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The Relationship Between Pivot Vectors and Rotation Quaternions 

Russell P. Patera1 

Abstract  

The connection between the Pivot Vector and quaternion parameterizations of vehicle attitude transformation 

was investigated to enhance the understanding of each parameter set.  Attitude transformations using quaternions 

involve special product rules for axial rotations in hypercomplex 4-dimensional space.  Pivot Vectors involve slewing 

motion resulting in angular displacements in the 2-dimensional rotation plane.  In spite of these differences, Pivot 

Vectors and quaternions share the same rule for combining rotational transformations and the signature half angle 

rotation parameter.  The Pivot Vector Method defines an attitude transformation by the slewing motion of an axis 

extending from the center of a unit sphere to its surface.  Two Pivot Vectors that also reside in the equatorial plane 

drive the axis along a portion of a great circle arc in the equatorial plane.  A 180 degree rotation about the first 

Pivot Vector followed by a 180 degree rotation about the second Pivot Vector slews the axis by twice the angular 

separation between the Pivot Vectors.  This explains why the angle between Pivot Vectors is one half the desired 

rotation angle.  The slewing motion of the axis in the equatorial plane produces a rotation about the sphere’s polar 

axis that applies to all points on the spherical surface, thereby, changing the longitude of each point on the surface 

while leaving the associated latitude value unchanged.  This feature clearly shows that rotations are 2-dimensional.  

Two sequential transformations are combined by aligning the second Pivot Vector of the first transformation with 

the first Pivot Vector of the second transformation, even if the Pivot Vector pairs lie in different rotation planes.  

The linking of the Pivot Vector pairs is achieved because the two 180 degree rotations at the junction cancel, 

leaving the remaining Pivot Vectors to define the combined transformation.  The linking of two Pivot Vector pairs 

into a single Pivot Vector pair clarifies the geometry of combining rotational transformations and leads to the 

composition rule for both Pivot Vectors and quaternions.  The associated rotational quaternion can be easily 

derived, since its vector component is the cross product of the Pivot Vectors and its scalar component is the dot 

product of the Pivot Vectors.  A Pivot Vector pair can be obtained from the associated quaternion once its clocking 

location in the equatorial plane is defined.  The quaternion equation to rotate a vector is given a geometric 

interpretation using the associated Pivot Vectors.   

Keywords:  Pivot Vector, quaternion, attitude parameters, sequential transformations, direction cosine matrix 

Nomenclature 

a, b, c, d, e, f Pivot Vectors 

A, B, C, D Pivot Vectors 

DCM  direction cosine matrix 

ei  rotation axis components 

I, j, k  coordinate axis unit vectors 

L  latitude 

n, N  rotation axis 

P  longitude 

qt  total quaternion 
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q  vector component of quaternion 

q0  scalar component of quaternion 

q-1  inverse quaternion 

R  rotation axis 

T, T1, T2 angular displacements 

U  attitude transformation 

V  Vector to rotate 

Vn  Vector component normal to rotation axis 

Vp  Vector component parallel to rotation axis 

δ  rotation angle 

σ  rotation angle 

Δλ  latitude displacement 

ΔΩ  longitude displacement 

Δφ  longitude 

Δθ  latitude 

Ψ  DCM for 180 deg. rotation 

Θ  rotation angle 

   

1. Introduction 

This work focuses on the connection between Pivot Vectors, PVs (Patera, 2017) and rotational 

quaternions (Kuipers, 1999), (Rose, 2015), (Wyse-Gallifent, 2021) and does not repeat existing literature 

relating quaternions to traditional attitude parameterizations, such as, Euler Angles, direction cosine 

matrices, DCMs, axis-angle, etc. (Shuster, 1999).  Therefore, much of the content in this work involves 

PVs, due to their limited reference material.   

Although PVs were developed to clarify the geometry of combining rotations in a rotational 

sequence, they also have applications in attitude representation and attitude kinematics.  A few 

examples are included below.  The geometry of linking transformations was applied to Euler Angle 

sequences and enabled each of the 12 Euler Angle sequences to be reduced to a single pair of PVs 

(Patera, 2017).  Using PVs and associated geometry, the quaternion composition rule was derived 

(Patera, 2017).  PVs proved very useful in accurately computing the solid angles for spherical polygons 

and other related shapes of interest to the medical field (Patera, 2020a), (Patera, 2020b).  The absolute 

rotation and rotation rate of a Foucault Pendulum and its mounting fixture were computed using PVs, 

which clarifies the associated non-intuitive kinematics of the pendulum (Patera, 2022).    

Any attitude parameter set must define both the angle of rotation and the associated axis of rotation.  

The rotation quaternion has scalar component that defines the rotation angle and a vector component 
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that defines the axis direction.  A PV pair, which is equivalent to a quaternion, lies in the rotation plane 

and defines the rotation axis as the cross product of the PVs.  The rotation angle, θ, is defined by the 

angular separation between the PVs, which is θ/2.  This explains the one half angle that appears in both 

PVs and rotation quaternions.  PVs are the building blocks of the rotational quaternion, since the PV dot 

product and cross product are the scalar and vector components of the associated rotational quaternion.  
Attitude transformations using rotational quaternions involve special product rules for axial rotations in 

hypercomplex 4-dimensional space.  PVs use 180 degree rotations about each PV in sequence to achieve an 

attitude transformation.  The DCMs for PVs and rotation quaternions are given in Section 2.       

Section 3 provides a short review of the Pivot Vector Method, PVM, (Patera, 2017), since many 

readers may not be familiar with them.  The PVM involves angular displacements in the 2-dimensional 

plane that have associated rotations about the respective polar axes.  PVs can be used to rotate an 

arbitrary point on the surface of a unit sphere by a desired rotation angle.  A feature of all PVs is that 

they can be easily combined, so two PV pairs can be combined into a single pair.  The process can be 

repeated to combine any number of PV pairs.  Since PVs reside in the rotational plane, the resulting 

rotation extends to three-dimensional space.  If two pairs of PVs reside in the equatorial plane of a 

spherical surface, they can be easily combined using the PVM.  In addition, since the PV pairs employ the 

same rotational axis, they commute.  

Section 4 shows that PVM has the ability to combine rotations associated with PV pairs having 

different rotational planes on a spherical surface.  Each PV pair is simply moved to the intersection of the 

rotational planes before combining into a single PV pair representing the combined rotation.  The 

resulting PV pair defines its own rotation plane, so it can be combined with other rotations in a similar 

fashion.  In this manner any number of rotations can be combined into a single rotation PV pair.  The 

DCM for the final PV pair is easily computed as the product of the respective PV DCMs.   

Section 5 shows that the rotational quaternion is defined in terms of PVs and PVs are defined in terms 

of rotational quaternions.  Since there are an infinite number of PV pairs that define a given attitude 

transformation, additional information on the PV clocking in the equatorial plane is needed before PVs 

can be uniquely defined from the associated rotational quaternion.  Gimbal lock and singularities do not 

occur when using rotational quaternions or PVM (Rose, 2015), (Kuipers, 1999).  The quaternion 

representing the identity transformation is easily understood using PVM.  The quaternion representation 

of a vector is derived using PVM.   

Section 6 derives the composition rule for PVM by linking PV pairs at the intersection of the 

respective rotation planes (Patera, 2017).  The quaternion composition rule, which is usually found using 

the quaternion product (Rose, 2015), (Wyse-Gallifent, 2021), (Kuipers, 1999), is derived from the PV 

composition rule.  The half angle of the desired rotation appears in PVM and is inherited by the 

rotational quaternions.   

In Section 7, the PV method for rotating a vector is derived and clearly shows that a rotation occurs in 

a 2-dimensional plane and only involves vector dot products.  In Section 8, the rotation quaternion 

method for rotating a vector is presented (Rose, 2015), (Kuipers, 1999).  It relies on an equation involving 

two quaternion products that is conceptually challenging due to the four-dimensional quaternion 

parameterization.  The equation is validated by using the scalar vector form of the rotational quaternion 

(Rose, 2015), (Wyse-Gallifent, 2021), (Kuipers, 1999).   
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Section 9 interprets the quaternion rotation equation using the associated Pivot Vector 

representation for each quaternion in the equation.  The geometry of each PV pair is provided to clarify 

the process of linking the PV pairs.  The translation of the quaternion rotation equation into the 

associated Pivot Vectors enhances the conceptual understanding and reveals the underlying geometry 

hidden in the equation.  Section 9 provides a conclusion that summarizes the work.  

2. Attitude transformation using Pivot Vectors   

The attitude transformation due to Pivot Vectors a, b can be found by multiplying their associated 

DCMs.  The DCM, for a rotation of θ degrees about the unit vector axis, e, is given by eq. (1), where C = 

cos(θ) – 1, S = sin(θ).  Eq. (1) is the axis-angle representation of a rotation of θ about axis e.  For a single 

Pivot Vector rotation of 180 degrees, C = -2, S = 0 and eq. (1) reduces to the symmetric matrix in eq. (2). 

𝐔(𝐞, 𝛉) = (

1 + (𝑒𝑧
2 + 𝑒𝑦

2)𝐶 −(𝑒𝑥𝑒𝑦𝐶 + 𝑒𝑧𝑆) 𝑒𝑦𝑆 − 𝑒𝑥𝑒𝑧𝐶

𝑒𝑧𝑆 − 𝑒𝑥𝑒𝑦𝐶 1 + (𝑒𝑥
2 + 𝑒𝑧

2)𝐶 −(𝑒𝑧𝑒𝑦𝐶 + 𝑒𝑥𝑆)

−(𝑒𝑧𝑒𝑥𝐶 + 𝑒𝑦𝑆) 𝑒𝑥𝑆 − 𝑒𝑦𝑒𝑧𝐶 1 + (𝑒𝑥
2 + 𝑒𝑦

2)𝐶

)   (1) 

𝛙(𝐞) = 𝐔(𝐞, 180) = (

2𝑒𝑥
2 − 1 2𝑒𝑥𝑒𝑦 2𝑒𝑥𝑒𝑧

2𝑒𝑥𝑒𝑦 2𝑒𝑦
2 − 1 2𝑒𝑧𝑒𝑦

2𝑒𝑥𝑒𝑧 2𝑒𝑧𝑒𝑦 2𝑒𝑧
2 − 1

)     (2) 

Using eq. (2), one finds the DCM for the two sequential 180 degree rotations about a and b, which are 

separated by θ/2, as U(e, θ) in eq. (3).  The transformation results in a rotation of θ degrees about the 

axis e, which is normal to the rotation plane defined by a and b.  Note that the transformation in eq. (3) 

involves only the components of the associated rotation axes, a and b, as indicated by the subscripts in 

eq. (2), and does not involve trigonometric functions.  Since each matrix in eq. (3) is symmetric, 

computational effort is reduced.  

𝐔(𝐞, θ) = 𝛙(𝐚) 𝛙(𝐛)     (3) 

The DCM in eq. (3) can be used to rotate any vector V, as shown in eq. (4).    

𝐕′ = 𝐔(𝐞, θ) 𝐕 = 𝛙(𝐚) 𝛙(𝐛) 𝐕 = [𝛙(𝐚) 𝛙(𝐛)] 𝐕   (4) 

For completeness the corresponding transformation matrix for quaternions is given in eq. (5),  where 

the four quaternion parameters are defined in eqs. (6) - (10).  

𝐔(𝐪) = [

𝑞1
2 − 𝑞2

2 − 𝑞3
2 + 𝑞0

2 2(𝑞1𝑞2 − 𝑞3𝑞0) 2(𝑞1𝑞3 + 𝑞2𝑞0)

2(𝑞1𝑞2 + 𝑞3𝑞0) −𝑞1
2 + 𝑞2

2 − 𝑞3
2 + 𝑞0

2 2(𝑞2𝑞3 − 𝑞1𝑞0)

2(𝑞1𝑞3 − 𝑞2𝑞0) 2(𝑞2𝑞3 + 𝑞1𝑞0) −𝑞1
2 − 𝑞2

2 + 𝑞3
2 + 𝑞0

2

]  (5) 

 

𝐐 = (

𝑞0

𝑞1
𝑞2

𝑞3

)       (6) 

q0 = cos (
θ

2
)      (7) 

𝐪𝟏 = 𝐞𝟏sin (
θ

2
)      (8) 
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𝐪𝟐 = 𝐞𝟐sin (
θ

2
)      (9) 

𝐪𝟑 = 𝐞𝟑sin (
θ

2
)      (10) 

3. Displacements on a spherical surface using Pivot Vectors   

Pivot Vectors A and B that reside in the equatorial plane can be used for angular displacement on the 

surface of a unit sphere.  The sequence of two 180 degree rotations about A and B, respectively, result in 

a rotation about the sphere’s polar axis equal to twice the angular separation of A and B. Fig. 1 illustrates 

a 180 degree rotation about A that moves B to B’ followed by a 180 degree rotation about B’ that moves 

A to A’. as shown.  The direction of rotation is from B to A.  Thus, a displacement along the equatorial 

plane is equivalent to a rotation about the polar axis, which applies to every point on the surface of the 

sphere.  The inverse rotation is given by rotating about B before A.  The PV pair can be moved to any 

location in the equatorial plane while yielding the same transformation.  Since a 180 degree rotation is 

equivalent to a -180 degree rotation, the direction of each PV can be reversed without changing the 

result but the order of the rotations must be maintained.  This feature enables the separation angle 

between PVs to be equal to or less than 90 degrees, while still representing any desired rotational 

transformation.   

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.  Sequential rotation of 180 degrees about A and B result in a rotation about the polar axis by 

twice the separation angle between A and B. 

If another PV pair, C, D is also located in the same equatorial plane as A, B, the associated rotations 

can be combined by moving the pairs such that B aligns with C.  The two 180 degree rotations at B 

cancel, which results in a combined displacement defined by PV pair A, D.   

Consider two PVs A and B normal to a spherical surface that extend from the center of a unit sphere 

to its surface.  Let σ be the angular separation between points A and B, which are separated by a 

geodesic arc of length, σ, since the radius of the sphere is one.  An axis, P, is also located on the great 

B A 
B’ 

A’ 

N 

equator 
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circle arc that contains A and B.  The great circle arc can be considered an equatorial plane of the 

spherical surface with the polar axis normal to the equatorial plane.  Position along the equatorial plane 

is defined by the angular parameter, longitude similar to that used for Earth coordinates.  The angular 

distance, Δφ, between P and A is given in eq. (11).   

𝚫𝛟 = 𝐏 − 𝐀       (11) 

A 180 degree rotation about A relocates P to P1, as shown in eq. (12), where eq. (11) has been used. 

𝐏𝟏 = 𝐀 − 𝚫𝚽 = 𝟐𝐀 − 𝐏     (12)  

In a similar manner B relocates to B1, as shown in eq. (13). 

𝐁𝟏 = 𝐀 − Δ𝐁 = 𝟐𝐀 − 𝐁     (13)  

The distance between P1 and B1 is ΔB1, as shown in eq. (14). 

𝚫𝐁𝟏 = 𝐏𝟏 − 𝐁𝟏      (14) 

A 180 degree rotation about B1 relocates P1 to P2 as shown in eq. (15). 

𝐏𝟐 = 𝐁𝟏 − 𝚫𝐁𝟏 = 𝟐𝐁𝟏 − 𝐏𝟏 = 𝟐(𝐀 − 𝐁) + 𝐏   (15) 

The net displacement, T1, after the two sequential 180 degree rotation is P2 - P, as shown in eq. (16). 

𝐓𝟏 = 𝐏𝟐 − 𝐏 = 𝟐 (𝐀 − 𝐁)     (16) 

The angular displacement value shown in eq. (16) is independent of the location of P along the 

equator.  It only depends upon the relative angular separation between points A and B.  Therefore, 

points A and B can be clocked to any location along the equator, as long as, their separation distance 

remains the same.  The angular displacement, T1, resulting from the sequential rotations of 180 degrees 

about A and B is equivalent to a rotation about the polar axis normal to the equatorial plane containing 

A and B and is independent of the clocking of the A, B pair.  Since the angular separation between A and 

B is σ, the associated rotation for the displacement in eq. (16) is given in eq. (17).  This is how Pivot 

Vectors generate rotation about an axis normal to the plane containing A and B.   

𝐓𝟏 = 𝐏𝟐 − 𝐏 = 𝟐 (𝐀 − 𝐁) = 2σ     (17) 

Another angular displacement, T2, associated with PVs C and D, which also are on the equatorial 

geodesic and are separated by angle, δ, can be combined with the displacement of A and B, as given in 

eq. (18). 

  𝐓 = 𝐓𝟏 + 𝐓𝟐 = 𝟐(𝐀 − 𝐁) + 𝟐(𝐂 − 𝐃)    (18) 

Since only the relative position of A with respect to B and the relative position of C with respect to D 

determine the associated angular displacements, each pair of points can be moved about in the 

equatorial plane while yielding the same angular displacements.  As a result, one can move the C, D pair 

such that C aligns with B, and eq. (18) simplifies to eq. (19).  

  𝐓 = 𝟐(𝐀 − 𝐁) + 𝟐(𝐂 − 𝐃) = 𝟐(𝐀 − 𝐃) = 2(σ + δ)   (19) 
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The 180 degree rotations about B and C results in a 360 degree rotation or no rotation at all.  This 

feature of PVs enables them to link transformations, thereby, simplifying the results for the angular 

displacement along a geodesic on a spherical surface.  The inverse transformation is obtained by 

reversing the order of the rotations in eq. (19) to obtain eq. (20).    

  𝐓 = 𝟐(𝐃 − 𝐀) = −2(σ + δ)    (20) 

The results derived above can be generalized for any point on the spherical surface, including those 

points that are out of the equatorial plane.  A general point on the spherical surface can be defined by its 

longitude, P, and latitude, L.  Vectors A and B remain on the equatorial geodesic arc.  The angular 

distance between P and A now has two components, longitude, Δφ, and latitude, Δθ, as given in eq. (21) 

and eq.(22).  Notice that both A and B have zero values of latitude, since they are in the equatorial plane. 

𝚫𝛟 = 𝐏 − 𝐀       (21) 

𝚫𝛉 = 𝐋       (22) 

A 180 degree rotation about A relocates P to P1, as shown in eq. (23), where eq. (21) has been used. 

𝐏𝟏 = 𝐀 − 𝚫𝚽 = 𝟐𝐀 − 𝐏     (23)  

In a similar manner, a 180 degree rotation about A relocates the latitude value of P1 to a negative value, 

as shown in eq. (24). 

𝐋𝟏 = −𝚫𝛉 = −𝐋      (24)  

The rotation about A also relocates B to B1, as shown in eq. (25). 

𝐁𝟏 = 𝐀 − Δ𝐁 = 𝟐𝐀 − 𝐁     (25)  

The latitude value of B remains zero, since it is on the equatorial plane.  The distance between P1 and B1 

is ΔB1, as shown in eq. (26). 

𝚫𝐁𝟏 = 𝐏𝟏 − 𝐁𝟏      (26) 

A 180 degree rotation about B1 relocates P1 to P2 as shown in eq. (27).   

𝐏𝟐 = 𝐁𝟏 − 𝚫𝐁𝟏 = 𝟐𝐁𝟏 − 𝐏𝟏 = 𝟐(𝐀 − 𝐁) + 𝐏   (27) 

The 180 degree rotation about B1 also restores the latitude value of -L back to L.  The net longitudinal 

displacement, ΔΩ, after the two sequential 180 degree rotation is P2 - P, as shown in eq. (28).  The net 

latitudinal displacement is zero, as given in eq. (29). 

𝚫𝛀 = 𝐏𝟐 − 𝐏 = 𝟐 (𝐀 − 𝐁)     (28) 

𝚫𝛌 = 𝐋 − 𝐋 = 0      (29) 

In addition to the longitudinal displacement in eq. (28), there is an associated rotation about the 

polar axis of magnitude 2 σ that applies to any arbitrary axis P in the equatorial plane.  If one desires a 

rotation of σ, then the angular separation between A and B must be σ/2, which clarifies the origin of the 

half angle that appears in both PV and quaternion representations.  The preceding analysis shows how 

PVs generate a displacement along the equatorial plane on a unit sphere and a rotation about the 
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associated polar axis that applies to any point on the spherical surface.  Since the spherical surface is 

fixed with respect to the associated rigid body, the rotation about the polar axis applies to the rigid body, 

as well.      

4. Combining displacements on a spherical surface  

The previous section showed how two Pivot Vectors located in the equatorial plane and separated by 

angle σ can be used to rotate any point on a spherical surface about the polar axis by 2 σ.  The rotation 

about the polar axis rotates all points located on the surface of the sphere not just those located in the 

equatorial plane. 

One can combine the rotation due to Pivot Vectors A and B with the rotation generated by arbitrary 

Pivot Vectors C and D that are not in the equatorial plane, as shown in Fig.2.  The Pivot Vectors C and D 

are on their own geodesic that differs from that of A and B.  Each pair of Pivot Vectors can be clocked along 

their respective great circle arcs without changing their associated rotations.  There is no need to change 

the variable name due to the clocking transformation, since each PV pair represents its respective 

transformation no matter where it is located in its rotational plane.   

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.  The A, B rotation combines with the C, D rotation by aligning C with B and results in the 

combined rotation defined by the A, D pair. 

One can clock each pair so that Pivot Vector B aligns with Pivot Vector C at the intersection, N, of the 

great circle arcs, given by eq. (30).  Fig. 2 illustrates the intersecting rotational planes that enable the 

rotations about B and C to cancel, leaving the Pivot Vector pair A and D to define the combined 

transformation.  

D 

B, C 

A 

B x A 

D x C 
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𝐍 =  
(𝐁 × 𝐀) × (𝐃 × 𝐂)

[(𝐁 × 𝐀) × (𝐃 × 𝐂)]
= 𝐁 = 𝐂     (30) 

Using eq. (30), one can find the clocked  A and D using eq. (31) and eq. (32), since the location of B 

and C are known to be N.  A, D define a new equatorial plane and associated polar axis, as shown in eq. 

(31) and eq. (32), where the triple cross product identity has been used. 

𝐀 = (𝐀 ∙ 𝐁) 𝐍 + (𝐁 × 𝐀) × 𝐍 = (𝐀 ∗ 𝐁) 𝐍 + (𝐍 ∙ 𝐁) 𝐀 − (𝐍 ∙ 𝐀) 𝐁   (31) 

𝐃 = (𝐂 ∙ 𝐃) 𝐍 − (𝐃 × 𝐂) × 𝐍 = (𝐂 ∙ 𝐃) 𝐍 + (𝐍 ∙ 𝐂) 𝐃 − (𝐍 ∙ 𝐃) 𝐂   (32) 

The total rotation can be generated by the A, D pair, as given in eq. (33).  The two 180 degree rotations 

about Pivot Vector N cancel each other, which reduces four Pivot Vectors to just two Pivot Vectors, 

shown in eq. (33).    

𝐔 = 𝛙(𝐀)𝛙(𝐁)𝛙(𝐂)𝛙(𝐃) = 𝛙(𝐀)𝛙(𝐍)𝛙(𝐍)𝛙(𝐃) = 𝛙(𝐀)𝛙(𝐃)   (33)  

The result derived in eq. (33) shows that any two arbitrary rotations can be combined into a single 

rotation defined by just two PVs.  The associated composition rule is derived in Section 6.  The process 

can be applied to any number of sequential rotations spanning the surface of a unit sphere.  The 

resulting single PV pair represents the combination of all the rotations.  The PV pair defines the angular 

displacement in the rotational plane and the associated rotation about the polar axis normal to the 

rotational plane. 

5. Relating Pivot Vectors to rotational quaternions   

Pivot Vectors are closely related to rotational quaternions, since the scalar and vector components of 

the quaternion are defined by the dot and cross products of the associated Pivot Vectors, respectively.  A 

single rotational quaternion, qt, that represents a rotation of θ degrees about the rotation axis, n ,is 

defined in eq. (34) and contains the same information as the PV pair a, b.  It is clear from eq. (34) that 

the angular separation between a and b is θ/2 and that they lie in the rotation plane. 

𝒒𝒕 = cos (
θ

2
) + sin (

θ

2
) 𝐧 = q0 + 𝐪 = 𝐚 ∙ 𝐛 + 𝐛 × 𝐚    (34)  

Eq. (34) shows how a quaternion can be defined by a Pivot Vector pair and how it inherited the half 

angle from the Pivot Vector formulation.  Note that a single transformation has two rotational 

quaternion solutions, given by qt and -qt, that may have to be resolved for some applications.  A single 

transformation has PV pair a and b separated by θ/2 that can be clock anywhere around the rotation 

plane, but the order and separation angle of the pair must be the same.   

Since PVs can be clocked to any location in the rotation plane, they are not unique and additional 

information is needed before a quaternion can be used to define a specific PV pair.  If one defines the 

location of PV a, eq. (35) can be used to obtain PV b.  If the clocking location of PV b is known, PV a can 

be obtained using eq. (36).  Thus, a quaternion can be used to define a PV pair as long as the clocking 

information is provided.    

𝐛 = q0 𝐚 + 𝐚 × 𝐪     (35) 

𝐚 = q0 𝐛 + 𝐪 × 𝐛      (36) 
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The scalar quantity, q0, in the quaternion formulation has an important role in PVM by contributing 

to a and b, as shown in eqs. (35) and (36).    

A given transformation is represented by a single PV pair, since changing the sign of one or both of 

the PVs yields the same transformation.  In addition, changing the 180 degree rotation about either PV 

to a -180 degree rotation results in the same transformation.  Thus, if the PV dot product is negative one 

can change the sign of one of the PVs to ensure that the dot product remains positive and the angle 

between them, θ/2, is equal to or less than 90 degrees.  Notice that changing the signs of q0 and q in 

eqs. (35) and (36) is equivalent to changing the signs of a and b, which leaves the transformation 

unchanged in PVM.     

The identity transformation can be found when θ/2 equals 0 and a equals b, with the associated 

quaternion obtained from eq. (34) and is given by eq. (37).  

𝐪𝐭 = (1, 0, 0, 0)     (37) 

A pure vector, V, can be found when θ/2 equals 90 degrees and b, a, v forms an orthogonal triad.  The 

related quaternion is found from eq. (34) and is given by eq. (38), where V is normalized to unity. 

𝐪𝐭 = (0, 𝐕𝑋 , 𝐕𝐘, 𝐕𝐙,)    (38) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.  The product of two pure vectors is found by linking the PV pairs a, b and c, d to obtain pair a, d. 

The product of two quaternions representing pure unit vectors, V, can be understood using Fig. 3 

with a aligned with the x-axis, b and c are aligned with the negative y-axis, d is aligned with the negative 

x-axis and V is aligned with the z-axis.  PVs b, a, V form an orthogonal triad, as well as PVs d, c, V.  One 

i 

d 

b, c 

a 

V, k 
-j 
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aligns b and c to combine the transformations, as shown in eq. (39).  The combined transformation is 

governed by the PV pair d, a, and its associated quaternion shown in scalar vector form in eq. (40). 

𝐔 = 𝛙(𝐚) 𝛙(𝐛) 𝛙(𝐜) 𝛙(𝐝) = 𝛙(𝐚) 𝛙(𝐝)   (39) 

𝐪𝐭 = (𝐚 ∙ 𝐝, 𝐝 × 𝐚)      (40)  

Since a = 1 i and d = -1 i, as is apparent from Fig. 3, eq. (40) reduces to eq(41).    

 𝐪𝐭 = (−1, 0, 0, 0)      (41) 

One can multiply V by a scalar to increase its magnitude to any desired value.  The result obtained in 

eq. (41) seems non-intuitive, but Fig. 3 clarifies why the negative one appears in the result.  Note that 

the PVs a and d result in the identity transformation in PVM, since negative d can be replaced with 

positive d without changing the results.           

The PVM inverse is obtained by reversing the order of a and b, which changes the quaternion to its 

inverse, as shown in eq. (42). 

𝑞𝑡
−1 = 𝐛 ∙ 𝐚 + 𝐚 × 𝐛 = 𝐚 ∙ 𝐛 − 𝐛 × 𝐚 = cos (

θ

2
) − sin (

θ

2
) 𝐧 = q0 − 𝐪 (42)  

For both quaternions and PVs, the axis and rotation angle can be found using eq. (43) and eq. (44) to 

obtain the result in the axis-angle representation.  Note that a dot b is always positive in PVM, so θ is 

equal to or less than 90 degrees, whereas, two solutions, +q and -q, are permitted in the quaternion 

formulation. 

θ = 2cos−1(𝐚 ∙ 𝐛) = 2 cos−1(q0)    (43) 

𝐧 =
𝐛×𝐚

|𝐛×a|
=

𝐪

|𝐪|
      (44) 

6. Deriving the composition rule for PVs and rotational quaternions   

Pivot Vectors and rotational quaternions share the same rule for combining rotations, (Patera, 2017).  

Consider combining a rotation of θ about axis U with a rotation of φ about axis V, where U and V are unit 

vectors.  The associated PV pairs for rotation axes U and V are (a, b) and (c, d), respectively, as shown in 

eq (45) and eq. (46).  

sin (
𝜃

2
) 𝐔 = 𝐪𝐔 = 𝐛 × 𝐚      (45) 

sin (
Φ

2
) 𝐕 = 𝐪𝐕 = 𝐝 × 𝐜      (46) 

    In order to combine the rotations, we construct the Pivot Vectors at the intersection of the rotation 

planes, which defines vectors b and c, as given in eq. (47). 

𝐍 =
𝐔×𝐕

|𝐔×𝐕|
= 𝐛 = 𝐜      (47) 

Since b = N, one can construct the a using eq. (36), as shown in eq. (48).  

𝐚 = q0 𝐛 + 𝐪 × 𝐛 = 𝐍 cos (
θ

2
) + (𝐔 × 𝐍) sin (

θ

2
)    (48) 
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The first rotation about axis A is defined by the PV pair (a, b) and its DCM is given in eq. (49). 

𝐔(𝐚, 𝐍) = 𝛙(𝒂) 𝛙(𝐍) = 𝛙(𝐚) 𝛙(𝐛)    (49) 

In the same manner, one can construct d for the second rotation about axis V using eq. (35), as shown in 

eq. (50). 

𝐝 = q0 𝐜 + 𝐜 × 𝐪 = 𝐍 cos( φ/2) + (𝐍 × 𝐕) sin( φ/2)    (50) 

Therefore, the second rotation is defined by the PV pair (c, d) and its DCM is given by eq. (51). 

𝐔(𝐍, 𝐝) = 𝛙(𝐍) 𝛙(𝐝) = 𝛙(𝐜) 𝛙(𝐝)    (51) 

The rotations can now be combined, since the two rotations of 180 degrees about N cancel and result in 

the PV pair (a, d) representing the combined rotation.  The final DCM is shown in eq. (52). 

𝛙(𝐚) 𝛙(𝐍) 𝛙(𝐍) 𝛙(𝐝) = 𝛙(𝐚) 𝛙(𝐝)    (52) 

The PVM clarifies how quaternions combine.  Based on eq. (34), the quaternions for the rotations 

about axis U and axis V are given in eqs. (53) and (54), where the scalar and vector portions of each 

quaternion are separated.  

𝐪𝐔 = 𝐛 × 𝐚 = 𝐔 sin( θ/2),  q0U = 𝐚 ∙ 𝐛 = cos( θ/2)   (53) 

𝐪𝐕 = 𝐝 × 𝐜 = 𝐕 sin( φ/2)
, 

q0V = 𝐝 ∙ 𝐜 = cos( φ/2)   (54) 

The vector portion of the combined quaternion, q, is obtained as the cross product of d with a, and the 

scalar portion is the dot product of a and d, as shown in Eq. (55).  

𝐪 = 𝐝 × 𝐚 = sin( θ/2) cos( φ/2) 𝐔 + sin( φ/2) cos( θ/2) 𝐕 + sin( θ/2) sin( φ/2) (𝐔 × 𝐕)  (55) 

q0 = 𝐚 ∙ 𝐝 = cos( θ/2) cos( φ/2) − (𝐔 ∙ 𝐕) sin( θ/2) sin( φ/2)
      

Using Eqs. (53) & (54) in Eq. (55), results in the expected equation for the combination of two rotations 

using quaternions, as shown in eq. (56).  Thus, the quaternion composition rule in eq. (56) was derived 

from the PV composition rule.  Note that the quaternion composition equation in eq. (56) is normally 

derived by quaternion multiplication, as shown in eq. (57), (Kuipers, 1999).   

𝐪 = q0B 𝐪𝐔 + q0A 𝐪𝐕 +  (𝐪𝐔 × 𝐪𝐕)       

 q0 = q0U q0V − 𝐪𝐔 ∙ 𝐪𝐕       (56) 

 𝐪𝐭 = q0 + 𝐪 = 𝐪𝐕 𝐪𝐔       (57) 

7. Rotating a vector with Pivot Vectors    

Section 3 showed how an arbitrary vector can be rotated by a PV pair.  The PV pair defines an 

equatorial plane and an arbitrary vector has an associated latitude and longitude.  After rotation by the 

PV pair, the longitude of the vector was increased by twice the angular separation between A and B, 

while its latitude remained fixed.  A general equation can be derived that doesn’t refer to latitude of 

longitude by using a method similar to that of Section 3.   
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One can rotate a vector, V, by θ degrees about rotation axis R using the PV pair a, b, separated by θ/2 

degrees assuming V is not aligned with R.  If V is aligned with R, then V does not change due to the 

rotation.  Let b be a PV normal to the V, R plane, as defined by eq. (58).    

𝐛 =
𝐑 × 𝐕

|𝐑 × 𝐕|
       (58) 

Pivot Vector a can be constructed from R and b, as shown in eq. (59), based on eq. (36).   

𝐚 = cos (
θ

2
) 𝐛 + sin (

θ

2
) (

𝐑 × 𝐛

|𝐑× 𝐛|
)    (59) 

The PV pair, a, b can rotate an arbitrary vector, V.  The component of V normal to vector a is given by 

subtracting V’s parallel component from V, as shown in eq. (60), where h is the normal component. 

𝐡 = 𝐕 − (𝐕 ∙ 𝐚) 𝐚      (60) 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.  Rotating V about a by 180 degrees is equivalent to subtracting 2h from V. 

The rotation of V about a by 180 degrees is equivalent to subtracting 2 h from V and using eq. (60), as 

given in eq. (61).  Fig. 4 illustrates how a 180 degree rotation of V about a can be accomplished by 

subtracting 2h from V 

𝐕′ = 𝐕 − 2 𝐡 = 2 (𝐕 ∙ 𝐚) 𝐚 − 𝐕    (61) 

The same 180 degree rotation about a relocates b to b’, as shown in eq. (62). 

𝐛′ = 2 (𝐛 ∙ 𝐚) 𝐚 − 𝐛      (62) 

Now V’ is rotated about b’ by 180 degrees using eq. (61) with b’ replacing a, as given in eq. (63). 

𝐕′′ = 2(𝐕′ ∙ 𝐛′) 𝐛′ − 𝐕′     (63) 

Using eq. (61) and eq. (62) in eq. (63), one obtains eq. (64) after simplification. 

V’ 

a 

h 

V 

180 
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𝐕′′ = [4 (𝐕 ∙  𝐛)(𝐛 ∙ 𝐚) − 2(𝐕 ∙ 𝐚)] 𝐚 − 2(𝐕 ∙ 𝐛) 𝐛 + 𝐕  (64) 

Since the vector, V, is arbitrary, the rotation generated by a rotation of θ about axis R is given by eq. 

(64) with a and b defined in eq. (58) and eq. (59).  Eq. (64) shows that the only change to V occurs in the 

plane containing a and b, which indicates that the rotation occurs in a 2-dimensional plane.  The 

component of V normal to the plane containing a and b is not changed by the rotation.  

8. Rotating a vector with quaternions  

The equation to rotate a vector using quaternions is created by converting the vector into a 

quaternion, (Kuipers, 1999), with a scalar portion of zero, as shown in eq. (65).  This occurs when the 

associated PVs, a and b are orthogonal, so that a dot b is zero.  The quaternion equation to rotate a 

vector is given by eq. (66), where the combine quaternion on the right hand side of eq. (66) has only a 

vector component with its scalar portion equal to zero.  The quaternion and inverse quaternion are given 

in eqs. (67) and (68).   

𝐕 = 0 + 𝐕      (65) 

𝐕′ = 𝐪𝐕𝐪−𝟏       (66) 

𝐪 = cos (
θ

2
) + sin (

θ

2
) 𝐧     (67) 

𝒒−𝟏 = cos (
θ

2
) − sin (

θ

2
) 𝐧    (68) 

The first quaternion multiplication in eq. (66) is found using the quaternion composition rule and yields 

eq. (69). 

𝐪𝐕 = −sin (
θ

2
) (𝐧 ∙ 𝐕) + cos (

θ

2
) 𝐕 + sin (

θ

2
) (𝐧 × 𝐕)   (69) 

Multiplying eq. (69) and q-1 yields the final quaternion, which is the rotated vector, as given in eq. (70).  

𝐪𝐕𝐪−𝟏 = cos2 (
θ

2
) 𝐕 + 2 cos (

θ

2
) sin (

θ

2
) (𝐧 × 𝐕) + sin2 (

θ

2
) [(𝐧 ∙ 𝐕)𝐧 − (𝐧 × 𝐕) × 𝐧]  (70) 

The unrotated vector can be decomposed into a component parallel to the rotation axis and a 

component orthogonal to the rotation axis, as shown in eq. (71). 

𝐕 = (𝐧 ∙ 𝐕)𝐧 + (𝐧 × 𝐕) × 𝐧     (71) 

Using V from eq. (71) in the first term on the right hand side of eq. (70), yields eq. (72) after the double 

angle formulas for sine and cosine were used.  

𝐕′ = (𝐧 ∙ 𝐕)𝐧 + cos(θ)[(𝐧 × 𝐕) × 𝐧] + sin(θ)(𝐧 × 𝐕)  (72) 

V’ in eq. (72) is the vector after being rotated about axis n by an angle θ, where the three terms are 

orthogonal to each other.  The first term in eq. (72) is the component of V parallel to the rotation axis 

and remains unchanged by the rotation.  The component of V normal to the rotation axis is changed by 

the rotation and results in the last two terms in eq. (72).  If θ = 0, then eq. (72) reduces to eq. (71) and V’ 

= V, as it should. 

9. Explanation of the quaternion rotation equation 
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The quaternion equation to rotate a vector, given in eq. (73), can be analyzed and understood using 

the associated PV parameters, where each quaternion is replaced with its equivalent PV pair.   

𝐕′ = 𝐪𝐕𝐪−𝟏       (73) 

To improve the visualization of the geometry, V can be divided into a component parallel to the 

rotation axis and a component normal to the rotation axis, as shown in eq. (74), where each component 

is normalized to unity and V has magnitude of √2.   

𝐕 = 𝐕𝐩 + 𝐕𝐧      (74) 

One can consider the effect of the rotation on each component separately and add the components 

by aligning and cancelling the linking Pivot Vectors while leaving a single PV pair to define the 

transformation.  We assign PV pairs to each quaternion in eq. (73) as shown in eq. (75).  Then we align b 

with c, and align d with e, so that the final transformation is the single PV pair a, f. 

𝐪 = 𝐚, 𝐛 𝐕𝐩 = 𝐜, 𝐝 𝐪−𝟏 = 𝐞, 𝐟    (75) 

We consider Vp first and let c and d be the two Pivot Vectors defining Vp as shown in eq. (76), where 

c is aligned with the x-axis, d is aligned with the negative y-axis and Vp is aligned with the z-axis. 

𝐕𝐩 = 𝐜 ∙ 𝐝 + 𝐝 × 𝐜 = 𝐝 × 𝐜      (76) 

 

 

 

 

 

 

 

 

 

 

Fig. 5. PVs b and c, cancel, which leaves PV pair a, d representing the product of quaternions q and Vp. 

Note that Vp has no scalar component because c and d are orthogonal unit vectors and 𝐜 ∙ 𝐝 is zero.  

Let the rotation axis be along the z-axis of the orthogonal coordinate frame, as shown in Fig. 5.  All the 

vectors in Fig. 5 lie in the equatorial plane except k and Vp.  The Pivot Vectors defining the rotation of θ 

degrees about the z-axis are shown in eq. (77), where both b and c are aligned with the x-axis for 

convenience.   

𝐚 = 𝑐𝑜𝑠 (
𝜃

2
) 𝐢 + 𝑠𝑖𝑛 (

𝜃

2
) 𝐣  ,   𝐛 = 𝐢 , 𝐜 = 𝐢   (77) 

k, V
p
  

d 

a c, b 

90 deg. 

θ/2 
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Since the associated rotations for q and q-1 as well as V align with the z-axis, the transformations in 

eq. (73) commute.  Therefore, the order of the transformations in eq. (73) can be modified to simplify 

the analysis, as shown in eq. (78).  Note that q cancels its inverse q-1.  Eq. (78) indicates that the rotation 

does not change the component of V parallel to the rotation axis, which is the expected result. 

𝐕𝐏
′ = 𝐪𝐕𝐪−𝟏 = 𝐪𝐪−𝟏𝐕𝐏 = 𝐕𝐏𝐪𝐪−𝟏 = 𝐕𝐏      (78) 

Although eq. (78) proves that the component of a vector parallel to the rotation axis remains 

unchanged by the rotation, it is instructive to go through the individual transformations in their original 

order in eq. (73).  One finds qVp by aligning Pivot Vector c with Pivot Vector b and noting that Vp lies 

along the z-axis to be parallel with the rotation axis.  Therefore, d and c take on values shown in eq. (79).  

The combined transformation, qVP is given by the PV pair a, d.  

 

𝐜 = 𝐛 = 𝐢  ,  𝐝 =  −𝐣, 𝐕𝐩 = 𝐤    (79) 

Let the PV pair e, f, define the inverse quaternion, q-1, and align e with d to combine the 

transformations, as shown in eq. (80).  Note that the PV pair e, f is equivalent to q-1, as shown in Fig. 6.  

𝐞 = 𝐝 = −𝐣  , 𝐟 = 𝑠𝑖𝑛 (
𝜃

2
) 𝐢 − 𝑐𝑜𝑠 (

𝜃

2
) 𝐣   (80) 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. PVs b and c cancel, also d cancels e, which leaves PV pair a, f to define the rotated parallel 

vector, Vp. 

The final result of the rotation on the parallel component is given in eq. (81).  Note that the angle 

between f and a is 90 degrees, so there is no scalar component of the associated quaternion.  Of course, 

VP, which was assumed to be a unit vector, can be scaled to any desired magnitude. 

k, V
p
  

f 

d, e 

a 
c, b 

Rotation Plane 

θ/2 

90 deg. 

θ/2 
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𝑽′𝒑 = 𝐪𝑽𝒑𝐪−𝟏 = 𝐟 × 𝐚 = (

0
0

cos2 (
θ

2
) + sin2 (

θ

2
)

) = (
0
0
1

)   (81) 

The result of eq. (81) indicates that the parallel component of V does not change due to the rotation, 

which is the expected result. 

The effect of the rotation on the normal component can be evaluated in a similar fashion.  Pivot 

Vectors for the rotation remain the same as in eq. (77), but now Vn must lie in the rotation plane.  We 

assign new PV pairs to each quaternion in eq. (73) as shown in eq. (82).  Next, we align b with c, and d 

with e, so that the final transformation is the single PV pair a, f. 

𝐪 = 𝐚, 𝐛 𝐕𝐧 = 𝐜, 𝐝 𝐪−𝟏 = 𝐞, 𝐟    (82) 

Therefore, the PV pair c, d is given in eq. (83) with c being aligned with b to be combined  with the 

rotation PV pair a, b.  Vn is also shown for clarity, as shown in Fig. 7. 

𝐜 = 𝐛 = 𝐢 , 𝐝 = 𝐤 , 𝐕𝐧 = 𝐣    (83) 

Combining the rotations yields the associated quaternion in eq. (84). 

𝐪𝐕𝐧 = [𝐚 ∙ 𝐝 −𝑠𝑖𝑛 (
𝜃

2
) 𝑐𝑜𝑠 (

𝜃

2
) 0] = [0 −𝑠𝑖𝑛 (

𝜃

2
) 𝑐𝑜𝑠 (

𝜃

2
) 0]  (84) 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.  PVs c cancels b, which leaves a and d to represent qVn.  

Both d and a need to be clocked along their geodesic arc so that d moves into the rotation plane and 

a aligns with the negative z-axis, which is necessary to combine with q-1, as shown in eq. (85).  Fig. 8 

indicates the clocking motion of d, which leaves the transformation unchanged.  The PV a is also clocked 

but not shown in Fig. 8, since it is in the negative k direction.   

𝐚 = −𝐤 , 𝐝 = cos (
𝜃

2
) 𝐢 + sin (

𝜃

2
) 𝐣   (85) 

V
n
 

k, d, q 

a 

c, b 

θ/2 
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The PV pair e, f, which is equal to q-1, lies in the equatorial plane but must be clocked so that e aligns 

with d, as shown in eq. (86).  Notice that f is located θ/2 degrees from e to define q-1.  The location of f 

involves the sum of two half angles, which becomes the full angle θ, as shown in eq. (86).   

𝐞 = 𝐝 = cos (
θ

2
) 𝐢 + sin (

θ

2
) 𝐣 , 𝐟 = cos(θ) 𝐢 + sin(θ) 𝐣   (86) 

The final result is equivalent to the PV pair a, f with associated quaternion given in eq. (87), where 

the scalar component of the quaternion is zero and the magnitude of the resulting vector is unity. 

𝐕𝐧
′ = 𝐪𝐕𝐧𝒒−𝟏 = [𝐚 ∙ 𝐟 −sin(θ) cos(θ) 0] = [0 −sin(θ) cos(θ) 0]   (87) 

Since Vn was originally located along the y-axis from eq. (83), Vn’ in eq. (87) is rotated by θ degrees in 

the counterclockwise direction about the z-axis, as expected.   

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8.  PVs c cancels b and after clocking, d cancels e, which leaves f and the clocked a to represent 

the rotation of the normal component of V’.    

Fig. 8 summarizes how the rotation quaternions rotate a vector.  First a rotation involving q produces 

a rotation of θ/2, then c cancels b leaving PV pair a and d to define the transformation.  Next, a clocking 

transformation is used to bring d into the rotation plane for alignment with the q-1 rotation which adds 

another θ/2 rotation.  The two half angle rotation combine to yield the full θ rotation.  

Now the parallel and normal components are combined to obtain the rotated V’, which is clearly a 

rotation about the z-axis by θ degrees, as shown in eq. (88).  Note that the magnitude of both V and V’ is 

√2, since both Vp and Vn were defined to be unity.  Of course, the vector can be scaled to any length 

without changing the rotation result given in eq. (88).   

𝐕′ = 𝐪𝐕𝐪−𝟏 = 𝐪(𝐕𝐩 + 𝐕𝐧)𝐪−𝟏 = 𝐕𝐩 − sin(θ) 𝐢 + cos(θ) 𝐣   (88) 

k, d 

f x a = V’ 

f 

V
n
 

θ 

a, d, e c, b 

θ/2 
θ/2 
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Normally, the rotation quaternion method uses the quaternion product rule to evaluate eq. (88).  In 

translating eq. (73) into the PVM, the associated PV pairs are clocked in their respective rotation planes 

and linked together to obtain the final single rotation PV pair.  PVM treats the transformations as angular 

displacements rather than quaternion vector products.  The two methods are complimentary, with PVM 

providing the geometry of each intermediate transformation in eq. (73).  Of course, more efficient ways 

to rotate a vector with PVM are found in Section 2 and in Section 7. 

10. Conclusion  

The close relationship between Pivot Vector and rotational quaternion parameterization of attitude 

was investigated.  Although quaternions involve vector products in hypercomplex 4-dimensional space 

and Pivot Vectors involve angular displacements in a 2-dimensional plane, many similarities were 

revealed.  The attitude transformation represented by a single rotational quaternion is equivalent to the 

transformation of a single Pivot Vector pair.  The scalar and vector components of a quaternion are the 

dot product and cross products of the associated Pivot Vectors.  Since a Pivot Vector can be clocked 

anywhere in its rotation plane and still yield the same transformation, clocking information must be 

provided before a quaternion can define a unique Pivot Vector pair.  Two quaternions representing two 

separate transformations are combined by vector multiplication to obtain a single quaternion 

representing the combined transformation.  In the PV formulation, two PV pairs are linked at the 

junction of the respective rotational planes, which results in a single PV pair representing the combined 

attitude transformation.  In spite of the differences, the resulting rule for combining two attitude 

transformations into one transformation is the same for both methods.  In addition, the signature half 

angle parameter appears in both formulations.  One can rotate a vector using a PV pair with an equation 

involving simple dot products.  Rotating a vector using quaternions involves creating a quaternion from 

the vector and performing two quaternion vector products that appear in an equation that lacks a clear 

foundation.  A geometrical interpretation of the quaternion vector rotation equation was provided using 

PVs to reveal the associated rotational displacements.  The mathematical connection between Pivot Vectors 

and rotational quaternions that was presented in this work enhances the understanding of each parameter set and 

expands the set of tools available to the analyst.  
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