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Abstract (Dream Scatter)

Initially, Grassmann.jl and Cartan.jl introduced the DirectSum formalism
into computational language design for differential geometric algebra, thus
enabling the construction of custom algebras through metaprogramming.
Grassmann.jl pioneered a novel type system design along with its syntax
and semantics, which has undergone significant refinement through many
years of development and continuous improvement. Cartan.jl represents a
groundbreaking extension of capabilities offered by Grassmann.jl, marking a
pioneering fully realized implementation of numerical differential geometric
algebra, based on TensorField representations over a FrameBundle and the
ImmersedTopology of the FiberBundle. Grassmann.jl and Cartan.jl build
on Julia’s multiple dispatch and metaprogramming capabilities, presenting a
new computational language design approach to interfacing with differential
geometric algebra based on a new sector integral theorem. This pioneering
design not only actualizes but also elevates computational language syntax
to new heights using the foundations of Grassmann.jl and Cartan.jl. The
Grassmann.jl and Cartan.jl packages introduce pioneering computational
language designs, having inspired imitation projects and thereby validating
the project’s relevance as significant advance in computational mathematics.
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Packages Grassmann.jl and Cartan.jl can be used as universal language
for finite element methods based on a discrete manifold bundle. Tools built
on these foundations enable computations based on multi-linear algebra and
spin groups using the geometric algebra known as Grassmann algebra or
Clifford algebra. This foundation is built on a DirectSum parametric type
system for tangent bundles and vector spaces generating the algorithms for
local tangent algebras in a global context. Geometric algebra mathematical
foundations for differential geometry can be used to simplify the Maxwell
equations to a single wave equation due to the geometric product. With
this unifying mathematical foundation, it is possible to improve efficiency
of multi-disciplinary research using geometric tensor calculus by relying on
universal mathematical principles. Tools built on this differential geometric
algebra provide an excellent language for the newly presented sector integral
theorem, the Helmholtz decomposition, and Hodge-DeRahm co/homology.

The Grassmann.jl package provides tools for computations based on
multi-linear algebra and spin groups using the extended geometric algebra
known as Grassmann-Clifford-Hodge algebra. Algebra operations include
exterior, regressive, inner, and geometric, along with the Hodge star and
boundary operators. Code generation enables concise usage of the algebra
syntax. DirectSum.jl multivector parametric type polymorphism is based
on tangent vector spaces and conformal projective geometry. Additionally,
the universal interoperability between different sub-algebras is enabled by
AbstractTensors.jl, on which the type system is built. The design is based on
TensorAlgebra{V} abstract type interoperability from AbstractTensors.jl
with a K-module type parameter V from DirectSum.jl. Abstract vector
space type operations happen at compile-time, resulting in a differential
geometric algebra of multivector forms.

Building on the Grassmann.jl foundation, the Cartan.jl extension then
defines TensorField{B,F,N} <: GlobalFiber{LocalTensor{B,F},N} for
both a local ProductSpace and general ImmersedTopology specifications
on any FrameBundle expressed with Grassmann.jl algebra. Many of these
modular methods can work on input meshes or product topologies of any
dimension, although there are some methods which are specialized. Cartan
provides an algebra for FiberBundle sections and any associated bundles on
a manifold in terms of Grassmann elements. Calculus of Variation fields can
also be generated with the combined topology of a FiberProductBundle.
Furthermore, the FiberProduct enables construction of HomotopyBundle
types. The Cartan package standardizes composition of various methods
and functors applied to specialized categories transformed in terms of a
unified representation over a product topology, especially having fibers of
the Grassmann algebra and using Cartan methods over a FrameBundle.
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0.1. Direct sum parametric type polymorphism

Definition 0.1 (Vector space Λ1V = V is a field’s K-module). Let V be
a K-module (abelian group with respect to +) with an element 1 ∈ K such
that 1V = V by scalar multiplication K× V → V over field K satisfying

• a(x+ y) = ax+ ay distribution of vector addition,

• (a+ b)x = ax+ bd distribution of field addition,

• (ab)x = a(bx) associative compatibility.

In the software package Grassmann, a generating vector space K-module is
specified as a value of <:TensorBundle (an abstract type).

The AbstractTensors package is intended for universal interoperation
of the abstract TensorAlgebra type system. All TensorAlgebra{V} sub-
types have type parameter V , used to store a Submanifold{M} value, which
is parametrized by M the TensorBundle choice. This means that different
tensor types can have a commonly shared underlying K-module parametric
type expressed by defining V::Submanifold{M}. Each TensorAlgebra sub-
type must be accompanied by a corresponding TensorBundle parameter,
which is fully static at compile time. Due to the parametric type system for
the K-module types, the compiler can fully pre-allocate and often cache.

Additionally, a universal unit volume element can be specified in terms
of LinearAlgebra.UniformScaling, which is independent of V and has its
interpretation only instantiated by context of TensorAlgebra{V} elements
being operated on. Interoperability of LinearAlgebra.UniformScaling as
a pseudoscalar element which takes on the TensorBundle form of any other
TensorAlgebra element is handled globally. This enables the usage of I
from LinearAlgebra as a universal pseudoscalar element defined at every
point x of a Manifold, which is mathematically denoted by I = I(x) and
specified by the g(x) bilinear tensor field of TM . Utility methods such as
scalar, involute, norm, norm2, unit, even, odd are also defined.

Definition 0.2 (Linear dependence). Let V be a vector space over field K,

then the set {vi}i is linearly dependent iff
n∑
i=1

kivi = 0 for some 0 ̸= k ∈ Kn.

Definition 0.3 (∧-product annihilation). For linearly dependent {vi}ni ⊂ V

v1 ∧ v2 ∧ · · · ∧ vn = 0

Initially, it is enough to understand that ∧ : ΛnV × ΛmV → Λn+mV is
an operation which is zero for linearly dependent arguments. However, this
idea comes from extending Grassmann’s product vi ∧ vj = −vj ∧ vi =⇒
vi ∧ vi = 0 = −vi ∧ vi to yield a tool for characterizing linear dependence.
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Definition 0.4 (Dimension n-Submanifold in ΛnV ). Note that writing the
product v1 ∧ v2 ∧ · · · ∧ vn ̸= 0 implies a linearly independent set {vi}n1 ⊆ V
isomorphic to an n-Submanifold. Furthermore, K×{v1 ∧ v2 ∧ · · · ∧ vn} ∼= K
shows the 1-dimensional basis subspace is induced by any n-Submanifold.

Example 0.5. K = Λ0K ∼= Λ1K is a vector space or 0-Submanifold.

Example 0.6. ΛnV is vector space with Λ1ΛnV = ΛnV and Λ0ΛnV = Λ0V .

Denote V ∗ = V \ {0} as the set V excluding the 0 element in next:

Definition 0.7 (Direct sum ⊕). To consider a set of linearly independent
spaces, let πi : V → Vi be projections with vector space Vi ⊂ Vi, define

V1 ⊕ V2 ⊕ · · · ⊕ Vn = V ⇐⇒
∧

: V ∗
1 × V ∗

2 × · · · × V ∗
n → ΛnV ∗.

Direct sum of a full non-zero product implies an n-Submanifold.

Definition 0.8. Grade m-projection grade(x,m) is ⟨ΛV ⟩m = ΛmV so

ΛV =

n⊕
m=0

⟨ΛV ⟩m = Λ0V ⊕ Λ1V ⊕ · · · ⊕ ΛnV, ⟨ΛV ⟩m =

(n
m)⊕

m=1

K.

Note that dim⟨ΛV ⟩m =
(
n
m

)
and hence dimΛV =

∑n
m=0

(
n
m

)
= 2n.

Example 0.9 (Combinatorics of power set P(V )). Let v1, v2, v3 ∈ R3, then
the power set of basis elements is:

P(R3) = {∅, {v1} , {v2} , {v3} , {v1, v2} , {v1, v3} , {v2, v3} , {v1, v2, v3}}
Form a direct sum over the elements of P(V ) with ∧ to define ΛV , e.g.

Λ(R3) = Λ0(R3)⊕ Λ1(R3)⊕ Λ2(R3)⊕ Λ3(R3)

Λ0R︷︸︸︷
v∅ ⊕

Λ1(R3)︷ ︸︸ ︷
v1 ⊕ v2 ⊕ v3⊕

Λ2(R3)︷ ︸︸ ︷
(v1 ∧ v2)⊕ (v1 ∧ v3)⊕ (v2 ∧ v3)⊕

Λ3(R3)︷ ︸︸ ︷
(v1 ∧ v2 ∧ v3)

Definition 0.10. Let M = TµV be a K-module of rank n, then an in-
stance for TµV can be the tuple (n,P, g, ν, µ) with P ⊆ ⟨v∞, v∅⟩ specifying
the presence of the projective basis and g : V × V → K is a metric tensor
specification. The type TensorBundle{n,P,g,ν,µ} encodes this informa-
tion as byte-encoded data available at pre-compilation, where µ is an integer
specifying the order of the tangent bundle (i.e. multiplicity limit of the
Leibniz-Taylor monomials). Lastly, ν is the number of tangent variables.

⟨v1, . . . , vn−ν , ∂1, . . . , ∂ν⟩ =M ↔M ′ = ⟨w1, . . . , wn−ν , ϵ1, . . . , ϵν⟩
where vi and wi are bases for the vectors and covectors, while ∂i and ϵj
are bases for differential operators and scalar functions. The purpose of the
TensorBundle type is to specify the K-module basis at compile time. When
assigned in a workspace, V = Submanifold(::TensorBundle) is used.
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The metric signature of the Submanifold{V,1} elements of a vector
space V can be specified with the V"..." by using + or − to specify whether
the Submanifold{V,1} element of the corresponding index squares to +1
or −1. For example, S"+++" constructs a positive definite 3-dimensional
TensorBundle, so constructors such as S"..." and D"..." are convenient.
It is also possible to change the diagonal scaling, such as with D"1,1,1,0",
although the Signature format has a more compact representation if limited
to +1 and −1. It is also possible to change the diagonal scaling, such as with
D"0.3,2.4,1". Fully general MetricTensor as a type with non-diagonal
components requires a matrix, e.g. MetricTensor([1 2; 3 4]).

Declaring an additional point at infinity is done by specifying it in the
string constructor with ∞ at the first index (i.e. Riemann sphere S"∞+++").
The hyperbolic geometry can be declared by ∅ subsequently (i.e. hyperbolic
projection S"∅+++"). Additionally, the null-basis based on the projective
split for conformal geometric algebra would be specified with S"∞∅+++".
These two declared basis elements are interpreted in the type system. The
tangent(V,µ,ν) map can be used to specify µ and ν.

To assign V = Submanifold(::TensorBundle) along with associated
basis elements of the DirectSum.Basis to the local Julia session workspace,
it is typical to use Submanifold elements created by the @basis macro,

julia> using Grassmann; @basis S"-++" # macro or basis"-++"

(〈-++〉, v, v1, v2, v3, v12, v13, v23, v123)

the macro @basis V delcares a local basis in Julia. As a result of this macro,
all Submanifold{V,G} elements generated with M::TensorBundle become
available in the local workspace with the specified naming arguments. The
first argument provides signature specifications, the second argument is the
variable name for V the K-module, and the third and fourth argument are
prefixes of the Submanifold vector names (and covector names). Default is
V assigned Submanifold{M} and v is prefix for the Submanifold{V}.

It is entirely possible to assign multiple different bases having different
signatures without any problems. The @basis macro arguments are used to
assign the vector space name to V and the basis elements to vi, but other
assigned names can be chosen so that their local names don’t interfere: If
it is undesirable to assign these variables to a local workspace, the versatile
constructs of DirectSum.Basis{V} can be used to contain or access them,
which is exported to the user as the method DirectSum.Basis(V).

julia> DirectSum.Basis(V)

DirectSum.Basis{〈-++〉, 8}(v, v1, v2, v3, v12, v13, v23, v123)

V(::Int...) provides a convenient way to define a Submanifold by using
integer indices to reference specific direct sums within the ambient space V .
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Grassmann’s exterior product is an anti-symmetric tensor product

(0.1) vi ∧ vj = −vj ∧ vi =⇒ vi ∧ vi = 0 = −vi ∧ vi,

which generalizes the multilinear determinant transposition property

vω1 ∧ · · · ∧ vωm ∧ vη1 ∧ · · · ∧ vηn = (−1)mnvη1 ∧ · · · ∧ vηn ∧ vω1 ∧ · · · ∧ vωm .

Hence for graded elements it is possible to deduce that

(0.2) ω ∈ ΛmV, η ∈ ΛnV : ω ∧ η = (−1)mnη ∧ ω.

Remark 0.11. Observe the anti-symmetry property implies that ω⊗ω = 0,
while the symmetric property neither implies nor denies such a property.

Example 0.12. Case of 3rd order tangent bundle operators composition:

T 3(Λ0V ) = ∂∅⊕ ∂1⊕ ∂2⊕ ∂3⊕ (∂1 ◦ ∂2)⊕ (∂1 ◦ ∂3)⊕ (∂2 ◦ ∂3)⊕ (∂1 ◦ ∂2 ◦ ∂3)

In order to shorten the notation, the operation symbol is left out:

{v1, v2, v3, v12, v13, v23, v123} , {∂1, ∂2, ∂3, ∂12, ∂13, ∂23, ∂123}

The canonical choice of orientation is with indices in sorted order, so that
for example anti-symmetry is applied to rewrite v21 = −v12 or the property
∂2◦∂1 = ∂1◦∂2 is applied for differential operators. In general, permutations
of the indices get rendered as orientations of (−1)k of a basis K-module.

Definition 0.13 (Permutations). Consider σj(ω) =

n∑
k=0

(−1)(
k

2j−1)⟨ω⟩k,

σ1(ω) ≡ ω, σ2(ω) ≡ ω̃, σ12 = σ2(σ1(ω)) ≡ ω̃

Theorem 0.14 (Sj = ⟨σ1, σ2, . . . , σj⟩ is a group). S2 = {1, σ1, σ2, σ12} is

a set of automorphisms: grade involution ω = σ1(ω) =
∑n

k=0(−1)(
k
1)⟨ω⟩k,

reverse ω̃ = σ2(ω) =
∑n

k=0(−1)(
k
2)⟨ω⟩k =

∑n
k=0(−1)(k−1)k/2⟨ω⟩k is an anti-

automorphism with σ2(vi ∧ vj) = σ2(vj) ∧ σ2(vi), and Clifford conjugate ω̃
is the composition of grade involution and reverse anti-automorphism.

Definition 0.15 (Real R̃ω = (ω + ω̃)/2 and imaginary Ĩω = (ω − ω̃)/2).

Real and imaginary define Z2-grading projections so that ΛV = R̃ΛV ⊕ĨΛV ;

where R̃ΛV is the real part and ĨΛV is the imag (imaginary) part.

Definition 0.16 (Even Rω = (ω + ω)/2 and odd Iω = (ω − ω)/2). Even
and odd define Z2-grading projections so that ΛV = RΛV ⊕ IΛV ; where
RΛV is the even part and IΛV is the odd part.

In general, this can be extended to Z2-grading projections σj and its
real σj(R)ω = (ω + σj(ω))/2 and imaginary σj(I)ω = (ω − σj(ω))/2 parts.
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Grassmann.jl is a foundation which has been built up from a minimal
K-module algebra kernel on which an entirely custom algbera specification
is designed and built from scratch on the base Julia language.

Definition 0.17. TensorAlgebra{V,K} where V::Submanifold{M} for a
generating K-module specified by a M::TensorBundle choice

• TensorBundle specifies generators of DirectSum.Basis algebra
– Int value induces a Euclidean metric of counted dimension
– Signature uses S"..." with + and - specifying the metric
– DiagonalForm uses D"..." for defining any diagonal metric
– MetricTensor can accept non-diagonal metric tensor array

• TensorGraded{V,G,K} has grade G and element of ΛGV subspace
– Chain{V,G,K} has a complete basis for ΛGV with K-module
– Simplex{V} alias column-module Chain{V,1,Chain{V,1,K}}

• TensorTerm{V,G,K} <: TensorGraded{V,G,K} single coefficient
– Zero{V} is a zero value which preserves V in its algebra type
– Submanifold{V,G,B} ⟨vi1 ∧ · · · ∧ viG⟩G with sorted indices B
– Single{V,G,B,K} where B::Submanifold{V} is paired to K

• AbstractSpinor{V,K} subtypes are special sub-algebras of ΛV
– Couple{V,B,K} is the sum ofK scalar with Single{V,G,B,K}
– PseudoCouple{V,B,K} is pseudoscalar + Single{V,G,B,K}
– Spinor{V,K} has complete basis for the even Z2-graded terms
– CoSpinor{V,K} has complete basis for odd Z2-graded terms

• Multivector{V,K} has complete basis for all ΛV with K-module

Definition 0.18. TensorNested{V,T} subtypes are linear transformations

• TensorOperator{V,W,T} linear map V →W with T::DataType

– Endomorphism{V,T} linear map V → V with T::DataType

• DiagonalOperator{V,T} diagonal map V → V with T::DataType

– DiagonalMorphism{V,<:Chain{V,1}} diagonal map V → V
– DiagonalOutermorphism{V,<:Multivector{V}} : ΛV → ΛV

• Outermorphism{V,T} extends F ∈ Endomorphism{V} to full ΛV

(0.3) F (v1) ∧ · · · ∧ F (vn) = F (v1 ∧ · · · ∧ vn)
• Projector{V,T} linear map F : V → V with F (F ) = F defined

Proj(x::TensorGraded) =
x

|x|
⊗ x

|x|
• Dyadic{V,X,Y} linear map V → V with Dyadic(x,y) = x⊗ y

Grassmann.jl was first to define a comprehensive TensorAlgebra{V}

type system from scratch around the idea of the V::Submanifold{M} value
to express algebra subtypes for a specified K-module structure.
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Accessing metrictensor(V) produces a linear map g : V → V which can
be extended to Λg : ΛV → ΛV outermorphism given by metricextensor.
To apply the metricextensor to any Grassmann element of ΛV , the function
metric can be used on the element, cometric applies a complement metric.

0.2. Grassmann-Hodge complement

John Browne has discussed the Grassmann duality principle, stating that
every theorem (involving either of the exterior and regressive products) can
be translated into its dual theorem by replacing the ∧ and ∨ operations and
applying Grassmann complements!

Definition 0.19 (Grassmann ! complement). Expressed as unary operator,
“right hand rule” is derived from John Browne’s common factor theorem,
given a pseudoscalar ⟨v1∧· · ·∧vn⟩n ∈ ΛnV the linear map ! : ΛmV → Λn−mV

(0.4) ⟨vi1 ∧ · · · ∧ vim⟩m 7→ (−1)
m(m+1)

2
+
∑m

j=1 ij ⟨
∧
k ̸=ij

vk⟩n−m,

also denoted as complementright for “right hand rule”. While the linear
inverse of ! is a similar map complementleft expressible by re-orientation:

(0.5) ⟨vi1 ∧ · · · ∧ vim⟩m 7→ (−1)m(n−1)!⟨vi1 ∧ · · · ∧ vim⟩m.
Together, these form an orthocomplementary propositional lattice !,∧,∨

(0.6) (!
∨
k

ωk)(v1, . . . , vn) = (
∧
k

!ωk)(v1, . . . , vn) DeMorgan′s Law,

where the regressive product ∨ satisfies the Grassmann laws with ! and ∧.

Definition 0.20 (Hodge ⋆ complement). Expressed as unary operator ⋆,
define the composition of ⋆ = complementright ◦ metric as linear operator.

(0.7) ⋆ = !Λg : ΛV → ΛV

This linear operator is also called complementrighthodge or only hodge.

Remark 0.21. Original Grassmann complement is equivalent to the Hodge
complement with a Euclidean metric tensor, making metric an identity.

Definition 0.22. The interior contraction η·ω = η∨⋆ω is defined in terms of
the regressive product and also the Hodge complement. By default the right
contraction > is used, but there is also a left contraction < with swapped
arguments η < ω = ω∨⋆η, and also η >> ω = η̃ > ω with η << ω = η < ω̃.

Remark 0.23. Using coupled subspaces in the block matrix structure of
metric tensors, a basis element can be factorized in a corresponding way. In
particular, for the diagonal metric this is simply the basis index factorization.
However, a non-diagonal metric induces a more complex block factorization.
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Definition 0.24 (Clifford geometric product). If ai is an indecomposable
basis element with regards to the block matrix structure of the metric tensor
and B ∈ ΛkV is a graded element, then define operation ⊖ as either

ai ⊖B = ai ∧B + ai < B̃, B ⊖ ai = B ∧ ai + B̃ > ai(0.8)

If A = a1∧· · ·∧am are a basis factorization, then a1⊖· · ·⊖am = a1∧· · ·∧am.
Furthermore, a1 ⊖ · · · ⊖ (am ⊖ B) = a1 ⊖ · · · ⊖ (am ∧ B + am < B̃) can be
expanded to distribute the operations of A⊖B. By applying this principle
with the distributive law over the basis of ΛV , the Clifford product is defined.
In Julia, the multiplication symbol * can be used for geometric products.

Remark 0.25. For any vi ∈ Λ1V , we define v2i = vivi = gii, so typically
the diagonal metric g of the algebra is often defined by relations like these.

Definition 0.26 (Null-basis of projective split). Let v2± = ±1 be a basis
with v∞ = v++v− and v∅ = (v−−v+)/2. then v2∞ = 0, v2∅ = 0, v∞ ·v∅ = −1,

and v2∞∅ = 1 with Lobachevskian plane v∞∅ having these product properties:

v∞∅v∞ = −v∞, v∞∅v∅ = v∅,

v∞v∅ = −1 + v∞∅, v∅v∞ = −1− v∞∅.

Definition 0.27. The geometric product can be applied in two averaging
operations, which are symmetrization and anti-symmetrization operations:

(0.9)

j⊙
k=1

ωk =
1

j!

∑
σ∈Sj

∏
ωσ(k),

j∧
k=1

ωk =
∑
σ∈Sj

(−1)ε(σ)

j!

∏
k

ωσ(k)

Definition 0.28 (Reversed product). Consider the reversed product ⟨ω̃ω⟩.

|ω|2 = ⟨ω̃ω⟩, |ω| =
√

⟨ω̃ω⟩, ||ω|| = Euclidean |ω|.

Remark 0.29. In general
√
ω = e(logω)/2 is valid for invertible ω.

Example 0.30 (Inverse). A simple way to calculate algebraic inverses is
ω−1 = ω̃(ω̃ω)−1 = ω̃/|ω|2, with η/ω = ηω−1 and η\ω = η−1ω.

Definition 0.31 (Sandwich product). Define operator as η ⊘ ω = ω−1ηω.
Alternatively, the reversed definition is ηωη−1 typically notated η >>> ω.

Since ⟨(ω̃ + ω)(ω + ω̃)⟩ = (ω + ω̃)2, it follows |Rω|2 = (Rω)2. Similarly,
⟨(ω̃−ω)(ω−ω̃)⟩ = −(ω+ω̃)2 implies |Iω|2 = −(Iω)2. Due to the Z2-grading
induced by ω = Rω + Iω, it is possible to partition real and imaginary by

⟨ω̃⟩r/ |⟨ω⟩r| =
√
⟨ω̃⟩2r/ |⟨ω⟩r|

2 =
√
⟨ω̃⟩r/⟨ω⟩r =

√
(−1)(r−1)r/2 ∈

{
1,
√
−1
}
,

which is a unique partitioning completely independent of the metric space
and manifold of the algebra.

ω̃ω = |ω|2 = |Rω + Iω|2 = |Rω|2 + |Iω|2 + 2R(RωIω)
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Lemma 0.32. Let ω ∈ ΛmV , then I ∨ ω = ω.

Proof. I ∨ ω =!−1(!I∧!ω) =!−1(1∧!ω) =!−1!ω = ω. □

Corollary 0.33. Observe, ⋆ω = ω̃I = I · ω since I · ω = I ∨ ⋆ω = ⋆ω.

Theorem 0.34. Let ω ∈ ΛmV , then ⋆ ⋆ ω = (−1)m(n−m)ω|I|2.

Proof. Let ω ∈ ωmV , note that ⋆ω = ω̃I, then rewrite the expressions

⋆ ⋆ ω = ˜̃ωII = (−1)m(m−1)/2ω̃II

= (−1)m(m−1)/2(−1)(n−m−1)(n−m)/2ωI2

= (−1)m(n−m)(−1)n(n−1)/2ωI2

= (−1)m(n−m)ωĨI = (−1)m(n−m)ω|I|2

Hence, the result follows since (−1)n(n−1)/2II = ĨI = I · I = |I|2. □

Corollary 0.35 (Euclidean complement of a complement). Let ω ∈ Λm(Rn)
then ⋆ ⋆ ω = (−1)m(n−m)ω since |I|2 = 1.

Theorem 0.36. Let ω ∈ ΛmV , then (ω ∨ ⋆ω)I = ω ∧ ⋆ω

Proof. It is straight forward to check based on properties of !, ⋆,∧,∨ that

ω ∨ ⋆ω = ω ∨ (ω̃I) =!−1(!ω∧!(ω̃I))

= g(ω, I)(−1)m(n−m)!−1(!ω ∧ ω)
= g(ω, I)!−1(ω∧!ω) = (ω ∧ ⋆ω)/I

From this the result follows, after multiplying by I pseudoscalar. □

Theorem 0.37. η∧⋆ω = (ω̃∨⋆η̃)I = (ω̃·η̃)I ⇐⇒ η·ω = η∨⋆ω = (ω̃∧⋆η̃)/I.

Theorem 0.38. Let η, ω ∈ ΛmV , then η̃ · ω̃) = η · ω.

Proof. Let η, ω ∈ ΛmV , then η̃ · ω̃ = ((−1)m(n−m))2(η · ω) = η · ω. □

Corollary 0.39 (Absolute value |ω|2 = ω · ω).
(ω · ω)I = ω̃ ∧ ⋆ω̃ = ω̃ ⋆ ω̃ = ω̃ωI = |ω|2I ⇐⇒ ω · ω = ω̃ω

Theorem 0.40 (Hodge complement). Let ω ∈ ΛmV , then ω∧⋆ω = ⟨ω∨⋆ω⟩I

Proof. Observe that ω ∧ ⋆ω = ω ⋆ ω = ωω̃I = |ω|2I = ⟨ω > ω⟩I. □

Grassmann’s (graded tensor) right contraction is written η > ω = η∨⋆ω,
Contraction left(η, ω) right(η, ω)

Grassmann ⟨η⟩r < ⟨ω⟩s = ⟨η̃ω⟩s−r ⟨η⟩r > ⟨ω⟩s = ⟨η̃ω⟩r−s
Reversed ⟨η̃⟩r < ⟨ω̃⟩s = ⟨ηω̃⟩s−r ⟨η̃⟩r > ⟨ω̃⟩s = ⟨ηω̃⟩r−s
Conventional ⟨η⟩r < ⟨ω̃⟩s = ⟨ηω⟩s−r ⟨η̃⟩r > ⟨ω⟩s = ⟨ηω⟩r−s
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0.2. Grassmann-Hodge complement 11

Definition 0.41. Common unary operations on TensorAlgebra elements

• Manifold returns the parameter V::Submanifold{M} K-module

• mdims dimensionality of the pseudoscalar V of that TensorAlgebra

• gdims dimensionality of the grade G of V for that TensorAlgebra

• tdims dimensionality of Multivector{V} for that TensorAlgebra

• grade returns G for TensorGraded{V,G} while grade(x,g) is ⟨x⟩g
• istensor returns true for TensorAlgebra elements

• isgraded returns true for TensorGraded elements

• isterm returns true for TensorTerm elements

• complementright Euclidean metric Grassmann right complement

• complementleft Euclidean metric Grassmann left complement

• complementrighthodge Grassmann-Hodge right complement ω̃I

• complementlefthodge Grassmann-Hodge left complement Iω̃

• metric applies the metricextensor as outermorphism operator

• cometric applies complement metricextensor as outermorphism

• metrictensor returns g : V → V associated to TensorAlgebra{V}

• metrictextensor returns Λg : ΛV → ΛV for TensorAlgebra{V}

• involute grade permutes basis with ⟨ω⟩k = σ1(⟨ω⟩k) = (−1)k⟨ω⟩k
• reverse permutes basis with ⟨ω̃⟩k = σ2(⟨ω⟩k) = (−1)k(k−1)/2⟨ω⟩k
• clifford conjugate of an element is composite involute ◦ reverse
• even part selects Rω = (ω + ω)/2 and is defined by Λg for even g

• odd part selects Iω = (ω − ω)/2 and is defined by Λg for odd g

• real part selects R̃ω = (ω+ ω̃)/2 and is defined by |R̃ω|2 = (R̃ω)2

• imag part selects Ĩω = (ω− ω̃)/2 and is defined by |Ĩω|2 = −(Ĩω)2

• abs is the absolute value |ω| =
√
ω̃ω and abs2 is then |ω|2 = ω̃ω

• norm evaluates a positive definite norm metric on the coefficients

• unit applies normalization defined as unit(t) = t/abs(t)

• scalar selects grade 0 term of any TensorAlgebra element

• vector selects grade 1 terms of any TensorAlgebra element

• bivector selects grade 2 terms of any TensorAlgebra element

• trivector selects grade 3 terms of any TensorAlgebra element

• pseudoscalar max. grade term of any TensorAlgebra element

• value returns internal Values tuple of a TensorAlgebra element

• valuetype returns type of a TensorAlgebra element value’s tuple
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12 Differential geometric algebra: compute using Grassmann.jl, Cartan.jl

Binary operations commonly used in Grassmann algebra syntax

• + and - carry over from the K-module structure associated to K
• wedge is exterior product ∧ and vee is regressive product ∨
• > is the right contraction and < is the left contraction for ΛV

• * is the geometric product and / uses inv algorithm for division

• ⊘ is the sandwich and >>> is its alternate operator orientation

Custom methods related to tensor operators and roots of polynomials

• inv returns the inverse and adjugate returns transposed cofactor

• det returns the scalar determinant of an endomorphism operator

• tr returns the scalar trace of an endomorphism operator

• transpose operator has swapping of row and column indices

• compound(F,g) is multilinear endomorphism ΛgF : ΛgV → ΛgV

• outermorphism(A) transforms A : V → V into ΛA : ΛV → ΛV

• operatormake linear representation of multivector outermorphism

• companion matrix of monic polynomial a0+a1z+ · · ·+anzn+zn+1

• roots(a...) of polynomial with coefficients a0 + a1z + · · ·+ anz
n

• rootsreal of polynomial with coefficients a0 + a1z + · · ·+ anz
n

• rootscomplex of polynomial with coefficients a0+a1z+ · · ·+anzn

• monicroots(a...) of monic polynomial a0+a1z+· · ·+anzn+zn+1

• monicrootsreal of monic polynomial a0 + a1z+ · · ·+ anz
n+ zn+1

• monicrootscomplex of monic polynomial a0+a1z+· · ·+anzn+zn+1

• characteristic(A) polynomial coefficients from det(A− λI)

• eigvals(A) are the eigenvalues [λ1, . . . , λn] so that Aei = λiei

• eigvalsreal are real eigenvalues [λ1, . . . , λn] so that Aei = λiei

• eigvalscomplex are complex eigenvalues [λ1, . . . , λn] so Aei = λiei

• eigvecs(A) are the eigenvectors [e1, . . . , en] so that Aei = λiei

• eigvecsreal are real eigenvectors [e1, . . . , en] so that Aei = λiei

• eigvecscomplex are complex eigenvectors [e1, . . . , en] so Aei = λiei

• eigen(A) spectral decomposition
∑

i λiProj(ei) with Aei = λiei

• eigenreal spectral decomposition
∑

i λiProj(ei) with Aei = λiei

• eigencomplex spectral decomposition
∑

i λiProj(ei) so Aei = λiei

• eigpolys(A) normalized symmetrized functions of eigvals(A)

• vandermonde facilitates ((X ′X)−1X ′)y for polynomial coefficients

• cayley(V,◦) returns product table for V and binary operation ◦
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0.3. Tensor field topology and fiber bundles 13

0.3. Tensor field topology and fiber bundles

Definition 0.42. Commonly used fundamental building blocks are

• ProductSpace{V,K,N} <: AbstractArray{Chain{V,1,K,N},N}
uses Cartesian products of interval subsets of R×R×· · ·×R = Λ1Rn,
generates lazy array of Chain{V,1} point vectors from input ranges

– ProductSpace{V}(0:0.1:1,0:0.1:1) # specify V

– ProductSpace(0:0.1:1,0:0.1:1) # auto-select V

– ProductSpace{V}(r::AbstractVector{<:Real}...) default
– ⊕(r::AbstractVector{<:Real}...) for algebraic syntax

• Global{N,T} represents array with same T value at all indices

• LocalFiber{B,F} has a local basetype of B and fibertype of F
– Coordinate{P,G} has pointtype of P and metrictype of G

• ImmersedTopology{N,M} = AbstractArray{Values{N,Int},M}

– ProductTopology generates basic product topologies for grids
– SimplexTopology defines continuous simplex immersion
– DiscontinuousTopology disconnects for discontinuous
– LagrangeTopology extends for Lagrange polynomial base
– QuotientTopology defines classes of quotient identification

Generalizing upon ProductTopology, the QuotientTopology defines a
quotient identification across the boundary fluxes of the region, which then
enables different specializations of QuotientTopology as

• OpenTopology: all boundaries don’t have accumulation points,

• CompactTopology: all points have a neighborhood topology,

• CylinderTopology: closed ribbon with two edge open endings,

• MobiusTopology: twisted ribbon with one edge open ending,

• WingTopology: upper and lower surface topology of wing,

• MirrorTopology: reflection boundary along mirror (basis) axis,

• ClampedTopology: each boundary face is reflected to be compact,

• TorusTopology: generalized compact torus up to 5 dimensions,

• HopfTopology: compact topology of the Hopf fibration in 3D,

• KleinTopology: compact topology of the Klein bottle domain,

• PolarTopology: polar compactification with open edge boundary,

• SphereTopology: generalized mathematical sphere, compactified,

• GeographicTopology: axis swapped from SphereTopology in 2D.

Combination of PointArray <: Coordinates and ImmersedTopology

leads into definition of TensorField as a global section of a FrameBundle.
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14 Differential geometric algebra: compute using Grassmann.jl, Cartan.jl

All these methods apply to SimplexTopology except isopen, iscompact

• isopen is true if QuotientTopology is an OpenTopology instance

• iscompact is true if QuotientTopology is a CompactTopology

• nodes counts number of vertices associated to SimplexTopology

• sdims counts the number of vertices N of a SimplexTopology{N}

• subelements subspace element indices associated to fulltopology

• subimmersion modified with vertices re-indexed based on subspace

• topology view into fulltopology based on subelements structure

• totalelements counts total number of elements in fulltopology

• totalnodes counts total number of nodes over all subspaces

• vertices list of indices associated to the subspace immersion

• elements counts the number of subelements in the immersion

• isfull is true if the immersion is a fulltopology, not a subspace

• istotal is true if fulltopology is covering totalnodes completely

• iscover is true if isfull and istotal, fully covering totalnodes

• isdiscontinuous is true if an instance of DiscontinuousTopology

• isdisconnected is true if isdiscontinuous and fully disconnected

• continuous returns original data from DiscontinuousTopology

• discontinuous allocates a derived DiscontinuousTopology

• disconnect allocates a disconnected DiscontinuousTopology

• getfacet indexing subelements in reference to the fullimmersion

• getimage indexing vertex subspace in reference to fullimmersion

• edges assembles SimplexTopology{2} of all unique edge elements

• facets assembles SimplexTopology of all unique facet elements

• complement returns a SimplexTopology based on subelements

• interior returns the interior components of a SimplexTopology

• ∂ operator returns boundary components of a SimplexTopology

• degrees returns the (graph) degree for each incidence vertex

• weights divides each incidence vertex by the (graph) degree

• adjacency returns a symmetric sparse matrix with ones at vertices

• antiadjacency returns sparse matrix with vertex antisymmetry

• incidence returns heterogenous relation for vertices and elements

• laplacian returns the (graph) Laplacian with adjacent vertices

• neighbors finds neighboring elements per SimplexTopology facet
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0.3. Tensor field topology and fiber bundles 15

Definition 0.43. An n-dimensional manifold M requires the existence of a
neighborhood U for each p ∈ U ⊆ M with a local chart map ϕ : Uϕ → Rn.
Given another chart ψ : Uψ → Rn, then the combinatorial compositions

ϕ ◦ ψ−1 : ψ(Uϕ ∩ Uψ) → ϕ(Uϕ ∩ Uψ), ψ ◦ ϕ−1 : ϕ(Uϕ ∩ Uψ) → ψ(Uϕ ∩ Uψ)
are the transition maps. If all the transition maps ϕ are Cr differentiable and⋃
ϕ Uϕ =M , then the collection of charts is called an atlas of a Cr manifold.

Definition 0.44. A fiber bundle is a manifold E with projection π : E → B
commutes with local trivializations ϕ paired to Uϕ of manifold B =

⋃
ϕ Uϕ

(0.10)

π−1(Uϕ) Uϕ × F

Uϕ

ϕ

π π1 ,

where B is the basetype and F is the fibertype of Ep = π−1(p) = {p}×F ,

E =
⋃
p∈B

Ep =
⋃
p∈B

{p} × F = B × F, B =
⋃
ϕ

Uϕ.

FiberBundle{E,N} <: AbstractArray{E,N} where E is the eltype

• Coordinates{P,G,N} <: FiberBundle{Coordinate{P,G},N}

– PointArray{P,G,N} has pointtype of P , metrictype of G
– FiberProduct introduces fiber product structure for manifolds

• FrameBundle{C,N} has coordinatetype of C and immersion

– GridBundle{N,C} N -grid with coordianates and immersion

– SimplexBundle{N,C} defines coordinates and an immersion

– FaceBundle{N,C} defines element faces and their immersion
– FiberProductBundle for extruding dimensions from simplices
– HomotopyBundle encapsulates a variation as FrameBundle

• TensorField defines fibers in a global section of a FrameBundle

When a TensorField has a fibertype from ΛgTV then it is a grade g
differential form on the tangent bundle of V . In general the TensorField

type can deal with more abstract fibertype varieties than only those used
for differential forms, as it unifies many different forms of tensor analysis.

By default, the InducedMetric is defined globally in each PointArray,
unless a particular metric tensor specification is provided. When the default
InducedMetric is invoked, the metric tensor from the TensorAlgebra{V}

type is used for the global manifold, instead of the extra allocation to specify
metric tensors at each point. FrameBundle then defines local charts along
with metric tensor in a PointArray and pairs it with an ImmersedTopology.
Then the fiber of a FrameBundle section is a fiber of a TensorField.
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16 Differential geometric algebra: compute using Grassmann.jl, Cartan.jl

These methods relate to FrameBundle and TensorField instances

• coordinates(m::FiberBundle) returns Coordinates data type

• coordinatetype return applies to FiberBundle or LocalFiber

• immersion(m::FiberBundle) returns ImmersedTopology data

• immersiontype return applies to FiberBundle or LocalFiber

• base returns the B element of a LocalFiber{B,F} or FiberBundle

• basetype returns type B of a LocalFiber{B,F} or FiberBundle

• fiber returns the F element of LocalFiber{B,F} or FiberBundle

• fibertype returns the F type of LocalFiber{B,F} or FiberBundle

• points returns AbstractArray{P} data for Coordinates{P,G}

• pointtype is type P of Coordinate{P,G} or Coordinates{P,G}

• metrictensor returns the grade 1 block of the metricextensor

• metricextensor is AbstractArray{G} data for Coordinates{P,G}

• metrictype is type G of Coordinate{P,G} or Coordinates{P,G}

• fullcoordinates returns full FiberBundle{Coordinate{P,G}}

• fullimmersion returns superset ImmersedTopology which isfull

• fulltopology returns composition of topology ◦ fullimmersion

• fullvertices list of vertices associated to the fullimmersion

• fullpoints is full AbstractArray{P} instead of possibly subspace

• fullmetricextensor is full AbstractArray{G} instead of subspace

• isinduced is true if the metrictype is an InducedMetric type

• bundle returns the integer identification of bundle cache

Various interpolation methods are also supported and can be invoked by
applying TensorField instances as function evaluations on base manifold
or applying some form of resampling method to the manifold topology.

• volumes returns FaceBundle with simplex volume at each element

• initmesh provides API keyword for interfacing mesh initialization

• refinemesh provides API keyword for interfacing mesh refinement

• affinehull returns a localized affine simplex hull at each element

• affineframe returns a localized affine basis frame at each element

• gradienthat returns the hat gradients for the SimplexBundle

For GridBundle initialization it is typical to invoke a combination of
ProductSpace and QuotientTopology, while optional Julia packages extend
SimplexBundle initialization, such as Meshes, GeometryBasics, Delaunay,
QHull, MiniQhull, Triangulate, TetGen, MATLAB, FlowGeometry.
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Definition 0.45. Let γ : [a, b] → Rn be a curve γ(t) with parameter t.

• integral(::IntervalMap) cumulative trapezoidal sum
∫ t
a γ(ξ)dξ

• integrate(::IntervalMap) final value of
∫ b
a γ(t)dt on interval end

• arclength(::IntervalMap) curve parameter s(t) =
∫ t
a |

dγ(ξ)
dξ |dξ

• tangent(::IntervalMap) tangent speed curve dγ(t)
dt = ds

dtT (t)

• unittangent(::IntervalMap) unit tangent curve T (t) = dγ
dt

dt
ds

• speed(::IntervalMap) tangent speed of a curve ds
dt =

∣∣∣dγ(t)dt

∣∣∣
• normal(::IntervalMap) κ(t)N(t) = dT

dt
dt
ds =

d
dt

(
dγ
dt

dt
ds

)
dt
ds

• unitnormal(::IntervalMap) N(t) = dT
dt

dt
ds/κ(t) normalized

• curvature(::AbstractCurve) κ(t) =
∣∣dT
dt

dt
ds

∣∣ = ∣∣∣ ddt (dγdt dtds) dt
ds

∣∣∣
• radius(::AbstractCurve) of curvature κ(t)−1 =

∣∣∣ ddt (dγdt dtds) dt
ds

∣∣∣−1

• evolute(::AbstractCurve) γ + N
κ = γ(t) + d

dt

(
dγ
dt

dt
ds

)
dt
ds/(κ(t))

2

• involute(::AbstractCurve) γ−Ts = γ(t)−
(
dγ(t)
dt

dt
ds

) ∫ t
a |

dγ(ξ)
dξ |dξ

• osculatingplane(::AbstractCurve) linear span of
[
ds
dtT, κN

]
• unitosculatingplane(::AbstractCurve) linear span of [T,N ]

• binormal(::SpaceCurve) complement ds
dtκB = ⋆(dsdtT ∧ κN)

• unitbinormal(::SpaceCurve) complement of plane B = ⋆(T ∧N)

• torsion(::SpaceCurve) τ(t) =
∣∣dB
dt

dt
ds

∣∣ = ∣∣ ddt ⋆ (T ∧N) dtds
∣∣

• frame(::AbstractCurve) scaled frame
[
ds
dtT, κN, ⋆(

ds
dtT ∧ κN)

]
• unitframe(::AbstractCurve) Frenet frame [T,N, ⋆(T ∧N)]

• curvatures(::AbstractCurve) all degrees of freedom [κ, τ, . . . ]

• curvatures(::AbstractCurve,i) selects i-th curvature degree

• bishopframe(::SpaceCurve,θ0=0) computes Bishop-style frame

• bishopunitframe(::SpaceCurve,θ0=0) Bishop-style unit frame

• bishoppolar(::SpaceCurve,θ0=0) Bishop polar (κ, θ0 +
∫ b
a τds)

• bishop(::SpaceCurve,θ0=0) κ(cos(θ0 +
∫ b
a τds), sin(θ0 +

∫ b
a τds))

• planecurve(::RealFunction,θ0=0) from curvature κ(t) and θ0

(κ(t), θ0) 7→
∫ b
a

[
cos(θ0 +

∫ b
a κ(t)dt), sin(θ0 +

∫ b
a κ(t)dt)

]
dt

• linkmap(f::SpaceCurve,g::SpaceCurve) is ℓ(t, s) = g(s)− f(t)

• linknumber(f,g) of curves ∝ sectorintegrate ◦ unit ◦ linkmap
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18 Differential geometric algebra: compute using Grassmann.jl, Cartan.jl

Definition 0.46. Surfaces γ : R2 → R3 with parametric γ(x1, x2) methods

• graph outputs surface γ : Rn → Rn×R from scalar field f : Rn → R
• normal vector N(x) = ⋆(∂γ(x)∂x1

∧· · ·∧ ∂γ(x)
∂xn

) or product ∂γ(x)
∂x1

× ∂γ(x)
∂x2

• unitnormal ν(x) = ⋆(∂γ(x)∂x1
∧ · · · ∧ ∂γ(x)

∂xn
)/| ⋆ (∂γ(x)x1

∧ · · · ∧ ∂γ(x)
∂xn

)|

• normalnorm is the norm of normal |N(x)| = | ⋆ (∂γ(x)∂x1
∧ · · · ∧ ∂γ(x)

∂xn
)|

• jacobian linear span of
[
∂γ(x)
∂x1

, . . . , ∂γ(x)∂xn

]
as TensorOperator

• weingarten linear span of
[
∂ν(x)
∂x1

, . . . , ∂ν(x)∂xn

]
as TensorOperator

• sectordet is the product γ(x)∧ ∂γ(x)
∂x1

∧· · ·∧ ∂γ(x)
∂xn

, here with n = 2

• sectorintegral
∫ γ(x)
n+1 ∧ ∂γ(x)

∂x1
∧ · · · ∧ ∂γ(x)

∂xn
dx1 · · · dxn with n = 2

• sectorintegrate estimates the total value of sectorintegral

• area cumulative
∫
| ⋆ (∂γ(x)∂x1

∧ · · · ∧ ∂γ(x)
∂xn

)|dx1 · · · dxn with n = 2

• surfacearea estimates total value of the (surface) area integral

• surfacemetric gets GridBundle with firstform as metrictensor

• surfacemetricdiag gets GridBundle with firstformdiag metric

• surfaceframe constructs intrinsic orthonormal surface frame

• frame scaled Darboux style frame
[
∂γ(x)
∂x1

, ⋆
(
N(x) ∧ ∂γ(x)

∂x1

)
, N(x)

]
• unitframe is then

[
∂γ(x)
∂x1

/
∣∣∣∂γ(x)∂x1

∣∣∣ , ⋆(ν(x) ∧ ∂γ(x)
∂x1

)
/
∣∣∣∂γ(x)∂x1

∣∣∣ , ν(x)]
• firstform I = g =

[
∂γ(x)
∂x1

· ∂γ(x)∂x1

∂γ(x)
∂x1

· ∂γ(x)∂x2
∂γ(x)
∂x1

· ∂γ(x)∂x2

∂γ(x)
∂x2

· ∂γ(x)∂x2

]
or firstformdiag

• secondform II =

ν(x) · ∂2γ(x)∂x21
ν(x) · ∂

2γ(x)
∂x1∂x2

ν(x) · ∂
2γ(x)

∂x1∂x2
ν(x) · ∂

2γ(x)
∂x22

 2nd fundamental

• thirdform III is the composition map firstform ◦ unitnormal

• shape is the geometry shape operator I(x)−1II(x) of a surface γ(x)

• principals (curvatures) are the composition eigvals ◦ shape

• principalaxes (curvatures) are the composition eigvecs ◦ shape

• curvatures (polynomials) are the composition eigpolys ◦ shape

• curvatures(::TensorField,i) selects i-th curvature polynomial

• meancurvature is the mean curvature (first curvature) of the shape

• gaussintrinsic is the (intrinsic) Gauss curvature (last curvature)

• gaussextrinsic is the (extrinsic) Gauss curvature in sector form

• gausssign is the sign of the Gauss curvature of the shape
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AbstractTensors, Grassmann settled on custom trigonometric identities,

exp(ω) =

∞∑
n=0

ωn

n!
, log(ω) =

∞∑
n=0

2

2n+ 1

(
ω − 1

ω + 1

)2n+1

cosh(ω) =

∞∑
n=0

ω2n

(2n)!
, sinh(ω) =

∞∑
n=0

ω2n+1

(2n+ 1)!
,

cos(ω) = cosh(Iω), sin(ω) = sinh(Iω)/I,

tan(ω) =
sin(ω)

cos(ω)
, cot(ω) =

cos(ω)

sin(ω)
,

sec(ω) =
1

cos(ω)
, csc(ω) =

1

sin(ω)
,

asec(ω) = acos(ω−1), acsc(ω) = asin(ω−1),

sech(ω) =
1

cosh(ω)
, csch(ω) =

1

sinh(ω)
,

asech(ω) = acosh(ω−1), acsch(ω) = asinh(ω−1),

tanh(ω) =
sinh(ω)

cosh(ω)
, coth(ω) =

cosh(ω)

sinh(ω)
,

asinh(ω) = log
(
ω +

√
ω2 + 1

)
, acosh(ω) = log

(
ω +

√
ω2 − 1

)
,

atanh(ω) =
log(1 + ω)− log(1− ω)

2
, acoth(ω) =

log(ω + 1)− log(ω − 1)

2
,

asin(ω) = −I log
(
Iω +

√
1− ω2

)
, acos(ω) = −I log

(
ω + I

√
1− ω2

)
,

atan(ω) = −I atanh(Iω), acot(ω) = −I log(ω−I)−log(ω+I)
2 .

0.4. Interactive computational sessions

When using Grassmann in a session, the cayley table can be used to recall
geometric algebra information, e.g. to compare > and >> contractions:

cayley(Submanifold(3),*) # Clifford geometric product *

∗ v v1 v2 v3 v12 v13 v23 v123
v v v1 v2 v3 v12 v13 v23 v123
v1 v1 v v12 v13 v2 v3 v123 v23
v2 v2 −v12 v v23 −v1 −v123 v3 −v13
v3 v3 −v13 −v23 v v123 −v1 −v2 v12
v12 v12 −v2 v1 v123 −v −v23 v13 −v3
v13 v13 −v3 −v123 v1 v23 −v −v12 v2
v23 v23 v123 −v3 v2 −v13 v12 −v −v1
v123 v123 v23 −v13 v12 −v3 v2 −v1 −v
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Theorem 0.47 (Linear system of equations). Let p0, . . . , pn ∈ Λ1V ,

(0.11) [p1, . . . , pn] ∨ ⋆
n∑
i=1

p1...(i−1) ∧ p0 ∧ p(i+1)...n

p1...n
vi = p0.

Proof. Solve for x explicitly in matrix-vector product [p1, . . . , pn] · x = p0,

p0 ∧ p1...(i−1) ∧ p(i+1)...n = ([p1, . . . , pn] · x) ∧ p1...(i−1) ∧ p(i+1)...n

= (xipi) ∧ p1...(i−1) ∧ p(i+1)...n

hence x =
n∑
i=1

p1...(i−1) ∧ p0 ∧ p(i+1)...n

p1...n
vi and the result follows. □

Remark 0.48. Grassmann methods for low dimensional linear systems are
more numerically stable than Julia Base.LinearAlegbra methods and fast.

[1 2; 3 4]\[5,6] # inexact

@TensorOperator([1 2; 3 4])\Chain(5,6) # exact[
−3.9999999999999987
4.499999999999999

]
,

[
−4
4.5

]
This means that using only exterior products there is an explicit solution to

linear systems by allocating {p1...i ∧ pi+1}n−1
i=0 and

{
pn−i ∧ p(n−i+1)...n

}n−1

i=0
and then taking exterior product permutations with p0 also.

(0.12) p0 ∈ [p1, . . . , pn] ⇐⇒ ∀i : p1...n = p1...(i−1) ∧ p0 ∧ p(i+1)...n

Since exterior products are oriented, it is sufficient to check the orientation of
the hyperplanes with respect to the reference point for determining whether
p0 is a point contained in the simplex p1...n. Thus, it is sufficient to check the
orientation of all the same exterior products as when solving linear systems,
while calculating a linear inv (inverse) involves only a partial application of
this principle and requires also allocating a transposed dyadic result:

(0.13) [p1, . . . , pn]
−1 =

(
n∑
i=1

⋆
p1...(i−1) ∧ p(i+1)...n

((−1)i)n−1p1...n
vi

)T
Furthermore, the P\p0 method implementation is a partial application of
this with the action of an operator. Consider operator composed with inv

B = v12+2v13-3v23 # using Grassmann; basis"3"

operator(B) # convert B to endomorphisim representation

inv(operator(B))

operator(inv(B)) 4 12 −6
12 −6 −4
−6 −4 −12

 ,
 0.0204082 0.0612245 −0.0306122

0.0612245 −0.0306122 −0.0204082
−0.0306122 −0.0204082 −0.0612245
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Example 0.49 (Plane curves). Let t be parameter on interval from 0 to 4π

using Grassmann, Cartan, Makie # GLMakie

t = TensorField(0:0.01:4*pi)

lin = Chain.(cos(t)*t,sin(t)*11+t)

lines(lin); scaledarrows!(lin,unitframe(lin),gridsize=50)

lines(arclength(lin))

lines(speed(lin))

lines(curvature(lin))
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Get curvature from plane curve or construct planecurve from curvature:

lines(planecurve(cos(t)*t))

lines(planecurve(cos(t*t)*t))

lines(planecurve(cos(t)-t*sin(t)))

0 1 2 3

0.0

0.5

1.0

1.5

2.0

0 5 10

0.0

0.1

0.2

0.3

0.4

0.0 0.5 1.0 1.5 2.0

−2

−1

0

Crucial Flow Research, Michael Reed ©2024



22 Differential geometric algebra: compute using Grassmann.jl, Cartan.jl

Example 0.50 (Lorenz). Observe vector fields by integrating streamlines

Lorenz(s,r,b) = x -> Chain(

s*(x[2]-x[1]), x[1]*(r-x[3])-x[2], x[1]*x[2]-b*x[3])

p = TensorField(ProductSpace(-40:0.2:40,-40:0.2:40,10:0.2:90))

vf = Lorenz(10.0,60.0,8/3).(p) # pick Lorenz parameters, apply

streamplot(vf,gridsize=(10,10)) # visualize vector field
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ODE solvers in the Adapode package are built on Cartan, providing both
Runge-Kutta and multistep methods with optional adaptive time stepping.

using Grassmann, Cartan, Adapode, Makie # GLMakie

fun,x0 = Lorenz(10.0,60.0,8/3),Chain(10.0,10.0,10.0)

ic = InitialCondition(fun,x0,2pi) # tmax = 2pi

lines(odesolve(ic,MultistepIntegrator{4}(2^-15)))
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Recall that ⋆dω = ⋆(∇∧ω) and ∂ω = ω > ∇, where d ◦d = 0 and ∂ ◦∂ = 0.

Theorem 0.51 (First grade sandwich product). Reflection by hyperplane
⋆∇ has isometry ω⊘ = −∇\ω∇.

Proof. Let ∇ ∈ Λ1V , then ω = (∇\∇)ω = ∇(dω+ ∂ω) where ∇ ⊥ ∂ω and
∇ ⊥ dω. Let’s reflect across the hyperplane ⋆∇,

∇\(dω − ∂ω) = ∇\(dω − ∂ω)(∇\∇)

= −∇2\(dω∂ω)∇ = −∂\ω∇.
Hence, reflection by hyperplane ⋆∇ has isometry ω⊘∇ which for ∇ = vj is
the linear map reflecting along the j index. □

Theorem 0.52 (Cartan-Dieudonne). For every isometry of V → V , there is
a way to express it as composite of at most k reflections across non-singular
hyperplanes. Hence there exist vectors ∇j such that

(0.14) (((ω ⊘∇1)⊘∇2)⊘ · · · )⊘∇k = ω ⊘ (∇1∇2 · · · ∇k)

for any isometry element of the orthogonal group O(p, q).

Note that elements under the transformations of this group preserve
inner product relations. The even grade operators make up the rotational
group, where each bivector isometry is a composition of two reflections.

Exponential map and Lie group parameter special cases: consider the
differential equation ∂iϵj = ϵj ⊘ ω, solution: ϵj(x) = ϵj(0) ⊘ exiω where
θ = 2xi is Lie group paramter. Then for normalized ω,

(0.15) eθω =
∑
k

(θω)k

k!
=


cosh θ + ω sinh θ, if ω2 = 1

cos θ + ω sin θ, if ω2 = −1

1 + θω if ω2 = 0

,

Note that ∇ ⊘ eθω/2 = ∇eθω is a double covering when using the complex
numbers in the Euclidean plane.

Remark 0.53. The sandwich must be written with reversion on the left
side, otherwise the rotation is clockwise and opposite of the phase parameter
convention used by Euler’s formula. For example, observe the resultant
direction of rotation

e
π
4
v12v1ẽ

π
4
v12 = −v2

which means it is rotating in the wrong direction opposite of Euler, while

ẽ
π
4
v12v1e

π
4
v12 = v2

is compatible with Euler’s convention. So, sandwich must be applied with its
reversion on the left side–if the standard Euler rotation direction is desired.
However, many authors follow the opposite convention of clockwise instead.
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Example 0.54 (Riemann sphere). Project ↑: ω 7→ (2ω+v∞(ω2−1))/(ω2+1)
and then apply rotation before rejecting down ↓: ω 7→ ((ω∧b)v∞)/(1−v∞·ω).
using Grassmann, Cartan, Makie # GLMakie

pts = TensorField(-2*pi:0.0001:2*pi)

@basis S"∞+++" # Riemann sphere

f(t) = ↓(exp(pi*t*((3/7)*v12+v∞3))>>>↑(v1+v2+v3))
f(t) = ↓(exp(t*v∞*(sin(3t)*3v1+cos(2t)*7v2-sin(5t)*4v3)/2)>>>↑(v1+v2-v3))

f(t) = ↓(exp(t*(v12+0.07v∞*(sin(3t)*3v1+cos(2t)*7v2-sin(5t)*4v3)/2))>>>↑(v1+v2-v3))

lines(V(2,3,4).(f.(pts))) # applies to each f(t)

@basis S"∞∅+++" # conformal geometric algebra

f(t) = ↓(exp(pi*t*((3/7)*v12+v∞3))>>>↑(v1+v2+v3))
lines(V(3,4,5).(f.(pts)))
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Example 0.55 (Bivector). using Grassmann, Cartan, Makie #GLMakie

basis"2" # Euclidean geometric algebra in 2 dimensions

vdom = TensorField(ProductSpace{V}(-1.5:0.1:1.5,-1.5:0.1:1.5))

streamplot(tensorfield(exp(pi*v12/2)).(vdom))

streamplot(tensorfield(exp((pi/2)*v12/2)).(vdom))

streamplot(tensorfield(exp((pi/4)*v12/2)).(vdom))

streamplot(tensorfield(v1*exp((pi/4)*v12/2)).(vdom))
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@basis S"+-" # Geometric algebra with Lobachevskian plane

vdom = TensorField(ProductSpace{V}(-1.5:0.1:1.5,-1.5:0.1:1.5))

streamplot(tensorfield(exp((pi/8)*v12/2)).(vdom))

streamplot(tensorfield(v1*exp((pi/4)*v12/2)).(vdom))
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Example 0.56. using Grassmann, Cartan, Makie; @basis S"∞+++"

vdom1 = TensorField(ProductSpace{V(1,2,3)}(

-1.5:0.1:1.5,-1.5:0.1:1.5,-1.5:0.1:1.5));

tf1 = tensorfield(exp((pi/4)*(v12+v∞3)),V(2,3,4)).(vdom1)

streamplot(tf1,gridsize=(10,10))
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vdom2 = TensorField(ProductSpace{V(2,3,4)}(

-1.5:0.1:1.5,-1.5:0.1:1.5,-1.5:0.1:1.5));

tf2 = tensorfield(exp((pi/4)*(v12+v∞3)),V(2,3,4)).(vdom2)

streamplot(tf2,gridsize=(10,10))
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Definition 0.57. Let [·, . . . , ·] : gn → g define the n-linear Lie bracket with

[X1, . . . , Xi, . . . , Xn] =
∑
σ∈Sn

ε(σ)Xσ(1)(. . . (Xσ(i)(. . . (Xσ(n)) . . . )) . . . ).

In Grassmann and Cartan this definition can be accessed with Lie[Xi...].

In 2024, the author proved a new multilinear Lie bracket recursion formula.

Theorem 0.58 (Lie bracket recursion). n-bracket is sum of (n−1)-brackets:

(0.16) [X1, . . . , Xn] =

n∑
i=1

(−1)i−1Xi([X1, . . . , Xi−1, Xi+1, . . . , Xn])

This recursion can be explicitly expanded from the unary rule [X] = X,

[X,Y ] = X([Y ])− Y ([X]),

[X,Y, Z] = X([Y,Z])− Y ([X,Z]) + Z([X,Y ]),

[W,X, Y, Z] =W ([X,Y, Z])−X([W,Y,Z]) + Y ([W,X,Z])− Z([W,X, Y ]),

[V,W,X,Y,Z] =V ([W,X,Y,Z])−W ([V,X,Y,Z])+X([V,W,Y,Z])−Y ([V,W,X,Z])+Z([V,W,X,Y ]).

The multilinear Lie bracket recursion properly generalizes the bilinear
Lie bracket to the n-linear carse and is analogous to the Koszul complex
of the Grassmann algebra; but is fundamentally different due to multilinear
Lie bracket being non-associative, unlike the analogous exterior product.

Example 0.59 (Bracket). using Grassmann, Cartan, Makie # GLMakie

f1(x) = Chain(cos(3x[1]),sin(2x[1]))

f2(x) = sin(x[1]/2)*sin(x[2])

f3(x) = Chain(cos(x[1])*cos(x[2]),sin(x[2])*sin(x[1]))

vf1 = f1.(TorusParameter(100,100))

vf2 = gradient(f2.(TorusParameter(100,100)))

vf3 = f3.(TorusParameter(100,100))

lie1 = Lie[vf1,vf2] # Lie[vf1,vf2] == -Lie[vf2,vf1]

lie2 = Lie[vf1,vf2,vf3] # ternary Lie bracket

streamplot(lie1); streamplot(lie2)

0 1 2 3 4 5 6

0

1

2

3

4

5

6

0 1 2 3 4 5 6

0

1

2

3

4

5

6

Crucial Flow Research, Michael Reed ©2024



28 Differential geometric algebra: compute using Grassmann.jl, Cartan.jl

Example 0.60 (
∫
Ω 1). Length of line, area of disk, and volume of ball

linspace = ProductSpace(-2:0.03:2) # using Grassmann, Cartan

diameter = TensorField(linspace, x->abs(x)<1) # radius = 1

(integrate(diameter),2.0) # grid doesn’t exactly align on 1.0

(1.98v1, 2.0v1)

square = ProductSpace(-2:0.003:2,-2:0.003:2)

disk = TensorField(square, x->abs(x)<1) # radius = 1

(integrate(disk),1pi)

(3.141414000000001v12, 3.141592653589793v12)

cube = ProductSpace(-2:0.07:2,-2:0.07:2,-2:0.07:2)

ball = TensorField(cube, x->abs(x)<1) # radius = 1

(integrate(ball),4pi/3)

(4.180680595387064v123, 4.1887902047863905v123)

However, this is inefficient numerical integration, for example the 58×58×58
cube has 195, 112 terms and the 1334× 1334 square has 1, 779, 556 terms.

Theorem 0.61 (Hyper-area of hypersurface). Let γ : X ⊂ Rn → Rn+1 be
parameterized hypersurface ∂(Ω) = γ(X). Since the pullback γ∗(1) is det dγ,∫

∂(Ω)
1 =

∫
γ(X)

1 =

∫
X
|det dγ| =

∫
X

∣∣∣∣ ∂γ∂x1 ∧ · · · ∧ ∂γ

∂xn

∣∣∣∣(0.17)

=

∫ b1

a1

· · ·
∫ bn

an

|det dγ| =
∫ b1

a1

· · ·
∫ bn

an

∣∣∣∣ ∂γ∂x1 ∧ · · · ∧ ∂γ

∂xn

∣∣∣∣ .(0.18)

Example 0.62. Disk circumference, sphere spat using Grassmann,Cartan

t = TensorField(0:0.001:2pi)

circ = Chain.(cos(t),sin(t))

spher(x) = Chain(

cos(x[2])*sin(x[1]), sin(x[2])*sin(x[1]),

cos(x[1])) # GeographicParameter is swapped convention

sph = spher.(SphereParameter(60,60))

[surfacearea(circ), 2pi] # or totalarclength for AbstractCurve

[surfacearea(sph), 4pi]

lines(circ); wireframe(sph) # using Makie # GLMakie[
6.283000000652752
6.283185307179586

]
[
12.533742943601457
12.566370614359172

]
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Theorem 0.63 (Sector integral). Let X ⊂ Rn and γ : X → ∂(Ω) ⊂ Rn+1

is parameterized hypersurface ∂(Ω) = γ(X) with γ(x) = γ(x1, . . . , xn), then

(0.19)

∫
Ω
1 =

ρn

n+ 1

∫
X
γ ∧ ∂γ

∂x1
∧ · · · ∧ ∂γ

∂xn

so there exists Ω defining the sector of hypersurface γ(X) with scale ρ = 1.

Proof. Let f : (0, ρ]×X → Rn+1 with f(x0, x1, . . . , xn) = x0 ·γ(x1, . . . , xn),

(0.20)

∫ ρ

0
det df =

∫ ρ

0
xn0 · γ ∧

∂γ

∂x1
∧ · · · ∧ ∂γ

∂xn
=

ρnγ

n+ 1
∧ ∂γ

∂x1
∧ · · · ∧ ∂γ

∂xn
.

Since the pullback f∗(1) is det df , then Ω = f((0, ρ]×X) with new variable∫
Ω
1 =

∫
f((0,ρ]×X)

1 =

∫
X

∫ ρ

0
det df =

ρn

n+ 1

∫
X
γ ∧ ∂γ

∂x1
∧ · · · ∧ dγ

dxn

=

∫ b1

a1

· · ·
∫ bn

an

∫ ρ

0
det df =

ρn

n+ 1

∫ b1

a1

· · ·
∫ bn

an

γ ∧ ∂γ

∂x1
∧ · · · ∧ ∂γ

∂xn
.

Hence
∫
Ω 1 is sectorintegral covering γ(X) = ∂(Ω) by parameter X. □

Example 0.64 (
∫
Ω 1). Recall circ,sph to evaluate (3.1415v12, 4.17791v123)

(sectorintegrate(circ),sectorintegrate(sph)) # more efficient

Example 0.65 (Link number). Define the linkmap of two SpaceCurve

instances f(t) and g(s) as parameterized hypersurface ℓ(s, t) = g(s)− f(t).
As a corollary of the sector integral theorem combined with unit linkmap:

(0.21)
1

4π

∫
X
γ ∧ ∂γ

∂t
∧ ∂γ

∂s
=

1

4π

∫
X

g(s)− f(t)

|g(s)− f(t)|3
∧ df(t)

dt
∧ dg(s)

ds
,

therefore Gauss linknumber is 3
4π times sectorintegrate ◦ unit ◦ linkmap

when evaluated with parameterized hypersurface γ(s, t) = ℓ(s, t)/|ℓ(s, t)|. So
the linknumber divides sectorintegral of γ(X) by the volume of ball Ω.

t = TensorField(0:0.01:2pi) # using Grassmann, Cartan, Makie

f(t) = Chain(cos(t[1]),sin(t[1]),0)

g(t) = Chain(0,1+cos(t[1]),sin(t[1]))

lines(f.(t)); lines!(g.(t)); (linknumber(f.(t),g.(t)), 1.0)

mesh(linkmap(f.(t),g.(t)),normalnorm)

mesh(unit(linkmap(f.(t),g.(t))),normalnorm)
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Theorem 0.66 (Gauss curvature). New alternative formulas for (extrinsic)
Gauss curvature Ke and for (intrinsic) Gauss curvature Ki with normal N ,

Ke(x) = ν(x) ∧ ∂ν(x)

∂x1
∧ · · · ∧ ∂ν(x)

∂xn
, Ki(x) =

Ke(x)

|N(x)|
,

|Ke(x)| =
∣∣∣∣⋆(∂ν(x)∂x1

∧ · · · ∧ ∂ν(x)

∂xn

)∣∣∣∣ , |Ki(x)| =
|Ke(x)|
|N(x)|

.

With this formula, the Gauss-Bonnet integral is a sectorintegral theorem.

Example 0.67 (Torus). using Grassmann, Cartan, Makie # GLMakie

torus(x) = Chain(

(2+0.5cos(x[1]))*cos(x[2]),

(2+0.5cos(x[1]))*sin(x[2]),

0.5sin(x[1]))

tor = torus.(TorusParameter(60,60))

mesh(tor,normalnorm)

mesh(tor,meancurvature)

mesh(tor,gausssign)
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Example 0.68 (Wiggle). using Grassmann, Cartan, Makie # GLMakie

wobble(x) = (1+0.3sin(3x[1])+0.1cos(7x[2]))

wumble(x) = (3+0.5cos(x[2]))

wiggle(x) = Chain(

(wumble(x)+wobble(x)*cos(x[1]))*cos(x[2]),

(wumble(x)+wobble(x)*cos(x[1]))*sin(x[2]),

wobble(x)*sin(x[1]))

wig = wiggle.(TorusParameter(60,60))

mesh(wig,normalnorm)

mesh(wig,gaussextrinsic)

mesh(wig,gaussintrinsic)
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Definition 0.69. When there is a Levi-Civita connection with zero torsion
related to a metrictensor, then ∇XY − ∇YX = [X,Y ] and there exist
Christoffel symbols of the secondkind Γkij = Γkji with ∇∂i∂j =

∑
k Γ

k
ij∂k. In

particular, these can be expressed in terms of the metrictensor g as

(0.22) Γkij =
1

2

∑
m

gkm
{
∂gmj
∂xi

+
∂gim
∂xj

− ∂gij
∂xm

}
.

Local geodesic differential equations for Riemannian geometry are then

(0.23)
d2xk
dt2

+
∑
ij

Γkij
dxi
dt

dxj
dt

= 0.

Example 0.70. using Grassmann, Cartan, Adapode, Makie #GLMakie

tormet = surfacemetric(tor) # intrinsic metric

torcoef = secondkind(tormet) # Christoffel symbols

ic = geodesic(torcoef,Chain(1.0,1.0),Chain(1.0,sqrt(2)),10pi)

sol = geosolve(ic,ExplicitIntegrator{4}(2^-7)) # Runge-Kutta

lines(torus.(sol))
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totalarclength(sol) # apparent length of parameter path

@basis MetricTensor([1 1; 1 1]) # abstract non-Euclidean V

solm = TensorField(tormet(sol),Chain{V}.(value.(fiber(sol))))

totalarclength(solm) # 2D estimate totalarclength(klein.(sol))

totalarclength(klein.(sol)) # compute in 3D Euclidean metric

lines(solm) # parametric curve can have non-Euclidean metric

lines(arclength(solm)); lines!(arclength(sol))
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Example 0.71 (Klein geodesic). General ImmersedTopology are supported

klein(x) = klein(x[1],x[2]/2)

function klein(v,u)

x = cos(u)*(-2/15)*(3cos(v)-30sin(u)+90sin(u)*cos(u)^4-

60sin(u)*cos(u)^6+5cos(u)*cos(v)*sin(u))

y = sin(u)*(-1/15)*(3cos(v)-3cos(v)*cos(u)^2-

48cos(v)*cos(u)^4+48cos(v)*cos(u)^6-

60sin(u)+5cos(u)*cos(v)*sin(u)-

5cos(v)*sin(u)*cos(u)^3-80cos(v)*sin(u)*cos(u)^5+

80cos(v)*sin(u)*cos(u)^7)

z = sin(v)*(2/15)*(3+5cos(u)*sin(u))

Chain(x,y,z)

end # too long paths over QuotientTopology can stack overflow

kle = klein.(KleinParameter(100,100))

klecoef = secondkind(surfacemetric(kle))

ic = geodesic(klecoef,Chain(1.0,1.0),Chain(1.0,2.0),2pi)

lines(geosolve(ic,ExplicitIntegrator{4}(2^-7)));wireframe(kle)
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Example 0.72 (Upper half plane). Intrinsic hyperbolic Lobachevsky metric

halfplane(x) = TensorOperator(Chain(

Chain(Chain(0.0,inv(x[2])),Chain(-inv(x[2]),0.0)),

Chain(Chain(-inv(x[2]),0.0),Chain(0.0,-inv(x[2])))))

z1 = geosolve(halfplane,Chain(1.0,1.0),Chain(1.0,2.0),10pi,7)

z2 = geosolve(halfplane,Chain(1.0,0.1),Chain(1.0,2.0),10pi,7)

z3 = geosolve(halfplane,Chain(1.0,0.5),Chain(1.0,2.0),10pi,7)

z4 = geosolve(halfplane,Chain(1.0,1.0),Chain(1.0,1.0),10pi,7)

z5 = geosolve(halfplane,Chain(1.0,1.0),Chain(1.0,1.5),10pi,7)

lines(z1); lines!(z2); lines!(z3); lines!(z4); lines!(z5)
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Example 0.73. Calculus over Hopf fibration is enabled by HopfTopology,

stereohopf(x) = stereohopf(x[1],x[2],x[3])

function stereohopf(theta,phi,psi)

a = cos(theta)*exp((im/2)*(psi-phi))

b = sin(theta)*exp((im/2)*(psi+phi))

Chain(imag(a),real(b),imag(b))/(1-real(a))

end

hs = stereohopf.(HopfParameter());

alteration!(hs,wireframe,wireframe!)

Example 0.74. Streamplots on tangent spaces enabled by Cartanmethods,

streamplot(sph,vf2) # recall from previous examples

streamplot(tor,vf3)
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Example 0.75 (da Rios). The Cartan abstractions enable easily integrating

(0.24)
∂γ(x)

∂x2
= ⋆

(
∂γ(x)

∂x1
∧ ∂2γ(x)

∂x21

)
using Grassmann, Cartan, Adapode, Makie # GLMakie

start(x) = Chain(cos(x),sin(x),cos(1.5x)*sin(1.5x)/5)

x1 = start.(TorusParameter(180));

darios(t,dt=tangent(fiber(t))) = hodge(wedge(dt,tangent(dt)))

sol = odesolve(darios,x1,1.0,2^-11); mesh(sol,normalnorm)
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Example 0.76 (Bishop frame). As an alternative to the standard Frenet
style unitframe, the bishopunitframe(::SpaceCurve,angle::Real) has
an optional angle (integration constant) modulo rotation of tangent axis.

scaledarrows(x1,bishopunitframe(x1),gridsize=25)

lines!(x1,linestyle=:dash) # angle is optional
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Example 0.77 (Eigenmodes of disk). −∆u = λu with boundary n ·∇u = 0
is enabled with assemble for stiffness and mass matrix from Adapode:

using Grassmann, Cartan, Adapode, MATLAB, Makie # GLMakie

pt,pe = initmesh("circleg","hmax"=>0.1) # MATLAB circleg mesh

A,M = assemble(pt,1,1,0) # stiffness & mass matrix assembly

using KrylovKit # provides general eigsolve

yi,xi = geneigsolve((A,M),10,:SR;krylovdim=100) # maxiter=100

amp = TensorField.(Ref(pt),xi./3) # solutions amplitude

mode = TensorField.(graphbundle.(amp),xi) # make 3D surface

mesh(mode[7]); wireframe!(pt) # figure modes are 4,5,7,8,6,9
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To build on the FiberBundle functionality of Cartan, the numerical
analysis package Adapode is being developed to provide extra utilities for
finite element method assemblies. Poisson equation (−∇·(c∇u) = f) syntax
or transport (−ϵ∇2u+c·∇u = f) equations with finite element methods can
be expressed in terms of methods like volumes using exterior products or
gradienthat by applying the exterior algebra principles discussed. Global
Grassmann element assembly problems involve applying geometric algebra
locally per element basis and combining it with a global manifold topology.

function solvepoisson(t,e,c,f,k,gD=0,gN=0)

m = volumes(t)

b = assembleload(t,f,m)

A = assemblestiffness(t,c,m)

R,r = assemblerobin(e,k,gD,gN)

return TensorField(t,(A+R)\(b+r))

end

function solvetransport(t,e,c,f=1,eps=0.1)

m = volumes(t)

g = gradienthat(t,m)

A = assemblestiffness(t,eps,m,g)

b = assembleload(t,f,m)

C = assembleconvection(t,c,m,g)

TensorField(t,solvedirichlet(A+C,b,e))

end

function solvetransportdiffusion(tf,ek,c,d,gD=0,gN=0)

t,f,e,k = base(tf),fiber(tf),base(ek),fiber(ek)

m = volumes(t)

g = gradienthat(t,m)

A = assemblestiffness(t,c,m,g)

b = means(immersion(t),f)

C = assembleconvection(t,b,m,g)

Sd = assembleSD(t,sqrt(d)*b,m,g)

R,r = assemblerobin(e,k,gD,gN)

return TensorField(t,(A+R-C’+Sd)\r)

end

More general problems for finite element boundary value problems are also
enabled by mesh representations imported into Cartan from external sources
and computationally operated on in terms of Grassmann algebra. Many
of these methods automatically generalize to higher dimensional manifolds
and are compatible with discrete differential geometry. Further advanced
features such as DiscontinuousTopology have been implemented and the
LagrangeTopology variant of SimplexTopology is being used in research.
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Example 0.78 (Heatflow around airfoil). FlowGeometry builds on Cartan

to provide NACA airfoil shapes, and Adapode can solve transport diffusion.

using Grassmann, Cartan, Adapode, FlowGeometry, MATLAB, Makie

pt,pe = initmesh(decsg(NACA"6511"),"hmax"=>0.1)

tf = solvepoisson(pt,pe,1,0,

x->(x[2]>3.49 ? 1e6 : 0.0),0,x->(x[2]<-1.49 ? 1.0 : 0.0))

function kappa(z); x = base(z)

if x[2]<-1.49 || sqrt((x[2]-0.5)^2+x[3]^2)<0.51

1e6

else

x[2]>3.49 ? fiber(z)[1] : 0.0

end

end

gtf = -gradient(tf)

kf = kappa.(gtf(immersion(pe)))

tf2 = solvetransportdiffusion(gtf,kf,0.01,1/50,

x->(sqrt((x[2]-0.5)^2+x[3]^2)<0.7 ? 1.0 : 0.0))

wireframe(pt)

streamplot(gtf,-0.3..1.3,-0.2..0.2)

mesh(tf2)
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Example 0.79. Most finite element methods using Grassmann, Cartan

automatically generalize to higher dimension manifolds with e.g. tetrahedra,
and the author has contributed to packages such as Triangulate.jl, TetGen.jl.

using Grassmann, Cartan, Adapode,FlowGeometry,MiniQhull,TetGen

ps = sphere(sphere(∂(delaunay(PointCloud(sphere())))))

pt,pe = tetrahedralize(cubesphere(),"vpq1.414a0.1";

holes=[TetGen.Point(0.0,0.0,0.0)])

tf = solvepoisson(pt,pe,1,0,

x->(x[2]>1.99 ? 1e6 : 0.0),0,x->(x[2]<-1.99 ? 1.0 : 0.0))

streamplot(-gradient(tf),-1.1..1.1,-1.1..1.1,-1.1..1.1,

gridsize=(10,10,10))

wireframe!(ps)
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Example 0.80 (Maxwell’s equations rewritten). Cartan has Nedelec edge
interpolation useful for solving the time harmonic wave equation. Form
Maxwell’s equations using the Faraday bivector dA with ddA = 0,

(0.25) Evt + ⋆(Bvt) = (∇V − ∂tA)vt + ⋆((⋆dA)vt) = dA,

where E is electric field, B magnetic field, A is vector potential.

ddA = 0 ⇐⇒

{
∂B = 0 Gauss’s law

⋆dE = −∂tB Faraday’s law
(0.26)

⋆d ⋆ dA = J ⇐⇒

{
∂E = ρ Gauss’s law

⋆dB = J + ∂tE Ampere’s law
(0.27)

Maxwell’s equations simplify to a single spacetime wave equation.

(0.28) ∇(Evt + ⋆(Bvt)) = ∇dA = ⋆d ⋆ dA = ∇2A = J
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Example 0.81 (Stokes theorem). Paraboloid S = γ(X) bound by compact
support disk of radius 3, with circle f([0, 2π]) = ∂(S), and vector field F :

using Grassmann, Cartan, Makie # GLMakie

square = TensorField(ProductSpace(-3:0.003:3,-3:0.003:3))

cube = TensorField(ProductSpace(-4:0.1:4,-4:0.1:4,-1:0.2:10))

disk = (x->float(abs(x)<3)).(square) # compact support

paraboloid(x) = 9-x[1]*x[1]-x[2]*x[2]

S = graph(disk*paraboloid.(square))

F(x) = Chain(2x[3]-x[2],x[1]+x[3],3x[1]-2x[2])

mesh(S,normalnorm)

scaledarrows!(S,disk*unitnormal(S),gridsize=(22,22))

streamplot!(F.(cube),gridsize=(11,11,11))
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(0.29)

∫
S
∇× F · dS =

∫
X
(∇× F ) ·

(
∂γ(x)

∂x1
× ∂γ(x)

∂x2

)
dx1dx2

integrate(disk*(curl(F.(cube)).(S) · normal(S)))

(0.30)

∫
∂(S)

F · ds =
∫ 2π

0
F (f(t)) · f ′(t)dt

t = TensorField(0:0.001:2pi)

f(t) = Chain(3cos(t[1]),3sin(t[1]),0.0)

integrate(F.(f.(t)) · tangent(f.(t)))
(0.31)

∫
S
∇× F · dS =

∫
∂(S)

F · ds

56.5474 ≈ 56.547 ≈ 56.548667764616276 ≈ 18π

Both integration techniques come out to the same answer, this is called
Stokes theorem, a special case of the more general Stokes-Cartan theorem.
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Grassmann.jl and Cartan.jl pioneered many computational language design
aspects for fully generalized high performance computing with differential
geometric algebra. All of the mathematical types and operations in this
program were implemented from scratch with fundamental mathematical
principles merged to Julia’s type polymorphism code generation, which has
been refined and is being optimized for scientific computing over time.

This leads to the capability for multiple dispatch polymorphisms with
type aliases such as Scalar, GradedVector, Bivector, Trivector, or also
Quaternion, Simplex, etc. There are aliases such as Positions, Interval,
IntervalRange, Rectangle, Hyperrectangle, RealRegion, RealSpace, or
the many aliases of the type TensorField, such as ElementMap, SimplexMap,
FaceMap, IntervalMap, RectangleMap, HyperrectangleMap, Variation,
ParametricMap, RealFunction, PlaneCurve, SpaceCurve, AbstractCurve,
SurfaceGrid, VolumeGrid, ScalarGrid, CliffordField, DiagonalField,
EndomorphismField, OutermorphismField, ComplexMap, PhasorField, or
QuaternionField, SpinorField, GradedField, ScalarField VectorField
BivectorField, TrivectorField. Versatility of the Grassmann and Cartan

type system opens up many possibilities for computational language design.

This is a new paradigm of geometric algebra, anti-symmetric tensor
products, rotational algebras, bivector groups, and multilinear Lie brackets.
Algebra based on Leibniz differentials and Grassmann’s exterior calculus
extended with TensorField sections over a FrameBundle yields differential
geometric algebra based on the ImmersedTopology of a FiberBundle. The
sector integral theorem is a new alternative specialization to the Stokes-
Cartan theorem for general integrals in differential geometry, relating an
integral on a manifold and an integral on its boundary. Sector integral
theory is a new alternative formalism enabling Cartan style calculations.

As a result of Grassmann’s exterior and interior products, the Hodge-
DeRahm chain complex from cohomology theory is

0
d
⇄
∂

Ω0(M)
d
⇄
∂

Ω1(M)
d
⇄
∂

· · ·
d
⇄
∂

Ωn(M)
d
⇄
∂

0,

having dimensional equivalence brought by Grassmann-Hodge complement,

Hn−pM ∼= ker(dΩn−pM)
im(dΩn−p+1M)

, dimHpM = dim ker(∂ΩpM)
im(∂Ωp+1M)

= bp(M).

The rank of the grade p boundary operator is

(0.32) rank ⟨∂⟨M⟩p+1⟩p = min
{
dim ⟨∂⟨M⟩p+1⟩p ,dim⟨M⟩p+1

}
.

Invariant topological information can be computed using ranks of homology

(0.33) bp(M) = dim⟨M⟩p+1 − rank ⟨∂⟨M⟩p+1⟩p − rank ⟨∂⟨M⟩p+2⟩p+1

are Betti numbers with Euler characteristic χ(M) =
∑

p(−1)pbp.
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Grassmann algebra is a unifying mathematical foundation. Improving
efficiency of multi-disciplinary research using differential geometric algebra
by relying on universal mathematical principles is possible. Transforming
superficial knowledge into deeper understanding is then achieved with the
unified foundations widely applicable to the many different sub-disciplines
related to geometry and mathematical physics. During the early stages when
Grassmann.jl and Cartan.jl were being developed, many new computational
language design principles were pioneered for differential geometric algebra
research and development with a modern interactive scientific programming
language. With the interest surrounding the project increasing, there have
been some other similar projects taking inspiration from the Grassmann.jl
computational language design and thus validating the concepts.

While some of the computational language designs in Grassmann.jl and
Cartan.jl may seem like obvious choices for people seeing the completed
idea, please be aware that it has taken an enormous amount of creativity
and effort to make the many different decisions for these projects. The style
of computational language the author wanted to use didn’t exist yet before,
so if it really was such an obvious design–then why didn’t it exist before? It
took a lot of deep thinking and trying out previously overlooked ideas.

Acknowledgements: there was absolutely zero support from academic
institutions for the entire Grassmann.jl and Cartan.jl development and the
research project, everything was done entirely alone without any assistance.
Wolfram Research employed the author for some time, but in time it turned
out that the Wolfram assigned manager was delaying the author’s progress
in computational language design research. Since then, it appears that many
researchers are using company resources (from funds paid by academia) to
stalk the author with goals to gather language design inspiration. It seems to
be a regular occurence that many academic “communities” typically act in a
way that results in taking inspiration from the author’s research while using
their bureaucracy to delay the author’s progress. While this author was open
to implementing this research program at their institutions, the goals of these
institutions was always to delay the author’s progress. Typical academic
institutions everywhere thrive by creating obstacles for people on a regular
basis. Overall, the author’s experience is that the academic “community”
tend to leverage their institutional positions to delay researchers while they
figure out how to benefit. Academics operate with bureaucratic levers to
manipulate and delay the progress of other people or to brutally cut them
off from society. Finishing this research project required avoiding academia.

The academic “community” and Julia Computing have gone out of their
way to put obstacles in the way of the Grassmann.jl and Cartan.jl project.

Thanks to family and people who showed support engaging with project.
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Michael Reed, Differential geometric algebra with Leibniz and Grassmann,
JuliaCon (2019)

Michael Reed, Foundations of differential geometric algebra (2021)

Michael Reed, Multilinear Lie bracket recursion formula (2024)

Emil Artin, Geometric Algebra (1957)

John Browne, Grassmann Algebra, Volume 1: Foundations (2011)

C. Doran, D. Hestenes, F. Sommen, and N. Van Acker, Lie groups
as spin groups, J. Math Phys. (1993)

Lachlan Gunn, Derek Abbott, James Chappell, Ashar Iqbal, Func-
tions of multivector variables (2011)

Vladimir and Tijana Ivancevic, Undergraduate lecture notes in DeRahm-
Hodge theory. arXiv (2011)

Eckhard Hitzer, Introduction to Clifford’s Geometric Algebra (2011)

David Hestenes, Tutorial on geometric calculus. AACA (2013)

Garret Sobczyk, New Foundations in Mathematics: The Geometric Con-
cept of Number, Birkhauser (2013)

Siavash Shahshahani, An Introductory Course on Differentiable Mani-
folds, Dover (2016)
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