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ABSTRACT
The Grassmann.jl package provides tools for computations
based on multi-linear algebra and spin groups using the
extended geometric algebra known as Leibniz-Grassmann-
Clifford-Hestenes algebra. Combinatorial products include
exterior, regressive, inner, and geometric; along with the
Hodge star, adjoint, reversal, and boundary operators. The
kernelized operations are built up from composite sparse
tensor products and Hodge duality, with high dimensional
support for up to 62 indices using staged caching and pre-
compilation. Code generation enables concise yet highly ex-
tensible definitions. DirectSum.jl multivector parametric
type polymorphism is based on tangent vector spaces and
conformal projective geometry. Additionally, the universal
interoperability between different sub-algebras is enabled by
AbstractTensors.jl, on which the type system is built. !

—DirectSum.jl: Abstract tangent bundle vector space
types (unions, intersections, sums, etc.)

—AbstractTensors.jl: Tensor algebra abstract type inter-
operability with vector bundle parameter

—Grassmann.jl: ⟨Leibniz+Grassmann-Clifford-Hestenes⟩
differential geometric algebra of multivector forms

—Leibniz.jl: Derivation operator algebras for tensor fields
—Reduce.jl: Symbolic parser generator for Julia expres-

sions using REDUCE algebra term rewriter

Mathematical foundations and some of the nuances in the
definitions specific to the Grassmann.jl implementation are
concisely described, along with the accompanying support
packages that provide an extensible platform for computing
with geometric algebra at high dimensions. The design is
based on the TensorAlgebra abstract type interoperability
from AbstractTensors.jl with a VectorBundle type parameter
from DirectSum.jl. Abstract vector space type operations
happen at compile-time, resulting in a differential conformal
geometric algebra of hyper-dual multivector forms.

The nature of the geometric algebra code generation enables
one to easily extend the abstract product operations to any
specific number field type (including differential operators
with Leibniz.jl or symbolic coefficients with Reduce.jl), by
making use of Julia’s type system. Mixed tensor products
with their coefficients are constructed from these operations
to work with bivector elements of Lie groups [7][10].

1. Direct sum parametric type polymorphism
The DirectSum.jl package is a work in progress providing the
necessary tools to work with an arbitrary Manifold specified
by an encoding. Due to the parametric type system for the
generating VectorBundle, the Julia compiler can fully pre-
allocate and often cache values efficiently ahead of run-time.
Although intended for use with the Grassmann.jl package,
DirectSum can be used independently.

Definition 1 Vector bundle of submanifolds. Let
𝑀 = 𝑇 𝜇𝑉 ∈ Vect𝕂 be a TensorBundle<:Manifold of rank 𝑛,

𝑇 𝜇𝑉 = (𝑛, ℙ, 𝑔, 𝜈, 𝜇), ℙ ⊆ ⟨𝑣∞, 𝑣∅⟩ , 𝑔 ∶ 𝑉 × 𝑉 → 𝕂

The type TensorBundle{n,ℙ,g,𝜈, 𝜇} uses byte-encoded data
available at pre-compilation, where ℙ specifies the basis for
up and down projection, 𝑔 is a bilinear form that specifies the
metric of the space, and 𝜇 is an integer specifying the order of
the tangent bundle (i.e. multiplicity limit of Leibniz-Taylor
monomials). Lastly, 𝜈 is the number of tangent variables.

The dual space functor (⋅)′ ∶ Vectop
𝕂 → Vect𝕂 is an involution

which toggles a dual vector space with inverted signature
with property 𝑉 ′ = Hom(𝑉 , 𝕂) and having Basis generators

⟨𝑣1,… , 𝑣𝑛−𝜈, 𝜕1,… , 𝜕𝜈⟩ = 𝑀 ↔ 𝑀 ′ = ⟨𝑤1,… ,𝑤𝑛−𝜈, 𝜖1,… , 𝜖𝜈⟩

where 𝑣𝑖, 𝑤𝑖 are a basis for the vectors and covectors, while
𝜕𝑗, 𝜖𝑗 are a basis for differential operators and tensor fields.
The direct sum operator ⊕ can be used to join spaces (alter-
natively +). The direct sum of a VectorBundle and its dual
V⊕V' represents the full mother space V*. In addition to the
direct-sum operation, several other operations exist, such
as ∪,∩,⊆,⊇ for set operations. Due to the design of the
VectorBundle dispatch, these operations enable code opti-
mizations at compile-time provided by the bit parameters.

⋃𝑇 𝜇𝑖𝑉𝑖 = (|ℙ| + max {𝑛𝑖 − |ℙ𝑖|}𝑖 , ⋃ℙ𝑖, ∪𝑔𝑖, max {𝜇𝑖}𝑖)

⨁𝑇 𝜇𝑖𝑉𝑖 = (|ℙ| +∑(𝑛𝑖 − |ℙ𝑖|), ⋃ℙ𝑖, ⊕𝑖𝑔𝑖, max {𝜇𝑖}𝑖)

These are roughly the formulas used for those operations.

Remark 1. Although some type operations like ⋃ and ⨁
are similar and sometimes result in equal values, the union
and sum are entirely different operations in general.
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Calling manifolds with sets of indices constructs the sub-
space representations. Given M(s::Int...) one can encode
SubManifold{|𝑠|,𝑀, 𝑠} with induced orthogonal space 𝑍:

𝑇 𝑒𝑉 ⊂ 𝑇 𝜇𝑊 ⟺ ∃𝑍 ∈ Vect𝕂(𝑇 𝑒(𝑉 ⊕𝑍) = 𝑇 𝑒≤𝜇𝑊, 𝑉 ⟂ 𝑍),

such that computing unions of submanifolds is done by in-
specting the parameter 𝑠 ∈ 𝑉 ⊆ 𝑊 and 𝑠 ∉ 𝑍. Operations
on Manifold types is automatically handled at compile time.
The metric signature of the SubManifold{V,1} elements of a
vector space V can be specified with the V"..." constructor
by using + and - to specify whether the element of the cor-
responding index squares to +1 or -1. For example, S"+++"

constructs a positive definite 3-dimensional TensorBundle. It
is also possible to specify an arbitrary DiagonalForm having
numerical values for the basis with degenracy D"1,1,1,0",
although the ± format has a more compact representation.
Further development will result in more metric types.
Declaring an additional plane at infinity is done by spec-
ifying it in the string constructor with ∞ at the first index
(i.e. Riemann sphere S"∞+++"). The hyperbolic geometry can
be declared by ∅ subsequently (i.e. Minkowski spacetime
S"∅+++"). Additionally, the null-basis based on the projec-
tive split for confromal geometric algebra would be specified
with ∞∅ initially (i.e. 5D CGA S"∞∅+++"). These two declared
basis elements are interpreted in the type system.
The tangent(V,𝜇,𝜈) map can be used to specify 𝜇 and 𝜈.

2. Tensor basis equivalence classes
The AbstractTensors package is intended for universal inter-
operability of the abstract TensorAlgebra type system. All
TensorAlgebra{V} subtypes have type parameter V, used to
store a TensorBundle value obtained from DirectSum.jl. By
itself, this package does not impose any specifications or
structure on the TensorAlgebra{V} subtypes and elements,
aside from requiring 𝑉 to be a Manifold. Hence all tensor
types share a common underlying Manifold structure. The
macro @basis V declares a local basis in Julia.

Definition 2. Let 𝑉 ∈ Vect𝕜 be a TensorBundle with dual
space 𝑉 ′ and the basis elements 𝑤𝑘 ∶ 𝑉 → 𝕂, then for all
𝑥 ∈ 𝑉 , 𝑐 ∈ 𝕂 the properties (𝑤𝑖 +𝑤𝑗)(𝑥) = 𝑤𝑖(𝑥)+𝑤𝑗(𝑥) and
(𝑐𝑤𝑘)(𝑥) = 𝑐𝑤𝑘(𝑥) hold. An element of a mixed-symmetry
TensorAlgebra{V} is a multilinear mapping that is formally
constructed by taking the tensor products of linear and mul-
tilinear maps, (⨂𝑘 𝜔𝑘)(𝑣1,… , 𝑣∑𝑘 𝑝𝑘

) = ∏𝑘 𝜔𝑘(𝑣1,… , 𝑣𝑝𝑘
).

Definition 3 Mixed-symmetry basis. Combining the
linear basis generating elements with each other using the
multilinear tensor product yields a graded (decomposable)
SubManifold ⟨𝑤𝑝1

⊗ ⋯ ⊗ 𝑤𝑝𝑘
⟩𝑘, where rank 𝑘 is determined

by the number of 𝑤𝑖 basis elements in its tensor product
decomposition. The algebra partitions into symmetric and
anti-symmetric tensor equivalence classes. For any pair,

𝜔 ⊗ 𝜂 = −𝜂 ⊗ 𝜔
anti-symmetric

or 𝜔 ⊗ 𝜂 = 𝜂 ⊗ 𝜔
symmetric

.

Typically the 𝑘 in a product (𝜕𝑝1
⊗⋯⊗ 𝜕𝑝𝑘

)
(𝑘)

is referred
to as the order of the element if it is fully symmetric,
which is overall tracked separately from the grade such that
𝜕𝑘 ⟨𝑤𝑗⟩𝑟

= ⟨𝜕𝑘𝑤𝑗⟩𝑟
and (𝜕𝑘)(𝑟)𝜔𝑗 = (𝜕𝑘𝑤𝑗)(𝑟). Hence, there is

a partitioning into even grade components 𝜔+ and odd grade
components 𝜔− such that 𝜔+ + 𝜔− = 𝜔.

Remark 2. Observe that the anti-symmetric property
implies that 𝜔⊗𝜔 = 0, while the symmetric property neither
implies nor denies such a property. Grassmann remarked [6]
in 1862 that the symmetric algebra of functions is by far
more complicated than his anti-symmetric exterior algebra.
The first part of the book focused on anti-symmetric exterior
algebra, while the more complex symmetric function algebra
of Leibniz was subject of the second multivariable part of the
book. Elements 𝜔𝑘 in the space Λ𝑉 of anti-symmetric algebra
are often studied as unit quantum state vectors in a unitary
probability space, where ∑𝑘 𝜔𝑘 ≠ ⨂𝑘 𝜔𝑘 is entanglement.

Definition 4. The Grassmann anti-symmetric exterior
basis is denoted by 𝑣𝑖1…𝑖𝑔

∈ Λ𝑔𝑉 with its dual 𝑤𝑖1⋯𝑖𝑔 ∈ Λ𝑔𝑉,
while the Leibniz symmetric basis will be 𝜕𝜇1

𝑖1
…𝜕𝜇𝑔

𝑖𝑔
∈ 𝐿𝑔𝑉

with 𝜖𝜇1
𝑖1

…𝜖𝜇𝑔
𝑖𝑔

∈ 𝐿𝑔𝑉 dual elements. Let Λ𝑉 = ⨁Λ𝑔𝑉.

A higher-order tensor element is an oriented-multi-set 𝑋
such that 𝑤𝑋 = ⨂𝑘 𝑤⊗𝜇𝑘

𝑖𝑘
with 𝑋 = ((𝑖1, 𝜇1),… , (𝑖𝑔, 𝜇𝑔))

and |𝑋| = ∑𝑘 𝜇𝑘 is grade, order. Anti-symmetric indices
Λ𝑋 ⊆ Λ𝑉 have two orientations and higher multiplicities are
degenerate, hence the only relevant multiplicity is 𝜇𝑘 ≡ 1.
The Leibniz-Taylor algebra [9] is a quotient polynomial ring
𝐿𝑉 ≅ 𝑅[𝑥1,… , 𝑥𝑛]/{∏

𝜇+1
𝑘=1 𝑥𝑝𝑘

}, so that 𝜖𝜇+1
𝑘 = 0.

The Grassmann basis elements 𝑣𝑘 ∈ Λ1𝑉 and 𝑤𝑘 ∈ Λ1𝑉 are
linearly independent vector and covector elements of 𝑉, while
the Leibniz Operator elements 𝜕𝑘 ∈ 𝐿1𝑉 are partial tangent
derivations and 𝜖𝑘(𝑥) ∈ 𝐿1𝑉 are dependent functions of the
tangent manifold. Higher grade elements of Λ𝑉 correspond
to SubManifold spaces, while higher order function elements
of 𝐿𝑉 become homogenous polynomials and Taylor series.
Grassmann’s exterior algebra doesn’t invoke the properties
of multi-sets, as it is related to the algebra of oriented sets;
while the Leibniz symmetric algebra is that of unoriented
multi-sets. Combined, the mixed-symmetry algebra yield a
multi-linear propositional lattice. The formal sum of equal
grade elements is an oriented Chain and with mixed grade it
is a MultiVector simplicial complex. Thus, various standard
operations on the oriented multi-sets are possible including
∪,∩,⊕ and the index operation 𝑋 ⊖ 𝑌 = (𝑋 ∪ 𝑌 )\(𝑋 ∩ 𝑌 ),
which is symmetric difference operation ⊻.
In order to work with a TensorAlgebra{V}, it is necessary
for some computations to be cached. This is usually done
automatically when accessed. Staging of precompilation and
caching is designed so that a user can smoothly transition
between very high dimensional and low dimensional algebras
in a single session, with varying levels of extra caching and
optimizations. The parametric type formalism in Grassmann

is highly expressive and enables pre-allocation of geometric
algebra computations involving specific sparse subalgebras,
including the representation of rotational groups.
It is possible to reach Simplex elements with up to 𝑛 = 62
vertices, requiring full alpha-numeric labeling with lower-
case and capital letters. Full MultiVector allocations are
only possible for 𝑛 ≤ 22, but sparse operations are also
available at higher dimensions. While Grassmann.Algebra{V}

is a container for the TensorAlgebra generators of 𝑉, the
Grassmann.Algebra is only cached for 𝑛 ≤ 8. For the range
of dimensions 8 < 𝑛 ≤ 22, the Grassmann.SparseAlgebra

type is used. To reach higher dimensions with 𝑛 > 22, the
Grassmann.ExtendedAlgebra type is used.
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3. Geometric algebraic product structure
For the oriented sets of the Grassmann exterior algebra, the
parity of (−1)Π is factored into transposition compositions
when interchanging ordering of the tensor product argu-
ment permutations [1]. The symmetrical algebra does not
need to track this parity, but has higher multiplicities in its
indices. Symmetric differential function algebra of Leibniz
trivializes the orientation into a single class of index multi-
sets, while Grassmann’s exterior algebra is partitioned into
two oriented equivalence classes by anti-symmetry. Full ten-
sor algebra can be sub-partitioned into equivalence classes
in multiple ways based on the element symmetry, grade,
and metric signature composite properties. Both symmetry
classes can be characterized by the same geometric product,
which is typically written as multiplication but explicitly
denoted by ⊖ for clarity here.

Definition 5. The geometric algebraic product is the Π
oriented symmetric difference operator ⊖ (weighted by the
bilinear form 𝑔) and multi-set sum ⊕ applied to multilinear
tensor products ⊗ in a single operation: 𝜔𝑋 ⊖ 𝜂𝑌 =

orient parity

⏞⏞⏞⏞⏞(−1)Π(𝑋,𝑌 )
intersect metric
⏞⏞⏞⏞⏞det [𝑔Λ(𝑋∩𝑌 )](

(𝑋∪𝑌 )\(𝑋∩𝑌 )

⏞⏞⏞⏞⏞⨂
𝑘∈Λ(𝑋⊖𝑌 )

𝑤𝑖𝑘

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Λ1-anti-symmetric, Λ𝑔-mixed-symmetry

) ⊗ (
multi-set sum

⏞⏞⏞⏞⏞⏞⏞⨂
𝑘∈𝐿(𝑋⊕𝑌 )

𝜖⊗𝜇𝑘
𝑖𝑘

⏟⏟⏟⏟⏟⏟⏟
𝐿𝑔-symmetric

)

Remark 3. The product symbol ⊖ will be used to denote
explicitly usage of the geometric algebraic product, although
the standard number product * notation could also be used.
The ⊖ choice helps emphasize that the geometric algebraic
product is characterized by symmetric differencing of anti-
symmetric indices.

Definition 6 Null-basis of projective split. Let
𝑣2

± = ±1 be a basis with 𝑣∞ = 𝑣+ + 𝑣− and 𝑣∅ = (𝑣− − 𝑣+)/2
An embedding space ℝ𝑝+1,𝑞+1 carrying the action from
the group 𝑂(𝑝 + 1, 𝑞 + 1) then has 𝑣2

∞ = 0, 𝑣2
∅ = 0,

𝑣∞ ⋅ 𝑣∅ = −1, and 𝑣2
∞∅ = 1 with Minkowski plane 𝑣∞∅ having

the Hestenes-Dirac-Clifford product properties

𝑣∞∅ ⊖ 𝑣∞ = −𝑣∞, 𝑣∞∅ ⊖ 𝑣∅ = 𝑣∅,
𝑣∞ ⊖ 𝑣∅ = −1 + 𝑣∞∅, 𝑣∅ ⊖ 𝑣∞ = −1 − 𝑣∞∅

Definition 7. Symmetry properties of the tensor algebra
can be characterized in terms of the geometric product by
two averaging operations, which are the symmetrization ⊙
and anti-symmetrization ⊠ operators:

𝑗

⨀
𝑘=1

𝜔𝑘 = 1
𝑗!

∑
𝜎∈𝑆𝑃

⊖
𝑘

𝜔𝜎(𝑘),
𝑗

⊠
𝑘=1

𝜔𝑘 = ∑
𝜎∈𝑆𝑃

(−1)Π(𝜎)

𝑗! ⊖
𝑘

𝜔𝜎(𝑘)

These products satisfy various MultiVector properties, in-
cluding the associative and distributive laws.

Definition 8 Exterior product. Let 𝑤𝑘 ∈ Λ𝑝𝑘𝑉, then
for all 𝜎 ∈ 𝑆∑ 𝑝𝑘

define an equivalence relation ∼ such that

⋀
𝑘
𝜔𝑘(𝑣1,… , 𝑣𝑝𝑘

) ∼ (−1)Π(𝜎)(⨂
𝑘

𝜔𝑘)(𝑣𝜎(1),… , 𝑣𝜎(∑ 𝑝𝑘))

if and only if ⊖𝑘 𝜔𝑘 =⊠𝑘 𝜔𝑘 holds. It has become typical to
use the ∧ product symbol to denote products of such elements
as ⋀Λ𝑉 ≡ ⨂Λ𝑉 / ∼ modulo anti-symmetrization.

Definition 9 Symmetric Leibniz differentials. Let
𝜕𝑘 = 𝜕

𝜕𝑥𝑘
∈ 𝐿𝑔𝑉 be Leibnizian symmetric tensors, then there

is an equivalence relation ≍ which holds for each 𝜎 ∈ 𝑆𝑝

(𝜕𝑝 ∘ … ∘ 𝜕1)𝜔 ≍ (⨂
𝑘

𝜕𝜎(𝑘))𝜔 ⟺ ⊖
𝑘

𝜕𝑘 = ⨀
𝑘

𝜕𝑘,

along with each derivation 𝜕𝑘(𝜔𝜂) = 𝜕𝑘(𝜔)𝜂 + 𝜔𝜕𝑘(𝜂).
Multiplication with an 𝜖𝑖 element is used help signify tensor
fields so that differential operators are automatically applied
in the Basis algebra as 𝜕𝑗 ⊖(𝜔⊗𝜖𝑖) = 𝜕𝑗(𝜔𝜖𝑖) ≠ (𝜕𝑗 ⊗𝜔)⊖𝜖𝑖.� �
julia> using Reduce, Grassmann; @mixedbasis tangent(ℝ^2,3,2);

julia> (∂1+∂12) * (:(x1^2*x2^2)*ϵ1 + :(sin(x1))*ϵ2)

0.0 + (2 * x1 * x2 ^ 2)∂₁ϵ1 + (cos(x1))∂₁ϵ2 + (4 * x1 * x2)∂₁₂ϵ1� �
Since VectorBundle choices are fundamental to TensorAlgebra

operations, the universal interoperability between
TensorAlgebra{V} elements with different associated
VectorBundle choices is naturally realized by applying the
union morphism to type operations. For example,

⋀ ∶ Λ𝑝1𝑉1 ×⋯× Λ𝑝𝑔𝑉𝑔 → Λ∑𝑘 𝑝𝑘 ⋃
𝑘
𝑉𝑘.

Definition 10 Reverse, involute, conjugate. The
reverse of ⟨𝜔⟩𝑟 is defined as ⟨�̃�⟩𝑟 = (−1)(𝑟−1)𝑟/2 ⟨𝜔⟩𝑟, while
the involute is ⟨𝜔⟩×

𝑟 = (−1)𝑟 ⟨𝜔⟩𝑟 and Clifford conj ⟨𝜔⟩‡
𝑟 is

the composition of involute and reverse.
Definition 11 Reversed product. Define the index

reversed product ∗ which yields a Hilbert space structure:
𝜔 ∗ 𝜂 = �̃� ⊖ 𝜂, or 𝜔 ∗′ 𝜂 = 𝜔 ⊖ ̃𝜂,

|𝜔|2 = 𝜔 ∗ 𝜔, |𝜔| =
√
𝜔 ∗ 𝜔, ||𝜔|| = Euclidean |𝜔|.

Remark 4. Observe that ∗ and ∗′ could both be exchanged
in abs, abs2, and norm; however, these are different products.
The scalar product ⊛ is the scalar part, so 𝜂 ⊛ 𝜔 = ⟨𝜂 ∗ 𝜔⟩.
In general

√
𝜔 = 𝑒(log 𝜔)/2 is valid for invertible 𝜔.

Definition 12 Inverse. 𝜔−1 = 𝜔 ∗ (𝜔 ∗ 𝜔)−1 = �̃�/|𝜔|2,
with 𝜂/𝜔 = 𝜂 ⊖ 𝜔−1 and 𝜂\𝜔 = 𝜂−1 ⊖ 𝜔.

Definition 13 Sandwich product. This product can
be defined as 𝜂 ⊘ 𝜔 = 𝜔\𝜂 ⊖ 𝜔×. Alternatively, the reversed
definition is 𝜂 ⊘𝜔 = 𝜂× ⊖ 𝜔/𝜂 or in Julia 𝜂 >>>𝜔, which is
often found in literature.

Remark 5. Observe that it is overall more simple and
consistent to use {∗,⊘} operations instead of {∗′, ⊘}.
The real part ℜ𝜔 = (𝜔+�̃�)/2 is defined by |ℜ𝜔|2 = (ℜ𝜔)⊖2

and the imag part ℑ𝜔 = (𝜔 − �̃�)/2 by |ℑ𝜔|2 = −(ℑ𝜔)⊖2, such
that 𝜔 = ℜ𝜔 + ℑ𝜔 has real and imaginary partitioned by

⟨�̃�⟩𝑟 / ∣⟨𝜔⟩𝑟∣ = √⟨�̃�⟩2
𝑟 /∣ ⟨𝜔⟩𝑟 ∣

2 = √⟨𝜔⟩𝑟 ∗ ⟨𝜔⟩−1
𝑟

= √⟨�̃�⟩𝑟 / ⟨𝜔⟩𝑟 = √(−1)(𝑟−1)𝑟/2 ∈ {1,
√
−1} ,

which is a unique partitioning completely independent of the
metric space and manifold of the algebra [8].
𝜔 ∗ 𝜔 = |𝜔|2 = |ℜ𝜔 + ℑ𝜔|2 = |ℜ𝜔|2 + |ℑ𝜔|2 + 2ℜ(ℜ𝜔 ∗ ℑ𝜔)

The radial and angular components in a multivector expo-
nential are partitioned by the parity of their metric.
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4. Leibniz operators and Grassmann’s
Hodge-DeRahm theory

A universal unit volume element can be specified in terms
of LinearAlgebra.UniformScaling, which is independent of 𝑉
and has its interpretation only instantiated by the context
of the TensorAlgebra{V} element being operated on. Univer-
sal interoperability of LinearAlgebra.UniformScaling as the
pseudoscalar element which takes on the TensorBundle form
of any other TensorAlgebra element is handled globally. This
enables the usage of I from LinearAlgebra as a universal
pseudoscalar element defined at every point 𝑥 of a Manifold,
which is mathematically denoted by 𝐼 = 𝐼(𝑥) and specified
by the 𝑔(𝑥) bilinear tensor field of 𝑇𝑀.

Definition 14 Poincare-Hodge dual complement.
Let ⋆ ⟨𝜔⟩𝑝 = ⟨𝜔⟩𝑝 ∗ 𝐼 = ⟨�̃�⟩𝑝 ⊖ 𝐼, then ⋆ ∶ Λ𝑝𝑉 → Λ𝑛−𝑝𝑉.

Remark 6. While ⋆𝜔 is complementright of 𝜔, the
complementleft would be 𝐼 ∗′𝜔 and !𝜔 denotes the non-metric
variant the complement. The ⋆ symbol was added to the Julia
language as unary operator on Julia’s v1.2 release.

� �
using Grassmann, Compose

x = Grassmann.Algebra(ℝ^7).v123

Grassmann.graph(x+!x)

draw(PDF("simplex.pdf",16cm,16cm),x+!x)� �

Triangle with its tetrahedron complement 𝑣123 + ⋆𝑣123 in ℝ7

John Browne has discussed Grassmann duality principle
in book [3], stating that every theorem (involving either
of the exterior and regressive products) can be translated
into its dual theorem by replacing the ∧ and ∨ operations
and applying Poincare duality (homology). First applying
this Grassmann duality principle to the ∧ product alone,
let {𝜔𝑘}𝑘 ∈ Λ𝑝𝑘𝑉 , 𝑃 = ∑𝑘 𝑝𝑘, then it is possible to obtain
the co-product ⋁ ∶ Λ𝑝1𝑉1 × ⋯ × Λ𝑝𝑔𝑉𝑔 → Λ𝑃−(𝑔−1)#𝑉 ⋃𝑘 𝑉𝑘.
Grassmann’s original notation implicitly combined ∧,∨, ⋆.

The join ∧ product is analogous to union ∪, the meet ∨
product is analogous to intersection ∩, and the orthogonal
complement ⋆ ↦⟂ is negation. Together, (∧, ∨, ⋆) yield an
orthocomplementary propositional lattice (quantum logic):

(⋆⋁
𝑘
𝜔𝑘)(𝑣1,… , 𝑣𝑃) = (⋀

𝑘
⋆𝜔𝑘)(𝑣1,… , 𝑣𝑃) DeMorgan’s Law,

where DeMorgan’s law is used to derive tensor contractions.
Definition 15. Skew left ⌟ and right ⌞ contractions are

symmetrically defined ⟨𝜔⟩𝑟 ⋅ ⟨𝜂⟩𝑠 = {𝜔⌞𝜂 = 𝜔 ∨ ⋆𝜂 𝑟 ≥ 𝑠
𝜔⌟𝜂 = 𝜂 ∨ ⋆𝜔 𝑟 ≤ 𝑠

.

Note for 𝜔, 𝜂 of equal grade, 𝜔⊛𝜂 = 𝜔⊙𝜂 = 𝜔⋅𝜂 = 𝜔⌞𝜂 = 𝜔⌟𝜂
are all symmetric operations. In Julia, ⌟ is < and ⌞ is >.

Definition 16. Let ∇ = ∑𝑘 𝜕𝑘𝑣𝑘 be a vector field and
𝜖 = ∑𝑘 𝜖𝑘(𝑥)𝑤𝑘 ∈ Ω1𝑉 be unit sums of the mixed-symmetry
basis. Elements of Ω𝑝𝑉 are known as differential 𝑝-forms and
both ∇ and 𝜖 are tensor fields dependent on 𝑥 ∈ 𝑊. Another
notation for a differential form is 𝑑𝑥𝑘 = 𝜖𝑘(𝑥)𝑤𝑘, such that
𝜖𝑘 = 𝑑𝑥𝑘/𝑤𝑘 and 𝜕𝑘𝜔(𝑥) = 𝜔′(𝑥).

Remark 7. The space 𝑊 does not have to equal 𝑉 ∈
Vect𝕂 above, as Ω𝑝𝑉 could have coefficients from 𝕂 = 𝐿𝑊.

Definition 17. Define differential 𝑑 ∶ Ω𝑝𝑉 → Ω𝑝+1𝑉 and
co-differential 𝛿 ∶ Ω𝑝𝑉 → Ω𝑝−1𝑉 such that [2]
⋆𝑑𝜔 = ⋆(∇ ∧ 𝜔) = ∇× 𝜔, 𝜔 ⋅ ∇ = 𝜔 ∨ ⋆∇ = 𝜕𝜔 = −𝛿𝜔.

These two maps have the special properties 𝑑 ∘ 𝑑 = 0 and
𝜕 ∘ 𝜕 = 0 for any form 𝜔 and vector field ∇. In topology
there is boundary operator 𝜕 defined by 𝜕𝜖 = 𝜖 ⋅∇ = ∑𝑘 𝜕𝑘𝜖𝑘
and is commonly discussed in terms the limit 𝜖(𝑥) ⋅∇𝜔(𝑥) =
limℎ→0

𝜔(𝑥+ℎ𝜖)−𝜔(𝑥)
ℎ , which is the directional derivative [11].

Example 1 Vorticity curl of vector-field.
⋆𝑑(𝑑𝑥1+𝑑𝑥2+𝑑𝑥3) = (𝜕2−𝜕3)𝑑𝑥1+(𝜕3−𝜕1)𝑑𝑥2+(𝜕1−𝜕2)𝑑𝑥3.

Example 2 Boundary of 3-simplex. Faces of simplex
(oriented): 𝜕(𝑤1234) = −𝜕4𝑤123 + 𝜕3𝑤124 − 𝜕2𝑤134 + 𝜕1𝑤234.

Theorem 18 Integration by parts & Stokes. Let
∇ ∈ Ω1𝑉 be a Leibnizian vector field operator, then 𝑑,−𝜕
are Hilbert adjoint Hodge-DeRahm operators with ⟨ ∗ ⟩

∫
𝑀

𝑑𝜔 ∧ ⋆𝜂 +∫
𝑀

𝜔 ∧ ⋆𝜕𝜂 = 0, ⟨𝑑𝜔 ∗ 𝜂⟩ = ⟨𝜔 ∗ −𝜕𝜂⟩ .

Proof. 𝜕𝜔 = 𝜔⋅∇ = ⋆−1(⋆𝜔∧⋆2∇) = (−1)𝑛(−1)𝑛𝑘⋆𝑑⋆𝜔.
Then substitute this into ∫

𝑀
𝜔 ∧ (−1)𝑚𝑘+𝑚+1 ⋆ ⋆𝑑 ⋆ 𝜂 =

(−1)𝑘𝑚+𝑚+1(−1)(𝑚−𝑘+1)(𝑘−1) ∫
𝑀

𝜔 ∧ 𝑑 ⋆ 𝜂, apply the identity
(−1)𝑘𝑚+𝑚+1(−1)(𝑚−𝑘+1)(𝑘−1) = (−1)𝑘 and (−1)𝑘 ∫

𝑀
𝜔∧𝑑⋆𝜂 =

∫
𝑀

𝑑(𝜔 ∧ ⋆𝜂)− (−1)𝑘−1𝜔∧ 𝑑 ⋆ 𝜂 = ∫
𝑀

𝑑𝜔 ∧ ⋆𝜂. Stokes identity
can be proved by relying on a variant of the common factor
theorem by Browne [3].

Theorem 19 Clifford-Dirac-Laplacian. The Dirac
operator [5] is (∇2) 1

2 𝜔 = ±∇⊖𝜔 = ±∇∧𝜔±∇⋅𝜔 = ±𝑑𝜔±𝜕𝜔.
∇2𝜔 = ∇ ∧ (𝜔 ⋅ ∇) + (∇ ∧ 𝜔) ⋅ ∇) = ∓(∓𝜔 ⊖∇) ⊖∇).

Elements 𝜔 are harmonic if ∇𝜔 = 0 and both closed
𝑑𝜔 = 0 and coclosed 𝛿𝜔 = 0, such that ℋ𝑝𝑀 =
{∇𝜔 = 0 ∶ 𝜔 ∈ Ω𝑝𝑀}. Hodge [12]: Ω𝑝𝑀 = ℋ𝑝𝑀 ⊕
im(𝑑Ω𝑝−1𝑀)⊕ im(𝜕Ω𝑝+1𝑀). Note: ∇𝜔 = −𝜔∇,∇2𝜔 = 𝜔∇2

for higher-order tensor fields!

4



Proceedings of JuliaCon 1(1), 2019

For the null-basis, complement operations are different:

⋆𝑣∞ = ⋆(𝑣+ + 𝑣−) = (𝑣− + 𝑣+)𝑣1...𝑛 = 𝑣∞1...𝑛

⋆2𝑣∅ = ⋆(𝑣− − 𝑣+) = (𝑣+ − 𝑣−)𝑣1...𝑛 = −2𝑣∅1...𝑛

The Hodge complement satisfies ⟨𝜔 ∗ 𝜔⟩ 𝐼 = 𝜔 ∧ ⋆𝜔. This
property is naturally a result of using the geometric product
in the definition. An additional metric independent version
of the complement operation is available with the ! operator,

!𝑣∞ =!(𝑣+ + 𝑣−) = (𝑣− − 𝑣+)𝑣1...𝑛 = 2𝑣∅1...𝑛

!2𝑣∅ =!(𝑣− − 𝑣+) = (𝑣+ + 𝑣−)𝑣1...𝑛 = −𝑣∞1...𝑛

For that variation of complement, ||𝜔||2𝐼 = 𝜔∧ !𝜔 holds.

Example 3. S”∞∅+++”(∇^2) ↦ −2𝜕∞∅+𝜕2
1 +𝜕2

2 +𝜕2
3

Let ∇ ∈ Λ1𝑉, then 𝜔 = (∇\∇) ⊖ 𝜔 = ∇\(𝑑𝜔 + 𝜕𝜔) where
∇ ∥ 𝜕𝜔 and ∇ ⟂ 𝑑𝜔. Let’s reflect across the hyperplane ⋆∇,

∇\(𝑑𝜔 − 𝜕𝜔) = ∇\(𝑑𝜔 − 𝜕𝜔) ⊖ (∇\∇)
= −∇2\(𝑑𝜔 + 𝜕𝜔) ⊖ ∇ = −∇\𝜔 ⊖∇.

Hence, reflection by hyperplane ⋆∇ has isometry 𝜔⊘∇ which
for ∇ = 𝑣𝑗 is the map ℝ𝑛 → ℝ1 ×⋯× ℝ𝑗 ⋯× ℝ𝑛.

Theorem 20 Cartan-Dieudonne. Every isometry of
𝑉 → 𝑉 is the composite of at most 𝑘 reflections across non-
singular hyperplanes. Hence there exist vectors ∇𝑗 such that

(((𝜔 ⊘ ∇1) ⊘ ∇2) ⊘ ⋯) ⊘∇𝑘 = 𝜔 ⊘ (∇1 ⊖∇2 ⊖⋯⊖∇𝑘)

for any isometry element of the orthogonal group 𝑂(𝑝, 𝑞).

Note that elements under transformations of this group
preserve inner product relations. The even grade operators
make up the rotational group, where each bivector isometry
is a composition of two reflections [1] [4].
Consider the differential equation 𝜕𝑖𝜖𝑗 = 𝜖𝑗 ⊘ 𝜔 with the
solution 𝜖𝑗(𝑥) = 𝜖𝑗(0) ⊘ 𝑒𝑥𝑖𝜔 where 𝜃 = 2𝑥𝑖 is the parameter
of the Lie group. Then for a normalized 𝜔,

𝑒𝜃𝜔 = ∑
𝑘

(𝜃𝜔)⊖𝑘

𝑘!
=

⎧{
⎨{⎩

cosh 𝜃 + 𝜔 sinh 𝜃, if 𝜔2 = 1,
cos 𝜃 + 𝜔 sin 𝜃, if 𝜔2 = −1,
1 + 𝜃𝜔, if 𝜔2 = 0.

Note that ∇ ⊘ 𝑒𝜃𝜔/2 = ∇ ⊖ 𝑒𝜃𝜔 is a double covering when
using the complex numbers in the Euclidean plane.

Theorem 21 Leibniz-Taylor series. 𝜕𝑋 = ⊖𝑘 𝜕𝜇𝑘
𝑘 is

defined so that |𝑋| = ∑𝑘 𝜇𝑘, then 𝑒𝜕𝜖𝜔(𝑥) is

𝑒𝜕𝜖𝜔(𝑥) =
𝜇

∑
𝑗=0

(𝜕𝜖)⊖𝑗

𝑗!
𝜔(𝑥) =

𝜇

∑
𝑗=0

∑
|𝑋|=𝑗

⊖
𝑘

(𝜕𝑘𝜖𝑘(𝑥))𝜇𝑘

𝜇𝑘!
𝜔(𝑥).

The multivariate product rule is encoded into the geometric
algebraic product when using mixed-symmetry.� �
using Grassmann, Makie

basis"2" # Euclidean

streamplot(vectorfield(exp(π*v12/2)),-1.5..1.5,-1.5..1.5)

streamplot(vectorfield(exp((π/2)*v12/2)),-1.5..1.5,-1.5..1.5)

streamplot(vectorfield(exp((π/4)*v12/2)),-1.5..1.5,-1.5..1.5)

streamplot(vectorfield(v1*exp((π/4)*v12/2)),-1.5..1.5,-1.5..1.5)

@basis S"+-" # Hyperbolic

streamplot(vectorfield(exp((π/8)*v12/2)),-1.5..1.5,-1.5..1.5)

streamplot(vectorfield(v1*exp((π/4)*v12/2)),-1.5..1.5,-1.5..1.5)� �

(a) 𝑥 ⊘ 𝑒𝜋𝑣12/2, ℝ2 (b) 𝑥 ⊘ 𝑒
𝜋
2 𝑣12/2, ℝ2

(c) 𝑥 ⊘ 𝑒
𝜋
4 𝑣12/2, ℝ2 (d) 𝑥 ⊘ (𝑣1 ⊖ 𝑒

𝜋
4 𝑣12/2), ℝ ⊕ ℝ

(e) 𝑥 ⊘ 𝑒
𝜋
8 𝑣12/2, ℝ ⊕ ℝ′ (f) 𝑥 ⊘ (𝑣1 ⊖ 𝑒

𝜋
4 𝑣12/2), ℝ ⊕ ℝ′

As a result of Grassmann’s exterior & interior products, the
Hodge-DeRahm chain complex from cohomology theory is

0
𝑑
⇄
𝜕

Ω0(𝑀)
𝑑
⇄
𝜕

Ω1(𝑀)
𝑑
⇆
𝜕

⋯
𝑑
⇄
𝜕

Ω𝑛(𝑀)
𝑑
⇄
𝜕

0,

having dimensional equivalence brought by the Grassmann-
Poincare-Hodge complement duality,

ℋ𝑛−𝑝𝑀 ≅ ker(𝑑Ω𝑛−𝑝𝑀)
im(𝑑Ω𝑛−𝑝+1𝑀)

, dimℋ𝑝𝑀 = dim ker(𝜕Ω𝑝𝑀)
im(𝜕Ω𝑝+1𝑀)

The rank of the grade 𝑝 boundary incidence operator is

rank⟨𝜕 ⟨𝑀⟩𝑝+1⟩𝑝
= min{dim⟨𝜕 ⟨𝑀⟩𝑝+1⟩𝑝

,dim ⟨𝑀⟩𝑝+1}

Invariant topological information can be computed using the
rank of homology groups, where 𝑏𝑝(𝑀) = dimℋ𝑝𝑀 are

𝑏𝑝(𝑀) = dim ⟨𝑀⟩𝑝+1−rank⟨𝜕 ⟨𝑀⟩𝑝+1⟩𝑝
−rank⟨𝜕 ⟨𝑀⟩𝑝+2⟩𝑝+1

Betti numbers with Euler characteristic 𝜒(𝑀) = ∑𝑝(−1)𝑝𝑏𝑝.
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Fig. 2: Variations of sub-manifold vector field mappings in ℝ4.

(a) 𝑥 ⊘ 𝑒
𝜋
4 (𝑣12+𝑣∞3) (b) 𝑉∞12 → 𝑉123

Let’s obtain the full skeleton of a simplical complex Δ(𝜔) =
𝒫(𝜔)\Λ0(𝑉 ) from the power set 𝒫(𝜔) of all vertices with
each subcomplex Δ(𝜕(𝜔)) contained in the edge graph:

Δ(𝜔) =
𝑛

∑
𝑔=1

(𝑛
𝑔)

∑
𝑘=1

(abs ⟨𝜔⟩𝑔,𝑘 +Δ(abs 𝜕 ⟨𝜔⟩𝑔,𝑘)) .

Example 4 Topology. Compute the value 𝜒(Δ(𝜔)) = 1
and 𝜒(Δ(𝜕(𝜔))) = ? for any Simplex 𝜔. As an exercise, also
compute the corresponding betti numbers..

In Fig. 4, different possible discrete bivector topologies in a
projective Riemann sphere setting are examined. The figures
are based on the product topology of two rotation bivectors.
When the Euclidean ℝ4 basis is combined with projective
geometric algebra, resulting one parameter Lie groups can
be visualized as a fibration of a torus in ℝ3. When the fourth
𝑣∞ basis direction is rotated into the Minkowski plane, the
double rotation becomes a helix with translational single
rotation. In examples (b)∼(c) the bivector is modulated.

5. Conclusion
Grassmann.jl and its accompanying support packages pro-
vide an extensible platform for fully generalized computing
with geometric algebra at high dimensions. All of the types
and operations in this paper are implemented using only a
few thousand lines of code with Julia’s type polymorphism
code generation, with the mixed-symmetry interaction of
Leibniz and Grassmann available for research. Thus, compu-
tations involving fully general rotational algebras and Lie
bivector groups are possible with a full trigonometric suite.
Conformal geometric algebra is possible with the Minkowski
plane 𝑣∞∅, based on the null-basis. In general, multivalued
quantum logic is enabled by the ∧,∨, ⋆ Grassmann lattice.
Mixed-symmetry algebra with Leibniz.jl and Grassmann.jl,
having the geometric algebraic product chain rule, yields
automatic differentiation and Hodge-DeRahm co/homology
as unveiled by Grassmann. Most importantly, the Dirac-
Clifford product yields generalized Hodge-Laplacian and the
Betti numbers with Euler characteristic χ.
Acknowledgements: Many thanks for discussions with
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Fig. 3: Different variations of bivectors in ℝ4 discrete topology.

(a) 𝑣12 + 𝑣34 (b) 𝑣14 + 𝑣24 + 𝑣34 (c) 𝜕𝑣124 + 𝑣34

(a) Doubly periodic flow (independent) (a) Period translation

(b)∼(c) ↓ (𝑒𝑡𝑣∞(𝑠𝑖𝑛(3𝑡)3𝑣1+𝑐𝑜𝑠(2𝑡)7𝑣2−𝑠𝑖𝑛(5𝑡)4𝑣3)/2 ⊘↑ (𝑣1 + 𝑣2 − 𝑣3))
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