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1 Abstract

We present a generalization of the well-known Lemma of Lifting the Exponent
(LTE), introducing a novel valuation function. Using this framework, we outline
a new approach to Fermat’s Last Theorem that relies solely on elementary
number theory techniques.

2 Introduction

Consider the function νk(x)[1] where νk(x) is the p-adic valuation function that
shows how many ks can be divided into x. In other words, if x = kab where
kx, then νk(x) = νk(k

ab) = a. Let us examine this function by entering the
expression (a+ b)n − bn inside νp(x) where p is a prime number greater than 2
and p|a, pb, and n is a natural number. We will prove the following theorem;

LTE(Lifting the Exponent Lemma) [2]

νp((a+ b)n − bn) = νp(an)

Proof of LTE Using the binomial theorem, we can say that the ith term of
(a+ b)n is n!

(n−i)!i! · a
ibn−i.

We have to prove that νp(an) < νp(
n!

(n−i)!i! · a
ibn−i) for all i such that 2 ≤ i ≤

n− 1 as νp(nab
n−1) = νp(na) and nabn−1 is the first term of (a+ b)n − bn.

Because pb, it can be rewritten as νp(an) < νp(
n!

(n−i)!i! · a
i), which can be

rewritten as νp((n − i)!i!) < νp((n− 1)! · ai−1), which is equivalent to νp((n −
i)!) + νp(i!) < νp((n− 1)!) + νp(a

i−1) as νp(αβ) = νp(α) + νp(β).
Because 2 ≤ i ≤ n − 1, νp((n − i)!) ≤ νp((n− 1)!). Also, νp(i!) ≤ νp(a

i−1)
because of Legendre’s Formula[3] and νp(a

n−1) = (n− 1)νp(a) ≥ n− 1,

νp(i!) = ⌊ i
p
⌋+ ⌊ i

p2
⌋+ ⌊ i

p3
⌋+ ... < ⌊ i

2
⌋+ ⌊ i

22
⌋+ ⌊ i

23
⌋... ≤ i− 1 ≤ νp(a

i−1)

where ⌊x⌋ is the floor function, showing the integer part of x(this logic works
for every i except 3, when ⌊ i

p⌋ + ⌊ i
p2 ⌋ + ⌊ i

p3 ⌋ + ... = ⌊ i
2⌋ + ⌊ i

22 ⌋ + ⌊ i
23 ⌋....
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Inequality νp((n − i)!) + νp(i!) < νp((n− 1)!) + νp(a
i−1) still works because

νp((n− i)!) < νp((n− 1)!).
Thus, we have proven Theorem 0.1. The same can be proved when p = 2 and
4|a because the proof is same except the part

νp(i!) = ⌊ i
2
⌋+ ⌊ i

22
⌋+ ⌊ i

23
⌋... < 2i− 2 ≤ νp(a

i−1)

Generalization Also, we can improve our Theorem 0.1 by removing the con-
dition p ̸ |b by solving νp(k

n((a+ b)n − bn)) = νp((ak + bk)n − bnkn)), which is
νp((a+ b)n − bn) + νp(k

n) = νp(k · an) + (n− 1)νp(k) where k may or may not
be divisible by p. Because of this, ka and kb can be any number under condi-
tion νp(a) > νp(b). Restating Theorem 0.1 by this, we know that the following
statement is true;

Theorem 1.0

νp((a+ b)n − bn) = νp(a) + (n− 1)νp(b) + νp(n) = νp(nab
n−1)

where νp(a) > νp(b) when p is a prime above 2, and νp(a) > νp(b) + 1 when
p=2.

3 Application and examples

Theorem 2.0 an + bn = cn The theorem is that there are no natural num-
bers a, b, c such that an+bn = cn where n is a natural number greater than two.

Proof of Theorem 2.0 Assume that there is a a, b, c, n such that an+bn = cn.
Then we can also assume that there is a a, b, c, n such that gcd(a, b, c) = 1, which
has the simplest form. We can say that gcd(a, b) = gcd(b, c) = gcd(c, a) = 1
because if two of the three had a common divisor k such that a = a′k, b =
b′k, k > 1, then an + bn = a′nkn + b′nkn = kn(a′n + b′n) = cn, and thus
c also having k as a factor, contradicting the statement that gcd(a, b, c) = 1.
Therefore, a, b, c are all co-prime to each other. Also, we only have to prove that
n is 4 or a prime number because equations with greater ns can be expressed
with lower ns with the original factors of n’s. Since Theorem 2.0 is trivial when
n = 4[4](proving by contradiction using Pythagorean triples), we can assume
that n is a prime number. To use LTE, we must transform an + bn = cn to fit
it into the expression of Theorem 1.0. We can do that by saying c = b + d as
c > b where d is a natural number.
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Remark Note that b and d are also relatively prime.
Restating an + bn = cn , we get an = (d+ b)n − bn. Let p be a prime factor of
d. Since b and d are relatively prime, we can use LTE. By using Theorem 0.1,
the following is true;

νp((d+ b)n − bn) = νp(n) + νp(d) = νp(a
n)

Assume that p ̸= n(we will observe when n = p later). Since n is prime and
hence not divisible by p,

νp(d) = νp(a
n)

This process can be applied to all of the prime factors of d except 2 when
ν2(d) = 1. If so, then a is also an even number because d and b are relatively
prime as b and a are also relatively prime, which makes a even in the equation
an + bn = (b+ d)n. So, an can be expressed by d as an = de where d and e are
relatively prime because for every p, νp(d) = νp(a

n) is satisfied. And as d and e
are relatively prime, they are both the nth power of some number. Therefore,
an can be expressed as an = αnβn where d = αn and e = βn.
So, αnβn + bn = (b+ αn)n. Since the process applied to a can be applied to b,
the following is true;

αnβn + γnδn = (γδ + αn)n = (αβ + γn)n

where b = γnδn, c = a+ γn, and α, β, γ, δ are relatively prime to each other as
gcd(a, b) = gcd(α, β) = gcd(γ, δ) = 1.
c = γδ + αn = αβ + γn, γδ − γn = αβ − αn, γ(γn−1 − δ) = α(αn−1 − β). Since
α ̸ |γ, α|γn−1 − δ and so δ = γn−1 −mα. Also, β = αn−1 − kγ.
Substituting these values into δ, β, we get c = αn + γn −mαγ = αn + γn − kαγ
and so m = k.

αn(αn−1 − kγ)n + γn(γn−1 − kα)n = (αn + γn − kαγ),

and so
(αn − kαγ)n + (γn − kαγ)n = (αn + γn − kαγ)n

But, (αn − kαγ)n + (γn − kαγ)n < (αn − kαγ)n + (γn)n < (αn + γn − kαγ)n,
so it contradicts. When n = p, an = nde where nd and e are co-prime. Because
gcd(a, b) = 1, n cannot divide b, and so in the same way, an = αnβn, bn = γnδn

where nd = αn, c− a = γn and α, β, γ, δ are all relatively prime to each other.
So, αnβn + γnδn = (α

n

n + γδ)n = (γn + αβ)n. In the same way, δ = γn−1 −
mα, β = αn−1

n − kγ, m = k, (α
n

n − kαγ)n + (γn − kαγ)n = (α
n

n + γn − kαγ)n.
The rest is the same as above. Therefore, we have proved Theorem 2.0
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