

Through these mechanisms, the theory:

• Accounts for dark matter observations without invoking new particles;

• Reproduces cosmic acceleration as an emergent dynamic of the structured vacuum;

• Predicts curvature-induced decoherence, opening a path toward reconciling gravity and entanglement;

• Introduces a non-local geometric substrate (sheet) to interpret long-distance quantum correlations;

• Enables a relational reading of time as an emergent dimension of a dynamic substrate;

• And crucially, remains coherent in the trans-Planckian regime, through controlled inertial saturation
and natural vacuum regularization—suggesting conceptual compatibility with leading approaches in
quantum gravity, such as loop gravity and string theory.

This model is testable. It offers predictions in cosmology (rotation curves, Hubble constant, w(z)), astro-
physics (black holes, lensing, jets), quantum physics (decoherence, entanglement), and even high-precision
spectroscopy. It is consistent with available data while opening new experimental frontiers.

Beyond its predictions, it proposes a strong ontological interpretation: mass, gravity, time, entanglement,
and even tangible reality all emerge from a single structure — an active, geometrized vacuum that carries
information, thresholds of instability, and internal regulations tied to its inertial structure.

This vision extends intuitions from Einstein, Dirac, Majorana, Sakharov, and Penrose. It gives sub-
stance to the idea that unification does not necessarily require adding new entities, but rather a profound
reinterpretation of existing structures — a geometric reinterpretation of reality.

Closing Perspective
This is not merely a proposed theory — it is the outline of a new conceptual lens through which to view the
universe.

If this structure proves correct, then the vacuum is no longer absence, but origin; curvature is no longer
reaction, but dialogue; and mass is no longer a parameter, but a consequence.

The Higgs field and the gravitational field are no longer distinct entities: they become the joint languages
of a single dynamic of the real. And perhaps, within this dynamic, lies the key to a new understanding —
not only of the observable universe, but of the very structure of reality.
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Appendix A: Higgs Field Modulation in an FLRW Metric
Consider a homogeneous, isotropic universe described by the Friedmann–Lemaître–Robertson–Walker (FLRW)
metric:

ds2 = −dt2 + a(t)2
(

dr2

1− kr2
+ r2dΩ2

)
where a(t) is the scale factor and k ∈ {−1, 0,+1} denotes spatial curvature.
The associated scalar curvature is given by:

R(t) = 6

(
ä

a
+

(
ȧ

a

)2

+
k

a2

)
In this model, the mean value of the Higgs field is modulated by this curvature through the geometric

term in the potential:

⟨ϕ(t)⟩ ≈ v
(
1− γ

4λv2
R(t)

)
This coupling induces a slow variation in the effective particle mass:

meff(t) ≈ m0

(
1− γ

4λv2
R(t)

)
where m0 is the standard mass in flat space-time.

Cosmological Consequence
This gradual cosmological modulation of ⟨ϕ(t)⟩ induces a dynamical vacuum energy density. In the post-
inflationary regime, the scalar curvature R(t) decreases but does not vanish. It leaves a lingering imprint on
vacuum structure:

• A fraction of the dormant reservoir activated during inflation remains frozen, encoded in ⟨ϕ(t)⟩;

• This generates an effective negative pressure, interpretable as residual dark energy;

• The effect is reversible if the vacuum is exposed to a new phase of high curvature (cosmological bounce,
local collapse, etc.).

Remark
This mechanism offers a natural alternative to the introduction of a quintessence field [44] and aligns with
dynamical geometric models [45]. It also provides an alternative reading of the effective cosmological constant
in Planck data [37].
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Appendix B: Higgs Field Modulation Near a Schwarzschild Black
Hole
To evaluate the effects of extreme curvature on the mean value of the Higgs field, consider the Schwarzschild
metric:

ds2 = −
(
1− 2GM

rc2

)
c2dt2 +

(
1− 2GM

rc2

)−1

dr2 + r2dΩ2

where M is the mass of the black hole, G the gravitational constant, and c the speed of light.
The associated Kretschmann scalar, which encodes the quadratic curvature of the vacuum, is given by:

K(r) =
48G2M2

c4r6

In this model, curvature modulates the mean value of the Higgs field as:

⟨ϕ(r)⟩ ≈ v
(
1− γ

4λv2
K(r)

)
with

γ =
v2ρΛ
c4

This choice of coupling constant is not arbitrary: it links inertial modulation to the observed dark energy
density ρΛ ≈ 6.91×10−27 kg/m3, thus grounding the geometric coupling of the vacuum in measurable physical
data.

Physical Consequences
This decrease in ⟨ϕ⟩ leads to:

• A local reduction in the effective mass of ordinary particles: meff(r) ≈ m0

(
1− γ

4λv2K(r)
)
,

• Increased instability of matter (facilitated decay, amplified QCD effects),

• A faster or modified evaporation of compact objects,

• A weakening of quantum coherence near the event horizon (see Appendix E).

Typical Orders of Magnitude
For a typical stellar black hole (M ∼ 10M⊙):

• Schwarzschild radius: rs ∼ 3× 104 m,

• Kretschmann scalar at the horizon: K(rs) ∼ 10−17 m−4,

• Coupling constant γ (computed): γ ≈ 9.4× 1030 m2,

• Relative mass variation:
ϵ = − γ

4λv2
K(rs) ≈ −2.1%

for λ ≈ 0.13 and v = 246GeV. The negative sign indicates a local decrease in effective mass.

Connection to Vacuum Structure
This behavior aligns with the idea that vacuum geometry near a black hole locally activates dormant modes,
alters the stability of ordinary matter, and perturbs inertial dynamics. This may help explain phenomena
such as:

• Accelerated decay near the event horizon (linked to a deformed Higgs field),

• Information loss through internal fragmentation of the structured vacuum,

• Modification of the Hawking radiation spectrum [22].

This framework extends intuitions expressed in Penrose’s work on extreme geometry and gravitational
dissipation [6].
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Appendix C: Numerical Estimates and Orders of Magnitude
This appendix provides order-of-magnitude estimates to quantitatively assess the effects predicted by the
model, in particular the modulation of the Higgs field and the variation of effective mass in environments of
extreme curvature.

Effective Mass Variation Near a Stellar Black Hole
Consider a typical black hole of mass M ≈ 10M⊙.

Schwarzschild Radius

The Schwarzschild radius is given by:

rs =
2GM

c2

Numerically:

rs ≈ 2.95× 104 m

Kretschmann Scalar at the Horizon

The Kretschmann scalar is:

K(r) =
48G2M2

c4r6

At r = rs, this becomes:

K(rs) =
3

r4s
≈ 1.19× 10−17 m−4

Relative Correction to Effective Mass

Using the new definition:

γ =
v2ρΛ
c4

with:

v = 246GeV = 4.41× 10−8 J, ρΛ ≈ 6.91× 10−10 J/m3

yields:

γ =
(4.41× 10−8)2 · 6.91× 10−10

(3.00× 108)4
≈ 9.40× 1030 m2

The relative correction reads:

ϵ = − γ

4λv2
K(rs)

With λ = 0.13 and v2 ≈ 6.05× 104 GeV2 ≈ 1.08× 10−22 kg · m−1, one obtains:

ϵ ≈ − 9.4× 1030

4 · 0.13 · 1.08× 10−22
· 1.19× 10−17 ≈ −2.0%

Interpretation

Such a decrease in effective mass results in:

• Matter instability near the event horizon,

• Increased contribution to the gravitational energy–momentum tensor,

• Amplification of dissipation, decay, and evaporation effects.
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Cosmological Effects: Simulated Dark Energy Density
In an expanding FLRW universe, the average scalar curvature R(t) ∼ H2 ∼ 10−35 s−2. With f(I) = R(t),
one finds:

δρ ∼ γR(t)⟨ϕ(t)⟩2 ∼ v2ρΛ
c4

·R(t) · v2 =
v4R(t)

c4
· ρΛ

which, in order of magnitude, gives:

δρ ∼ ρΛ ·
(
v4R

c4

)
∼ ρΛ

Hence:

δρ ∼ 3× 10−47 GeV4

This suggests a rough order-of-magnitude agreement (with fixed coupling) with the effective dark energy
density, consistent with Planck data [37].

Conclusion
These estimates show that:

• The predicted gravitational effects remain negligible in low curvature,

• They become significant whenever I(x) ≫ 0, notably in cosmological and astrophysical contexts,

• The model can reach the observed orders of magnitude for dark matter and dark energy, without
invoking exotic entities, relying on a single coupling constant anchored in ρΛ.
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Appendix D: Geometric Entanglement Sheet and Reinterpretation
of Non-Locality
In standard quantum mechanics, entanglement connects two systems non-locally: a measurement on one in-
stantaneously affects the other, regardless of distance. This phenomenon, experimentally confirmed through
Bell inequalities [17] and Alain Aspect’s experiments [18], is consistent with quantum mechanics but chal-
lenging to reconcile with a local or relativistic causality view.

Entanglement and Vacuum Geometry
Within this unified framework, entanglement is supported by a real structure of the vacuum: the geometric
entanglement sheet. It is no longer an abstract informational link but a joint modulation zone of the Higgs
field ϕ and the local metric gµν , maintained as long as geometric conditions remain coherent.

This sheet is characterized by:

• inertial co-modulation (via ϕ) of the two entangled systems through the function f(I),

• a shared effective geometry sensitive to local curvature perturbations I(x),

• structural fragility linked to the coupled vacuum dynamics.

Connection to Majorana: Geometrization of Quantum States
Ettore Majorana proposed a geometric reformulation of the quantum field in which states are extended rather
than pointlike. This idea finds here a concrete formalization:

• the entangled state corresponds to an extended structure of the geometrized quantum vacuum,

• the sheet acts as a joint inertial integration zone, geometrically encoded,

• it is sensitive to modulations of f(I(x)), which condition entanglement coherence.

This interpretation operationalizes a profound intuition: entanglement is a stable configuration of the
dynamic vacuum, not a mysterious or supernatural phenomenon.

Reinterpretation of Non-Locality
In this framework, non-locality becomes:

• an effect of the global structure of the vacuum shared between two space-time regions,

• a consequence of the uniqueness of the inertial sheet defined by ϕ(x) and f(I),

• a geometric correlation, not a superluminal information transmission.

This aligns with work by Yakir Aharonov and Lev Vaidman on the complete description of quantum sys-
tems, and the idea that certain non-local effects reflect a deeper underlying vacuum configuration [46]. Roger
Penrose advocated a similar notion, where gravity may perturb this configuration, leading to entanglement’s
end [47].

Experimental Implication
This model implies that the entanglement sheet is:

• sensitive to curvature gradients (via K(x)),

• alterable by modulations of the field ϕ(x), locally activated by f(I),

• observable through variation in decoherence rates under extreme geometric conditions.

Tests are conceivable via:

• space-based interferometers in orbit (e.g., MAQRO),

• experiments using entangled superconductors in gravitational gradients,

• generalized Bell setups with asymmetric geometric separation.
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Conclusion
This framework reformulates non-locality as a geometric property of the vacuum. The entanglement sheet is
a coupled zone of the field ϕ and the metric gµν , kept active as long as the geometric–quantum substrate
remains coherent.

Far from opposing quantum mechanics and relativity, this model links them through an intermediate
structure: the dynamic vacuum. This sheet thus becomes a direct witness of Higgs–geometry coupling and a
privileged target for studying the co-emergence of mass, causality, and reality.
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Appendix E: Gravitational Decoherence and Higgs Field Dynamics
Quantum decoherence corresponds to the loss of coherence of superposed states under environmental influ-
ence. In the conventional approach, this process is attributed to interactions with surrounding fields (photons,
phonons, etc.). This model proposes an extension by involving the dynamics of the Higgs field modulated by
space-time curvature.

Decoherence Dynamics in This Framework
The Higgs field, geometrically coupled via the term γf(I)ϕ2, undergoes local modulations depending on
curvature structure. This modulation:

• Alters the inertial stability of particles in superposition,

• Modifies the local effective mass meff(x),

• Introduces a gravito-inertial dephasing effect impacting quantum coherence.

Thus, decoherence becomes a consequence of the geometric–quantum vacuum dynamics, rather than
solely an external interaction. The vacuum structure, when rendered heterogeneous via f(I), directly affects
quantum state coherence.

Effective Modeling
The local decoherence rate is expressed as:

Γ(x) = Γ0 (1 + ηf(I(x)))

where:

• Γ0 is the decoherence rate in flat space-time,

• η is a (small) coupling parameter, indirectly linked to γ,

• f(I(x)) = R+ αK quantifies the vacuum’s geometric response.

As I(x) increases, the mean value ⟨ϕ(x)⟩ decreases, enhancing the inertial imbalance of quantum su-
perpositions. This phenomenon becomes significant in moderate to strong curvature environments, such as
low Earth orbit, natural gravitational gradients (mountains, cavities), or controlled microgravity conditions
(MAQRO, ICECUBE-Q).

Connection with the Entanglement Sheet
Decoherence can also be viewed as the local rupture of a geometric entanglement sheet (cf. Appendix 10.7):

• When f(I) exceeds a critical threshold, modulation of ϕ deforms the sheet,

• Entangled correlations become unstable and collapse faster than in a homogeneous vacuum,

• This process may be observed as spatially differentiated loss of entanglement.

This reading unifies decoherence, gravity, and entanglement within a single geometric–dynamic framework.

Comparison with Other Approaches
This approach complements prior work by proposing a geometric mechanism based on an existing Standard
Model field:

• Penrose suggested gravity induces fundamental instability of macroscopic superpositions [47],

• Diósi and GRW-type models introduce spontaneous reduction mechanisms linked to mass.

Here, no nonlinear or ad hoc postulate is added; instead, coherence loss is linked to effective Higgs field
modulation by geometry, via a coupling tested in other contexts of the model (dark matter, dark energy).
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Experimental Perspectives
The geometric coupling of the Higgs field to decoherence enables several tests:

• Comparing decoherence rates of a quantum system in orbit (microgravity) versus on the ground (cur-
vature gradient),

• Observing fidelity loss of entangled states sent through regions of differing curvature (eccentric orbits,
tilted interferometers),

• Using superconducting devices (qubits, SQUIDs) to detect induced inertial dephasing.

Missions such as MAQRO or ICECUBE-Q are particularly suited for such experiments.

Conclusion
This model unifies gravity, quantum vacuum, and quantum state coherence through geometric coupling of
the Higgs field. It suggests decoherence is not an external effect but inherent to vacuum dynamics. This
framework connects predictions from cosmology, particle physics, and quantum mechanics, offering concrete
experimental avenues to test the deep structure of entanglement and quantum reality.
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Appendix F: Responses to Existing Theoretical Criticisms
This appendix anticipates major objections likely raised against the model and addresses them structurally.
Each response is grounded in existing literature or in the foundations of the approach.

Criticism 1: The Higgs Field Does Not Generate Gravity
Objection: The Higgs field is involved in mass generation via Yukawa interactions, while gravity is induced
by the energy-momentum tensor. These concepts are formally distinct.

Response: This theory does not claim the Higgs field generates gravity. It proposes a weak but funda-
mental coupling between space-time geometry and the mean Higgs field value. This coupling modifies the
local effective mass of particles, indirectly influencing the structure of the energy-momentum tensor Tµν in
strong curvature contexts. Thus, it is not a redefinition of the gravitational source, but a geometric–quantum
refinement of the relation between inertia, mass, and curvature.

Criticism 2: Proton Mass Is Dominated by QCD, Not Higgs
Objection: Most baryonic mass arises from QCD binding energy, not the Higgs field.

Response: This is a fundamental but compatible point. The Higgs field structures the masses of quarks
and leptons via Yukawa couplings [48], enabling hadron structuring. QCD confinement states arise within a
vacuum already structured by the Higgs field. Geometric modulation of this field thus indirectly affects QCD
dynamics: variations in ⟨ϕ⟩ modify confinement conditions, and hence the baryonic contribution to Tµν .

Criticism 3: No Measured Higgs Effect at the LHC
Objection: The Higgs boson measured at the LHC aligns precisely with Standard Model predictions. No
curvature or deformation effect has been observed.

Response: The model is constructed to preserve the Standard Model’s validity in low-curvature regimes.
The LHC operates in flat space-time at very high energy but with negligible gravitational intensity. In
this regime, Lagrangian correction terms are negligible. No contradiction thus arises. The model predicts
measurable effects only in high-curvature environments or cosmological contexts.

Criticism 4: Potential Vacuum Stability Problems
Objection: Coupling between the Higgs field and geometry could destabilize the electroweak vacuum.

Response: This constraint is integrated by fixing the geometric coupling constant to a value derived
from cosmological observables:

γ =
v2ρΛ
c4

This choice ensures dimensional consistency, an order of magnitude compatible with observed dark energy
density, and stability of the Higgs potential under renormalization. It aligns with recent analyses of vacuum
stability in effective quantum gravity frameworks [49, 50]. Numerical simulations (Appendix K) confirm that
the effective potential remains stable up to the Planck scale under this coupling regime.

Criticism 5: Higgs Inflation Models Already Exist
Objection: The non-minimal Higgs coupling to curvature is already used in inflation models (cf. [3]).

Response: Such models show that the Higgs can play the role of inflaton if a coupling term ξRϕ2 is added.
This theory extends that idea beyond the inflationary context: coupling is generalized to other geometric
invariants I(x), made dynamic in vacuum evolution, and shown to explain contemporary phenomena such as
dark energy, dark matter, or gravitational decoherence. This represents a much broader unification program
than isolated inflation models.

Criticism 6: Is This Model Testable?
Objection: Many modified gravity or scalar coupling theories remain speculative due to lack of testable
predictions.

Response: Testability is central to this approach (see Section 10.1). Quantifiable effects are proposed:

• On galactic rotation curves (variable effective mass),
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• On the effective cosmological constant and H0 tension,

• On the robustness of quantum entanglement in variable gravitational environments (geometric deco-
herence).

Projects such as Euclid, MAQRO, and the Vera C. Rubin Observatory will be able to test these
predictions in the medium term.

Appendix Conclusion
This theoretical framework anticipates key objections by demonstrating:

• It does not contradict existing results (LHC, precision observations),

• It relies on well-motivated generalizations (non-minimal coupling, scalar dynamics, geometric invari-
ants),

• It is conceptually clear, mathematically rigorous, based on a constant derived from dark energy density,
and experimentally falsifiable.
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Appendix G: New Interpretation of Dark Matter and Dark Energy
A major contribution of this model is to propose a unified, geometric, and testable interpretation of phenom-
ena traditionally attributed to two separate entities: dark matter and dark energy. Although dominant in
the universe’s energy budget, these components remain unexplained within the Standard Model framework.

G.1 Effective Dark Matter
Observational Context

Since Zwicky’s work [51] on galaxy velocities in the Coma cluster, up to Rubin and Ford’s rotation curves
[52], observations converge towards a gravitational anomaly: visible matter alone cannot explain the observed
dynamics.

Proposed Mechanism

In this model:

• Weak but non-zero geometric curvature in galactic halos induces a deformation of the mean
Higgs value: ⟨ϕ(r)⟩ slightly decreases,

• This variation leads to a local increase of the effective particle mass (differential inertial effect),

• The dormant reservoir is partially activated by geometry (via the threshold f(I) > Λ), contributing
to gravitational density without producing detectable particles,

• Proper time slows down at the periphery, enhancing the overall inertial effect.

These combined effects modify stellar dynamics without invoking exotic dark matter. The model repro-
duces flat rotation curves, lensing effects, and cluster stability within realistic metrics (e.g., NFW type), in
qualitative agreement with observations.

G.2 Effective Dark Energy
Observational Context

Since the discovery of cosmic acceleration by Perlmutter and Riess’s teams [38, 36], the introduction of a
cosmological constant Λ allowed adjustment of the Standard Model, though at the cost of extreme fine-tuning
and a lack of satisfactory physical explanation.

Proposed Mechanism

This approach rests on a feedback dynamics:

• High curvature after inflation induced a massive activation of the dormant reservoir,

• A portion of this energy remained frozen as a persistent deformation of ⟨ϕ(t)⟩,

• This deformation causes an effective negative pressure on large scales, equivalent to a variable
vacuum energy,

• The scalar field dynamics coupled to curvature yields a parameter w(z) close but not equal to −1,

• The simulated value of H0 lies between Planck and local observations, reducing current tension.

The geometric coupling γ, now defined from the observed dark energy density via

γ =
v2ρΛ
c4

ensures quantitative coherence and reduces the model’s parameter freedom.
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G.3 Conceptual Advantages and Internal Consistency
This geometric reading offers several advantages:

• It relies solely on fields already present in the Standard Model (Higgs, geometry),

• It assigns an active role to the vacuum, consistent with Sakharov’s work [4] and modern quantum
vacuum structure hypotheses,

• It unifies dark matter and dark energy as different expressions of the same vacuum dynamics,

• It enables direct testability via effective mass spectra, differential inertial effects, and cosmological
signatures (see Section 10),

• It grounds the effective cosmological constant on a geometric coupling derived from known observables,
avoiding arbitrary vacuum energy.

G.4 Conceptual Summary
Phenomenon Interpretation in This Model
Dark Matter Local variation of ⟨ϕ(x)⟩ induced by curvature + inertial

contribution from activated dormant reservoir
Dark Energy Residual deformation of ⟨ϕ(t)⟩ at cosmological scale + slow

gravitational feedback
Common Origin Dynamics of a geometric–quantum vacuum substrate, cou-

pled to curvature and structuring space-time

Appendix Conclusion
Without introducing additional hypothetical particles, this model provides a coherent, geometrically founded,
and testable interpretation of dark matter and dark energy. It thus contributes to the search for a minimalist
and effective unifying framework at the crossroads of cosmology, gravitation, and particle physics.
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Appendix H: Summary of Testable Predictions
This appendix organizes the specific predictions of the theory in a structured manner, identifying for each
the relevant observational or experimental contexts. The goal is to provide a concise overview of concrete
avenues for falsifying or confirming the approach.

H.1 Structured Summary
Predicted Effect Context of Occurrence Type of Test
Effective mass variation Galactic halos, regions with nonzero curvature Rotation curves

(Gaia, VRO)
Deformation of mean ⟨ϕ(t)⟩ Cosmological evolution (FLRW metric) Type Ia super-

novae, CMB,
quasar spectra

Decay of quantum entangle-
ment

Entangled systems traversing curvature gradients Gravitational
interferome-
try, MAQRO,
SQUID

Increased baryonic instability Near Kerr-type black holes X-ray spec-
troscopy, rel-
ativistic jets,
Hawking radia-
tion

Activation of dormant reser-
voir

Post-inflation, compact objects, accelerating uni-
verse

Indirect obser-
vation via H0,
cosmological
tension, mem-
ory effects

H.2 Qualitative Supplements by Domain
Galactic Astrophysics The model qualitatively reproduces rotation curve shapes without assuming exotic
dark matter, through:

• Geometrically induced variation of ⟨ϕ(r)⟩ in halos,

• Increased inertia linked to proper time dilation,

• Partial activation of the dormant reservoir increasing apparent gravitational density.

Dynamic Cosmology This model enables:

• Reproduction of accelerated expansion without a static Λ,

• Explanation of a dynamic w(z) parameter,

• Reduction of the tension between Planck and local H0 measurements,

• Proposal of an emergent cosmological constant related to δ⟨ϕ(t)⟩.

Extreme Gravity and Black Holes The geometrized Higgs field:

• Is strongly deformed near horizons,

• Contributes to baryonic instability (facilitated decay, information loss),

• Modifies Hawking temperature (via T ∝ m in this extended framework).

52



Quantum Tests and Interferometry Weak but measurable effects may appear in quantum systems
under modulated gravitational environments:

• Geometry-dependent entanglement loss,

• Observable inertial fluctuation in fine spectroscopy,

• Decoherence sensitive to curvature gradients.

H.3 Experimental Outlook
Numerous ongoing and forthcoming missions could test these effects:

• Gaia, Vera Rubin Observatory (VRO): dynamic mapping of galactic halos,

• Planck, Euclid, DESI: precision measurements of w(z) and constraints on H0,

• MAQRO, ICECUBE-Q: space-based quantum interferometry,

• EHT, Athena, LISA: spectroscopy and gravitational lensing in extreme fields.

H.4 Appendix Conclusion
Although speculative in some aspects, this theory yields a series of concrete predictions that are either
partially tested already or accessible in the medium term. It rests on a fundamentally testable coupling
between geometry and the Higgs field, providing a rigorous basis for evaluating its physical validity.
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Appendix I: Functional Analysis of f(I) and Impact on ⟨ϕ⟩
This appendix explores the impact of the chosen coupling function f(I) on the local modulation of the Higgs
field ⟨ϕ(x)⟩, and thus on the effective mass. Different functional forms are tested in the context of a static
Schwarzschild-like space-time, taking into account the new definition of the coupling:

γeff = γ

(
1 +

f(I)

f0

)
with γ =

v2 ρΛ
c4

, f0 = 10−35 m−2

—

Reminder of the Modulation Mechanism
In this model, the mean value of the Higgs field is modified by a geometric term in the potential, yielding:

⟨ϕ(x)⟩ ≈ v
(
1− γeff

4λv2
f(I(x))

)
—

Tested Forms of f(I)

Three functional variants are compared:

1. f1(I) = R (pure scalar case)

2. f2(I) = R+ αK (linear mixed form)

3. f3(I) =
R

1 + βR
(nonlinear form)

In a Schwarzschild space-time (R = 0 outside the singularity):

f1 = 0, f2 = αK, f3 = 0

Thus, the effective modulation relies solely on the K term.
—

Numerical Evaluation of ϵϕ with f2(I) = αK

For a black hole of mass M = 10M⊙, the horizon value is K(rs) ≈ 1.2 × 10−17 m−4. With α = 1040, this
gives:

f(I) = αK = 1.2× 1023

And therefore:

γeff = γ

(
1 +

f(I)

f0

)
= γ

(
1 +

1.2× 1023

10−35

)
= γ × 1.2× 1058

With:

γ =
v2ρΛ
c4

≈ 1.42× 10−109 m2 ⇒ γeff ≈ 1.70× 10−51 m2

Calculating:

ϵϕ = − γeff

4λv2
f(I) = − 1.70× 10−51

4 · 0.13 · 1.08× 10−22
· 1.2× 1023 ≈ −0.091 ⇒ −9.1%

This result validates a significant and physically consistent modulation.
—
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Impact of Nonlinearity in f3(I)

For a typical FLRW universe (R ∼ 10−36 m−2, β = 1035):

f3 ≈ 10−36

1 + 10−1
≈ 9.1× 10−37

Thus:

γeff ≈ γ

(
1 +

f3
f0

)
≈ γ

(
1 +

9.1× 10−37

10−35

)
≈ γ(1 + 0.091) ≈ 1.55× 10−109

Higgs correction:

ϵϕ ∼ − 1.55× 10−109

4 · 0.13 · 1.08× 10−22
· 9.1× 10−37 ∼ −2.5× 10−86

Negligible, consistent with cosmological observations.
—

Appendix Conclusion
• The R term alone is ineffective in zero-curvature environments;

• The K term, via αK, enables a controllable effective modulation;

• The definition γ =
v2ρΛ
c4

is viable when rescaled by f(I)/f0;

• Variation of ⟨ϕ⟩ becomes locally significant without global instability;

• Nonlinear forms of f(I) are useful in cosmology, preserving vacuum stability.

This rescaling allows retention of the theoretical value of γ while ensuring the mechanism’s effectiveness
in extreme regimes. It forms a robust bridge between the macroscopic dark energy density and localized
inertial effects observable in astrophysics.
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Appendix J: Inertial Activation of the Vacuum by Geometry
This appendix details the mechanism of geometric activation of the vacuum via an activation function ϵ(I),
without invoking an auxiliary field. It models an effective vacuum energy density that remains zero or
negligible in classical regimes but becomes active in the presence of extreme curvature.

J.1 Functional Structure of ϵ(I)

The function ϵ(I) encodes the inertial activation of the vacuum. It depends on a local geometric invariant
f(I) (e.g., R, K, or a linear combination), and a threshold Λ corresponding to a critical curvature value:

ϵ(f(I)− Λ) = ϵ0 · tanh
(
f(I)− Λ

f0

)
with f(I) = R+

1

f0
K

where:

• ϵ0 is the maximal activation intensity (∼ 0.01 to 0.1),

• f0 controls both the transition slope and the weighting of K,

• Λ is the inertial activation threshold.

This choice allows a smooth transition between an inactive regime (f(I) ≪ Λ) and an activated regime
(f(I) ≫ Λ), with asymptotic saturation. The constant α, used in previous versions, is absorbed here into
the scale f0, removing an arbitrary degree of freedom.

J.2 Physical Interpretation
The function ϵ(I) is not a dynamic field. It represents an effective response of the vacuum to its own geometry.
When a curvature threshold is crossed, a localized portion of the structural vacuum reacts by increasing its
apparent inertia, modulating the mean value of the Higgs field:

⟨ϕ(x)⟩ = v ·
√

1− ϵ(f(I(x)))

This modulation is interpreted as a partial release of stored inertia, without introducing additional degrees
of freedom. It replaces the role previously played by the field χ in earlier model versions.

J.3 Alternative Forms of the Activation Function
For different numerical or theoretical contexts, other smooth functions can be used:

• Logistic function: ϵ(x) = ϵ0/(1 + e−k(x−Λ))

• Bounded form: ϵ(x) = ϵ0 · xn

xn+Λn (for x > 0)

• Regularized Heaviside: ϵ(x) = ϵ0 · 1
2 (1 + tanh(kx))

All these choices ensure gradual activation without abrupt discontinuities, consistent with associated
differential equations.

J.4 Numerical and Analytical Scope
This inertial activation mechanism:

• allows modulation of the effective particle mass in regions of strong curvature,

• accounts for apparent dark matter effects without hidden fields,

• produces testable mass corrections in extreme environments (cf. Appendices A, B, C, M),

• is compatible with GRChombo simulations in 1D or 2D (see Appendix M),

• integrates smoothly into an effective Lagrangian without violating perturbative renormalizability.

This framework thus advantageously replaces the former auxiliary field χ formalism, while retaining the
explanatory power initially sought: linking inertia, curvature, and vacuum structure in a single geomet-
ric–quantum language.
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Appendix K: One-Loop Effective Potential and Vacuum Stability
To evaluate vacuum stability within this model, the effective form of the Higgs field potential is analyzed
in the presence of the geometric coupling γf(I)ϕ2. The semi-classical regime is considered, employing the
one-loop Coleman–Weinberg approximation.

K.1 Modified Classical Potential
The total classical potential for the Higgs field, including geometric coupling, reads:

Vcl(ϕ, I) = λ(ϕ2 − v2)2 + γf(I)ϕ2

where:

• λ is the self-interaction coefficient,

• v is the vacuum expectation value (in flat space-time),

• f(I) = R+ 1
f0
K is a function of geometric invariants.

The second term acts as an inertial perturbation modulated by geometry.

K.2 One-Loop Quantum Correction
The one-loop effective potential, in natural units, is given by:

Veff(ϕ, I) = Vcl(ϕ, I) +
1

64π2

∑
i

(−1)Figim
4
i (ϕ)

[
log

(
m2

i (ϕ)

µ2

)
− 3

2

]
where:

• m2
i (ϕ) are the effective masses of the fields (Higgs, gauge bosons, fermions, etc.),

• Fi is the fermion number (0 for bosons, 1 for fermions),

• gi is the number of degrees of freedom,

• µ is the renormalization scale.

For the Higgs field itself:

m2
h(ϕ) = 4λϕ2 + 2γf(I) = 4λϕ2 + 2γ

(
R+

1

f0
K

)
Other masses (W, Z, top quark) also depend on ϕ, as in the Standard Model.

K.3 Renormalization Group Flows
The presence of the term γf(I)ϕ2 modifies the Standard Model renormalization equations. The one-loop
beta functions become:

βλ =
1

16π2

(
24λ2 + 12y2t λ− 6y4t + · · ·+ geometric terms

)
βγ =

1

16π2

(
12λγ + 6y2t γ

)
where yt is the top quark Yukawa coupling.

Vacuum stability is ensured if λ(µ) > 0 and γ(µ) > 0 up to the Planck scale. Previous studies (cf. Eichhorn
et al., refs [10, 49]) show such couplings can stabilize the potential even if λ becomes negative in the pure
SM.
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K.4 Consequence for Inertial Vacuum Structure
Adding the geometric term modifies the effective vacuum energy in strong curvature regimes. In particular,
when f(I) = R+ 1

f0
K exceeds a threshold Λ, the function ϵ(f(I)) becomes significant, deforming the effective

potential:

Veff(ϕ, I) = λ(ϕ2 − v2)2 + λv2 · ϵ(f(I)) · ϕ2

where ϵ(f(I)) is a smooth bounded function (e.g., tanh type), modeling geometric vacuum activation (cf.
Appendix J).

This inertial activation corresponds to a local decrease in ⟨ϕ(x)⟩, hence of the effective particle mass, with
macroscopic effects similar to a localized dark energy density or effective dark matter in galactic halos. No
additional fields are required: dynamics are solely driven by geometry and vacuum structure.

K.5 Appendix Conclusion
The geometric coupling introduced in the effective potential via ϵ(f(I)) is stable at one loop for reasonable
parameter values λ, f0, and γ. It does not introduce catastrophic instability in the potential.

This mechanism acts as a dynamic inertial regulator, coupling effective mass to vacuum geometry. It
allows reversible and controlled modulation of the Higgs field configuration without requiring new fields or
hidden sectors.

The inertial vacuum structure thus becomes an active actor in gravitational physics, testable indirectly
through cosmology, galactic spectra, inertial modulations in extreme regimes (black holes), and geometric
decoherence effects.
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Appendix L: Experimental Protocol for Gravitational Decoherence
This model predicts that quantum entanglement relies on a common inertial structure of the vacuum, which
is sensitive to the geometry of space-time. A local variation of curvature invariants can thus weaken the
entanglement sheet, resulting in geometric decoherence.

L.1 Effective Decoherence Law
The loss of coherence is modeled by an exponential decay law of the entanglement fidelity F (t), dependent
on the gravitational environment:

F (t) = exp [−Γ(x)t]

where the decoherence rate Γ(x) is defined as:

Γ(x) = Γ0 [1 + η (R(x) + αK(x))]

with:

• Γ0: decoherence rate in flat space-time (environmental noise),

• η ∼ 10−10: inertial coupling constant,

• R(x), K(x): local geometric invariants,

• α: inertial sensitivity parameter (already defined in f(I)).

L.2 Proposed Experimental Protocol
A test is proposed based on sending pairs of entangled photons into two differentiated environments:

• Arm 1: Low Earth Orbit (LEO) — R ∼ 10−13 m−2,

• Arm 2: Heliocentric orbit — R ∼ 10−15 m−2,

Measuring the difference in entanglement fidelity ∆F = FLEO(t) − FHelio(t) over a few hundred seconds
allows direct testing of the geometric effect on quantum stability.

Required instruments:

• Source of entangled photons (polarization or time-bin),

• Orbital platform (e.g., CubeSat or MAQRO),

• High-fidelity SQUID detectors or correlators,

• Microsecond-level timing control.

Model prediction: With α ∼ 1040 m2, one has:

∆Γ ∼ Γ0 · η · α · (KLEO −KHelio) ⇒ ∆F/F0 ∼ 0.1% to 1%

This variation is detectable with modern correlation devices (e.g., fiber-cooled downlink, ESA MAQRO
platforms, Lunar Gateway, etc.).

L.3 Falsifiability Scope and Differentiation
Such an effect is not predicted by standard decoherence models (environmental, thermodynamic) nor by
alternative modified gravity theories. It thus provides a specific falsifiable signature of the vacuum’s inertial
geometric coupling.

L.4 Appendix Conclusion
This protocol operationalizes the notion of the “geometric entanglement sheet” proposed in Section 8.6 and in
the theoretical sections of the model. It opens the way to experimental exploration of the link between vac-
uum structure, quantum stability, and gravitational curvature — a major challenge at the gravity/quantum
interface.
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Appendix M: GRChombo Simulation Protocol for Higgs–Geometry
Coupling
This appendix describes the numerical structure of a simulation based on GRChombo (or equivalent), allowing
modeling of the Higgs field dynamics interacting with curvature in strong gravity regimes (e.g., Schwarzschild
black hole).

M.1 Objective
Simulate the joint evolution of:

• the scalar Higgs field ϕ(x, t),

• the space-time geometry gµν(x, t),

• and geometric invariants R(x, t), K(x, t),

within a coupled Lagrangian framework, in order to measure the deformation of the effective mass:

meff(x) = yf ⟨ϕ(x)⟩

and the vacuum’s geometric inertial response via the activation function ϵ(f(I)).

M.2 Simulated Lagrangian
The system dynamics are governed by the action:

S =

∫
d4x

√
−g
[
1

2κ
(R+ ξϕ2R)− 1

2
∇µϕ∇µϕ− Veff(ϕ, I)

]
with:

• Veff(ϕ, I) = λ(ϕ2 − v2)2 + λv2 · ϵ(f(I)) · ϕ2,

• f(I) = R+ 1
f0
K,

• ϵ(f(I)) = ϵ0 · tanh
(

f(I)−Λ
f0

)
.

Important remark: the analytical value of γ = v2 ρΛ

c4 ≈ 1.4 × 10−109 m2 is extremely small. To enable
meaningful numerical tests, simulations will use:

• a numerical rescaling in which f(I) is expressed in dimensionless units,

• a bounded activation function ϵ(f(I)) centered on a numerically defined threshold Λ.

This approach allows testing the vacuum’s inertial response without compromising the model’s physical
validity.

M.3 Numerical Implementation
Code: GRChombo with scalar modules; alternatively, Einstein Toolkit with Carpet + MoL.

Domain:

• 1D or 2D spherical: r ∈ [rs, 10
7 m],

• typical resolution: ∆r ∼ 102 m,

• boundary conditions: inner horizon (rs) and flat conditions at infinity.

Dynamic Variables:

• ϕ(x, t),

• conformal metric g̃µν(x, t),

• auxiliary functions: R(x, t), K(x, t), f(I), ϵ(f − Λ).
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Extracted Observables:

• ⟨ϕ(x)⟩, meff(x) = yfϕ(x),

• activation rate ϵ(x),

• relative mass variation ∆m/m,

• feedback on curvature: R+ ξϕ2R.

M.4 Simulation Steps
1. Initialization: field ϕ(x, t = 0) = v, metric = Schwarzschild,

2. Evolution: solver of method-of-lines (MoL) type,

3. Calculations at each time step:

• update R, K, f(I),
• evaluate ϕ(x, t), ϵ(f − Λ),

• extract observables.

4. Visualization: radial profiles of ϕ, meff, ϵ.

M.5 Conclusion and Perspectives
This protocol allows numerical validation of the model’s predicted effects:

• local decrease of the effective mass meff,

• geometric inertial activation of the vacuum via ϵ(f(I)),

• geometric feedback of the Higgs field on R,

• calibration of parameters λ, ξ,Λ, f0.

Such simulations can be extended to dynamic geometries (binary mergers, FLRW background) to study
mechanism robustness in realistic cosmological or gravitational contexts.
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Appendix N: Summary Table of Model Constants and Parameters
The table below summarizes the fundamental parameters used in the extended Lagrangian framework. It
specifies their role, units, typical orders of magnitude considered, and the sections or appendices where they
primarily appear.

Table 3: Model Constants and Parameters
Parameter Meaning / Role Typical Value / Unit Sections / Appendices

λ Higgs field self-coupling ∼ 0.13 (dimensionless) Sections 3.2, K

v Higgs VEV in flat space-
time

246GeV Sections 3.2, C, K

γ Geometric calibration
constant
(γ = v2ρΛ

c4 )

∼ 1030 m2 Sections 3.6, J, K

ξ Non-minimal coupling
ϕ2R in h(ϕ)

[1029 − 1031]m2 Sections 3.3, 3.6, K

Λ Geometric inertial activa-
tion threshold

∼ 10−17 m−4 Sections 3.7, J, M, O

f0 Inertial transition scale /
K weighting factor

∼ 10−35 m−2 Sections 3.6, J, M, O

ϵ0 Maximal inertial modula-
tion amplitude

[0.01−0.1] (dimensionless) Sections 3.6, J, M, O

η Geometric decoherence
coefficient

∼ 10−10 Section 8.6, Appendix L

Note: The former parameter α, initially defined as the weight of the Kretschmann scalar K term in f(I), is
now fixed by:

α =
1

f0

and is no longer a free parameter of the model. Similarly, the parameter δ has been absorbed into ξ in the
refined versions of the gravitational Lagrangian.

62



Appendix O: Numerical Simulation — Geometric Activation of the
Inertial Vacuum
To numerically test predictions related to geometric activation of the vacuum in extreme curvature envi-
ronments, a simulation based on a numerical relativity solver such as GRChombo or the Einstein Toolkit is
proposed. The objective is to quantify the joint evolution of the fields ϕ and gµν in a black hole-like geometry,
in the presence of an inertial activation term ϵ(f(I)).

Objectives
• Simulate the dynamics of the Higgs field ϕ coupled to geometry via an inertial activation function
ϵ(f(I)),

• Quantify the modulation of the effective mass meff(r),

• Study the impact on the geometry gµν and the feedback on curvature invariants.

Initial Configuration
• Metric: Static Schwarzschild (or Kerr subsequently), mass M = 10M⊙

• Higgs field: initial configuration ϕ = v = 246GeV

• Geometric invariants: R = 0, K = 48G2M2

c4r6

• Activation function: ϵ(f(I)) = ϵ0 · tanh
(

f(I)−Λ
f0

)
• Typical parameters:

– α ∼ 1040 m2

– Λ ∼ 10−17 m−4

– ϵ0 ∼ 0.05, f0 ∼ 10−35 m−2

Equations to Integrate
The following field equations are solved:

□ϕ− 4λϕ(ϕ2 − v2)− 2λv2 · ϵ(f(I)) · ϕ = 0

Gµν + δHµν = κTϕ
µν

where:

• f(I) = R+ αK,

• Hµν encodes the feedback from the coupling ξϕ2R,

• and Tϕ
µν is the energy-momentum tensor of the ϕ field.

Observables to Extract
• Radial profile ϕ(r) and geometric inertial thresholds

• Deviation of the effective mass ∆meff(r) = m0 − yf ⟨ϕ(r)⟩

• Profile of ϵ(r)

• Impact on curvature (Ricci tensor, horizon distortion)

Compatibility with the Constant γ

The constant γ = v2ρΛ

c4 ≈ 1.4×10−109 m2 no longer appears directly in the dynamic equations. Its role is now
absorbed in calibrating the functions f(I) and ϵ(f(I)) via the parameters f0 and ϵ0. This ensures dimensional
consistency of the model while allowing measurable localized effects in extreme curvature regimes.
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Perspectives
This simulation represents a crucial step toward:

• Numerically verifying inertial modulation effects in extreme regimes,

• Fine calibration of parameters α,Λ, ϵ0, f0,

• Identification of observable signatures in astrophysical data (EHT, X-rays, etc.),

• Preparation of similar scenarios for FLRW geometries (cosmic expansion) or post-merger events (grav-
itational waves).
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Appendix P: Parameter Dependencies and Cross-Constraints in the
Model
The initial model parameters (γ, α, ξ, δ) have been largely redefined or absorbed. In the current theoretical
framework version, only two quantities remain adjustable:

• ξ: controls the feedback of the Higgs field on geometry (via ϕ2R),

• f0: defines both the transition slope of the function ϵ(f(I)) and the weight of the K term in f(I) =
R+ 1

f0
K.

The constants γ, α, and δ are fixed or absorbed:

• γ = v2ρΛ

c4 : derived constant, not free,

• α = 1/f0,

• δ absorbed into ξ via rewriting of the gravitational Lagrangian.

1. Cross-Dependencies in Field Equations
• The term ϵ(f(I)), with f(I) = R+ 1

f0
K, directly affects the modulation of the effective mass:

⟨ϕ(x)⟩ ≈ v ·
√

1− ϵ(f(I))

This term encodes the geometric activation of the vacuum and is sensitive to the combination K/f0.

• The coupling ξϕ2R influences Einstein’s equations via geometric feedback:

Gµν + ξ · ϕ2Rµν ∼ Tµν

This interaction enables experimental testing of ξ through cosmological or astrophysical signatures.

• Macroscopic effects of inertial modulation, such as effective dark matter or dark energy, emerge from
the interplay between f0 and Λ (inertial threshold), without relying on additional fields.

2. Cross Sensitivities (Reduced Model)

Physical Effect f0 ξ
Effective mass (ϕ) ★★★★⋆ ★★⋆⋆⋆
Feedback on R ★⋆⋆⋆⋆ ★★★★★
Effective dark energy ★★★⋆⋆ ★★★★⋆
Decoherence (gradient
f(I))

★★★★⋆ ★⋆⋆⋆⋆

Stars indicate qualitative sensitivity (★★★★★ = very strong, ★⋆⋆⋆⋆ = weak).

3. Inertial Stability Constraints
A too large variation of ⟨ϕ⟩ would induce a mass decrease incompatible with atomic structure stability. This
sets an upper bound on ϵ(f(I)) and thus indirectly on f0. In moderate regimes:∣∣∣∣∆mm

∣∣∣∣ ≈ λv2ϵ(f(I))

4λv2
=

1

4
ϵ(f(I)) ≲ 0.05 ⇒ ϵ(f(I)) ≲ 0.2

This bound implicitly constrains the pair (f0,Λ), ensuring activation is significant only in strong curvature
regimes.
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4. Calibration and Testability Perspectives
Within this minimal framework, the two free parameters can be tested as follows:

• f0: calibrated via effective mass modulation in galactic halos or extreme gravitational environments
(cf. Appendices M, O),

• ξ: constrained by cosmic expansion dynamics, gravitational lensing effects, or modified field equations
(cf. Sections 4, 8.3).

The two-parameter structure allows clear falsifiability, sharp functional sensitivity, and numerical trace-
ability in GRChombo or FLRW simulations. This scheme validates the transition from the initial multi-
parameter model to a geometrically constrained, calibratable, and testable formulation.
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Appendix Q: Justification and Implications of the Coupling Constant

γ =
v2 ρΛ
c4

Origin of the Constant
In this model, the coupling constant γ appears in the geometrized term of the Higgs potential:

Lϕ ⊃ −γf(I)ϕ2

in order to modulate the influence of geometric invariants R and K on the mean value of the Higgs field
⟨ϕ(x)⟩, and thus on the effective inertia of particles.

I propose here to eliminate this free parameter by linking it to the fundamental constants of the Standard
Model and the cosmological properties of the vacuum. This expression is based on a conceptual requirement:
to make vacuum geometry a dynamic modulator of inertia, anchored in known fundamental structures.

Proposed Formula
We define γ by the expression:

γ =
v2 ρΛ
c4

where:

• v = 246GeV/c2 is the vacuum expectation value of the Higgs field (electroweak scale),

• ρΛ ≈ 6× 10−27 kg/m3 is the currently measured dark energy density,

• c = 3× 108 m/s is the speed of light.

Numerical Result
Plugging in SI units:

v =
246× 1.602× 10−10

c2
≈ 4.38× 10−8 kg

γ =
(4.38× 10−8)2 · 6× 10−27

(3× 108)4
≈ 1.15× 10−58 m2

This result is remarkably small but remains compatible with the effects sought in this model: very weak
modulation in ordinary inertial fields and possible amplification in extreme regimes where R or K become
significant (see Appendix C).

Physical Justification
This expression fulfills several desirable conditions:

1. It directly links vacuum geometry to the average inertia of particles: the higher ρΛ, the stronger the
geometric modulation of mass.

2. It incorporates the electroweak scale (v) and the cosmological constant in a dimensionally consistent
ratio with the model’s Lagrangian terms.

3. It allows natural absorption of geometric feedback effects into mass and energy dynamics without
introducing arbitrary constants.

Implications for the Model Structure
• This choice removes a free degree of freedom, making the model more predictive.

• It induces a natural correlation between inertial, cosmological, and extreme gravitational effects — all
modulated by the same amplitude constant.

• It opens a conceptual path toward formal unification between scalar fields (inertia), geometry (curva-
ture), and vacuum energy (cosmic acceleration).
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Next Step
The obtained value will need to be tested within the model equations:

meff(x) = yf ⟨ϕ(x)⟩ = yfv

(
1− γf(I)

4λv2

)
and

S =

∫
d4x

√
−g
[
1

2κ
(R+ δξϕ2R)− 1

2
∇µϕ∇µϕ− λ(ϕ2 − v2)2 − γf(I)ϕ2 + . . .

]
to confirm mathematical and observational consistency across application domains (see Appendices C, G,
and P).

Conclusion

The expression γ =
v2 ρΛ
c4

constitutes an elegant and physically motivated reduction of the geometric coupling
parameter. It links inertia, geometry, and dark energy within a coherent framework while reinforcing the
model’s predictive and falsifiable character. This choice will be used in calculations from the main body of
the document starting at Section 3.6 and confronted with observations in Sections 5 and 8.
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Appendix R: Trans-Planckian Consistency and Compatibility with
Quantum Gravity
This appendix explores the validity of the model at the Planck scale and its compatibility with quantum
gravity frameworks. It is shown that the inertial dynamics of the vacuum remain regularized in extreme
regimes, and that the underlying principles align conceptually with fundamental structures of string theory
and loop quantum gravity.

R.1 Extreme Curvature Regimes and Inertial Saturation
At the Planck scale, geometric invariants such as the Kretschmann scalar reach values on the order of:

K ∼ 1

l4P
∼ 10139 m−4

where lP =
√
ℏG/c3 ≈ 1.6× 10−35 m.

Within this framework, the vacuum’s inertial activation is governed by a sigmoid function:

ϵ(f(I)) = ϵ0 · tanh
(
f(I)− Λ

f0

)
with f(I) = R+ αK. When f(I) ≫ Λ, one obtains:

ϵ(f(I)) → ϵ0 (inertial saturation)

This behavior ensures that the modulation of the effective mass remains bounded even as curvature
approaches extreme values. In other words, inertia does not diverge—it stabilizes. This mechanism acts as a
natural dynamic regularization of the vacuum in the trans-Planckian regime.

R.2 Compatibility with Quantum Gravity Approaches
Loop Quantum Gravity (LQG) The inertial activation function ϵ(f) conceptually acts as an effective
granularity of vacuum structure: it features a threshold, saturation, and avoids divergences. This recalls the
discrete curvature operators in LQG, where geometric quantities become bounded at the Planck scale.

Moreover, the central role of invariants R and K aligns with LQG’s fundamental geometric structure.
The controlled variation of ⟨ϕ⟩ in extreme regimes can be interpreted as a coherent response to the spatial
granularity postulated by LQG.

String Theory In 10- or 11-dimensional models, scalar modulations (moduli, dilaton, etc.) can induce
curvature–scalar field couplings comparable to those used here. The term ξϕ2R is indeed a classic feature of
Kaluza-Klein compactifications.

This model may thus be viewed as an effective 4D theory derived from a richer geometric structure, with
the function ϵ(f) encoding the effect of a frozen or condensed dilaton field. The sigmoid asymptotics of ϵ(f)
could even be interpreted as a signature of a stabilized potential.

Entropic Gravity (Sakharov, Jacobson, Padmanabhan) Finally, this approach echoes the idea that
gravity is not a fundamental force but an emergent effect of the quantum vacuum. The modulation of ⟨ϕ⟩
according to local curvature provides a concrete mechanism for this link, where mass, vacuum temperature,
and geometry are co-determined.

The inertial coupling ϵ(f) acts as an effective temperature of the geometric vacuum, bringing this frame-
work close to the thermodynamic analogies underpinning the works of Jacobson and Padmanabhan.

R.3 Perspectives and Possible Extensions
This conceptual and structural compatibility opens several avenues:

• Integration of a non-perturbative renormalization flow for ϵ(f) and ξ;

• A topological interpretation of the invariant K as a density of geometric information (cf. holographic
gravity);

• The search for a 10D or 11D fundamental Lagrangian leading to the 4D structure via effective com-
pactification.
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R.4 Appendix Conclusion
The model remains consistent in extreme curvature regimes and presents no problematic divergences at the
Planck scale. The natural saturation of inertial modulation ensures vacuum regularity while offering formal
contact points with several quantum gravity approaches. This strengthens the model’s scope: it is not merely
effective — it could emerge from a more fundamental framework yet to be explored.
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Appendix S: Perspectives for Complete Unification — Constants,
Interactions, and Vacuum Geometry
This appendix explores possible extensions of the model toward a complete unification of fundamental in-
teractions, integrating coupling constants, gauge symmetry groups, and geometric vacuum structures. This
speculative approach is motivated by results obtained thus far, notably the possibility of inertially modulating
Higgs field properties via curvature.

S.1 — Motivation
The theory demonstrates that it is possible to unify inertia, mass, and gravity within the same geometric
dynamics, without introducing new fields. The natural question then arises: can this principle be applied to
the other fundamental interactions (electromagnetic, weak, strong) and their associated constants (α, GF ,
αs)?

Rather than adding external structures, it is postulated here that these constants might also result from
a differential modulation of the vacuum.

S.2 — Conceptual Unification Paths
I propose to extend the activation function ϵ(I) into a family ϵi(I), associated with each interaction i (elec-
tromagnetic, weak, strong). Each could modulate an effective gauge coupling:

geff
i (x) = g0i · (1 + ϵi(I(x)))

The symmetry groups SU(2), SU(3), and U(1) would be seen as subgroups of a broader differential
geometry acting on an internal vacuum fiber. This framework resembles a fibered gauge geometry where
space-time topology and vacuum inertial density affect fundamental interactions.

S.3 — Possible Correspondences with String Theory
Several elements echo features in string theory:

• Differential modulations of ϵi recall scalar moduli governing couplings in 10- or 11-dimensional theories.

• Gauge interactions emerge in open strings attached to D-branes, non-uniformly depending on compact
topology.

• The background tensor (Bµν) plays a role analogous to the geometric invariants f(I) in this model.

This suggests conceptual compatibility between the inertial geometrization here and internal mechanisms
in string theories — albeit with a more limited scope.

S.4 — Toward an Extended Vacuum Metric
A structuring hypothesis would be to generalize the vacuum metric as:

geff
µν = gµν +

∑
i

χi(I) · Q(i)
µν

where Q(i)
µν encodes geometric properties specific to each interaction (gauge, color, spin), and χi(I) repre-

sents their differential response to vacuum structure.
This would unify mass, gravity, charges, and fundamental constants within a single geometric dynamics.

S.5 — Limits and Outlook
• This pathway remains speculative and requires a full Lagrangian reformulation.

• It could benefit from introducing structures from noncommutative geometry (cf. Connes), or a Kaluza–Klein
fibered space.

• The model does not yet include a unified spontaneous symmetry breaking mechanism nor precise
predictions of coupling constants.
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Conclusion This appendix opens a path toward complete unification of interactions via differential geo-
metric modulations. It extends the inertial Higgs–gravity dynamics toward a geometrico-unifying framework
at the interface of gravity, gauge theory, and the vacuum’s internal topology.
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