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1 Introduction

In the previous article, we explored how gravity can exist in a quantum su-
perposition and how, within a single orbital or energy eigen state, this cor-
responds—conceptually—to a superposition of stress-energy tensors. In this
article, we aim to take this further by examining how gravity could exhibit
quantum behavior and by calculating the curvature during the evolution of a
particle in energy eigen states or superpositions thereof.

2 Proof of Quantization Properties of Gravity

Let us consider a quantum particle of mass m existing in a specific energy level.
For simplicity, consider a superposition of two quantum states:

|ψ⟩ = α|A⟩+ β|B⟩ (1)

Each of these states represents a particle of mass m, albeit in a different
configuration. Importantly, we do not obtain a mass of 1

2m for any individual
instance; the mass remains m in all realizations.

Now, consider the same superposition in terms of energy. We have:

Ĥ|En⟩ = En|En⟩ (2)

This implies that the energy operator yields a definite value for each eigen
state. The total energy is not divided among the superposed states in terms of
potential energy and charge. However, the kinetic energy does vary spatially at
a given instant:

T (r⃗) = − ℏ2

2m
ψ∗(r⃗)∇2ψ(r⃗) (3)

This means that kinetic energy is position-dependent even at the same mo-
ment in time. However, the variations are so minute compared to the particle’s
mass, charge, and total kinetic energy that they can safely be neglected.

Therefore, we can assert that mass and energy remain effectively constant
throughout the spatial extent of the energy eigen state, and each measurement
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yields the same result. Nonetheless, the particle can exist at multiple locations
simultaneously. Since the stress-energy tensor depends directly on mass and
energy, we conclude that it too can exist at multiple spatial locations at the
same time and approximately retains the same value at each point.

The key idea is that the stress-energy tensor is distributed over the orbital
shell with nearly uniform values from point to point. Thus, it exists in a quan-
tum superposition—and so does the curvature it induces. In flat Euclidean
spacetime, we can write the invariance of the stress-energy tensor under coor-
dinate translation as:

Tµν(x+ a) = Tµν(x′) = Tµν(x) (4)

This invariance suggests that the metric should exhibit similar behavior.
However, in our quantum context, this distribution exists *simultaneously*.
Therefore, curvature too may exist in a superposition.

3 Calculating Curvature During Energy-State
Evolution

Assume a particle evolves between energy levels and is in a superposition of, for
instance, the 1s and 2s orbitals, which have different energy eigenvalues. The
stress-energy tensors for all superpositions within the 1s orbital will differ from
those in the 2s orbital. When a measurement is made, a single definite value is
observed.

Mathematically, this means:

Tµν
1 ̸= Tµν

2 where Tµν
i = ⟨Ei|T̂µν(x)|Ei⟩, i = 1, 2 (5)

This supports the idea that distinct combinations of mass and energy corre-
spond to distinct spacetime curvatures. While this may seem counterintuitive
classically, in quantum mechanics it is consistent: if two mass-energy configura-
tions coexist in superposition, so can their corresponding curvatures.

To compute the expected curvature, we begin by evaluating the stress-energy
tensors for each state:

Tµν
1 (x) = ⟨E1|T̂µν(x)|E1⟩, Tµν

2 (x) = ⟨E2|T̂µν(x)|E2⟩ (6)

The total expectation value becomes:

Tµν(x) = ⟨ψ|T̂µν(x)|ψ⟩ = |c1|2⟨E1|T̂µν(x)|E1⟩+|c2|2⟨E2|T̂µν(x)|E2⟩+2Re
(
c∗1c2⟨E1|T̂µν(x)|E2⟩

)
(7)

We can then calculate the Einstein tensor using the weak-field or linearized
gravity approximation:

G(1)
µν (x) = 8πGT (1)

µν (x), G(2)
µν (x) = 8πGT (2)

µν (x) (8)
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The expectation value of the Einstein tensor is thus:

⟨Gµν(x)⟩ = G(1)
µν (x) +G(2)

µν (x) + δGint
µν (x) (9)

where δGint
µν (x) represents the perturbative contribution from the interference

term in the stress-energy tensor.
Although linearized gravity is employed here, other frameworks may also be

used. This method enables us to describe the evolution of energy states in a
gravitational context.

4 Conclusion

We have shown how gravity may exhibit quantum properties and simultaneously
maintain classical behavior. By incorporating superpositions and interference
into the stress-energy tensor, and using linearized gravity, we find a consistent
picture in which curvature can reflect the quantum structure of matter.

In conclusion, While total energy remains fixed within an energy eigen state,
the kinetic energy density varies slightly from point to point. By neglecting
these small fluctuations, we can more clearly interpret the electron’s presence
as a superposition of localized probability amplitudes. Consequently, the as-
sociated curvature is not uniformly spread over the entire orbital but arises
locally—corresponding to the electron’s possible positions—thereby allowing
spacetime curvature itself to exist in a quantum superposition tied to the par-
ticle’s probabilistic nature.
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