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Abstract

This article proposes a reinterpretation of
Lobachevsky’s imaginary geometry as a hyper-
dimensional, specular structure arising from the
intersection of two three-dimensional Euclidean
spaces. The model describes non-Euclidean par-
allelism as emerging dynamically from oscillating
curvatures, leading to a topological system with four
subspaces, two transverse and two vertical, whose
behavior is governed by synchronized or opposing
phases.

1 Conceptual Model

In the 19th century, Russian mathematician Niko-
lai Lobachevsky revolutionized the concept of par-
allelism by demonstrating that, given a point out-
side a line, multiple lines can pass through it with-
out intersecting the original line, behaving as paral-
lels. This assertion marked a radical break from the
traditional Euclidean geometry, which had prevailed
for over twenty centuries, and whose fifth postulate
states that only one parallel line can be drawn from
a point external to a given line.
Before Lobachevsky, various methods had been at-

tempted to prove Euclid’s postulate. Lobachevsky’s
proposal, however, was based on an imaginary exer-
cise: assuming that rotating a line parallel to another
would still result in both not intersecting, something
impossible in Euclidean geometry. Hence, he called
this new geometry “imaginary.”
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Although initially ignored, Lobachevsky’s geome-
try (also independently developed by Bolyai and not
unknown to Gauss) was later reinterpreted as a ge-
ometry of curved lines. Mathematicians like Bel-
trami, Klein, and Poincaré developed visual models
in which Lobachevskian “straight lines” are repre-
sented as arcs or geodesics on surfaces of negative
curvature. This new formulation became known as
hyperbolic geometry.

Coinciding with the 13th
Bolyai–Gauss–Lobachevsky Conference on non-
Euclidean geometry in physics and mathematics, this
article proposes a new approach to Lobachvesky’s
imaginary geometry as a specular geometry emerging
as a hyperdimensional substructure from the inter-
section of two three-dimensional Euclidean spaces.
This alternative framework includes a topological
model as a physical expression of such geometry,
focused on the connectivity and invariance of the
structure under continuous deformations.

This interaction involves the intersection of the
curvature of the two Euclidean spaces possessing a
property we call “curvature,” analogous to the cur-
vature of spacetime in general relativity. This curva-
ture is dynamic, in the sense that it oscillates and pe-
riodically varies in intensity through time. The topo-
logical transformations experienced by these spaces
(their contraction and expansion) modify this curva-
ture, altering its amplitude and its spatial “shape” or
distribution.

It is the interaction of these dynamic curvatures,
when the Euclidean spaces intersect, that gives rise to
the emergence of the non-Euclidean subspaces, whose
geometry is determined by the way in which the dy-
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namic curvatures of the source spaces combine.
In that way, each subspace is composed of two sec-

tors: one determined by the curvature of source 1
and the other by the curvature of source 2. These
sectors may be positive and negative (in the trans-
verse subspaces), or double negative/double positive
(in the vertical ones). The point of intersection be-
tween curvatures generates an inflection, a singularity
that determines an abrupt change in the direction of
curvature.
The transverse subspaces expand or contract fol-

lowing the phase of their host space when the two
spaces are desynchronized, or inversely to the phase
of their host space when both spaces are synchro-
nized.
Taking the case of opposite phases as reference, we

consider a line lying in one of the transverse planes.
Its parallel appears as a mirror reflection in the oppo-
site subspace, both being external to point P, which
is common to the entire system. This point shifts ac-
cording to the phases: sideways in opposite phases,
and up/down in equal phases.
When the right space contracts and the left ex-

pands, the right transverse subspace contracts (accel-
erating its internal dynamics), while the left expands
(decelerating). Both tilt toward the contracting side,
preserving dynamic parallelism.
All these subspaces are equally influenced by the

curvature of both the contracting and the expand-
ing space: when one of the spaces contracts, it lifts
one edge of each subfield upward, and when the other
expands, it lowers the opposite edge downward, gen-
erating the observed inclination in all of them that
preserves parallelism.
This tilt recalls the complex plane, where some

points are imaginary due to displacement from the
Euclidean metric.
The transverse subspaces are hyperdimensional be-

cause they cannot be described using the three spatial
and one temporal coordinate of the Euclidean sys-
tem. When tilted, their vertical coordinate projects
as a diagonal, distorting the metric. One may also
be temporally offset from the other.
Describing this geometry requires additional spa-

tial and temporal coordinates. This offset is com-
parable to what occurs in general relativity between

non-aligned frames of reference.
Vertical subspaces also tilt, and at a transition mo-

ment, when the transverse subspaces equalize in vol-
ume and the vertical crosses the symmetry center, the
entire system adopts Euclidean geometry. At that
moment, the X and Y axes switch roles.

The transverse subspaces are cobordant with the
vertical ones. For instance, the positive sector of
the left transverse subspace corresponds to the con-
vex side of the right space, its concave side acts as
the negative sector of the concave vertical subspace.
In turn, the negative sector of the left transverse
subspace corresponds to the concave side of the left
space, its convex side becomes the positive sector of
the convex vertical subspace.

Convexity or concavity depends on the frame of
observation (from inside or outside). The subspace
geometry expresses these aspects functionally, with-
out intrinsic curvature change.

Topological transformations do not alter the dual-
sector structure, but determine which sector is active
at any given time, influencing the system physically.
For example, when the right space contracts and the
left expands, the concave side of the right space ex-
erts pressure on the negative sector of the left vertical
subspace, while the convex left side transmits decom-
pression. In that moment, the positive sector of the
left transverse subspace feels no force, while the right
one does.

From this perspective, non-Euclidean geometry is
not an external alternative, but an internal and dy-
namic expression of Euclidean space. Lobachevsky
would not have invented an exotic geometry, but an-
ticipated a specular structure integrating the complex
plane.

In equal-phase cases, subspaces expand or contract
in unison, maintaining chiral symmetry. However,
when both transverse subspaces expand simultane-
ously, their planes tilt toward the positive vertical
axis, causing the lines in those planes to intersect
near the Y + axis and diverge as they move away to-
ward Y −. The reverse occurs during simultaneous
contraction, with planes opening outward.

This behavior is an exception within the non-
Euclidean framework, a kind of inversion that vio-
lates its internal logic of non-Euclidean parallelism
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by uniting the real and imaginary planes into a com-
plex system. (Here, “imaginary” is used in the sense
of the complex plane, not Lobachevsky’s usage.)
This violation is observed from the perspective of

the complex plane, where tilted transverse subspace
planes cross when projected onto the Y axis.
However, in XY coordinates of the real plane, dy-

namic parallelism persists in the vertical subspaces,
which shift upward or downward along Y, implying
translation.
This dynamic parallelism in the vertical subspaces

can be described, on the concave side, as real trans-
lation in Euclidean coordinates and real time, since
that vertical subspace follows the synchronized phase
of the intersecting spaces. When both spaces con-
tract, the concave vertical subspace contracts with
inward pressure and accelerates its internal orbital
motion. When both expand, it descends and its or-
bital energy slows.
On the convex side, the structure of double-positive

curvature does not produce direct mirror symmetry
with the concave side, but rather an inverse func-
tional correspondence. The descending expansion on
the concave side, implying loss of energy and force,
has its counterpart on the convex side, where the lost
force and energy are expressed in reverse.
It is worth noting that the non-Euclidean paral-

lel lines situated in the planes of the vertical sub-
spaces (in equal-phase cases) or transverse ones (in
opposite-phase cases), though straight, lie in orbital
planes, thus rotating around the axis of their respec-
tive subspace. This axis is shared by both vertical
subfields (in equal phases) or both transverse ones
(in opposite phases). Since the contracting subspace
accelerates and the expanding one decelerates, their
lines are rarely aligned in the same direction.
This angular discrepancy does not imply intersec-

tion, but redefines parallelism dynamically, as topo-
logical coherence without intersection in a rotational
system. This non-Euclidean parallelism, influenced
by asymmetry in internal orbital phases, is relative
to the system and its phase structure, not to a fixed
spatial metric.
This increasing complexity intensifies when consid-

ering that the Euclidean spaces giving rise to the
non-Euclidean subspaces may periodically synchro-

nize and desynchronize, generating full cycles of sym-
metry and specular rupture.

During these cycles, the entire system may also
rotate around a shared central axis, introducing a
global precessional dynamic. Between each expansion
and contraction phase, moments of stasis arise, from
the moment a space reaches its maximum expansion
or contraction until it begins to contract or expand
again.

Finally, it is possible to establish conceptual con-
nections between the visual and physical geometry of
the model and some abstract algebraic developments:

In this sense, the dual-sector curvature and the sin-
gular point may be related to the Gorenstein liaison.

With four subspaces undergoing four transforma-
tions each, one can consider sixteen singularities or
states of point P, associating the model with Kummer
surfaces.

Further connections may be drawn with Hodge cy-
cles, modular theory in the Takesaki framework, and
octonions, as developed in other articles.

This model has also been applied as an alternative
proposal for the atomic nucleus.

In this context, the model offers a mechanical inter-
pretation of the Pauli exclusion principle as the result
of a specular regime with opposite phases, and pro-
vides an explanation of quark charge and color based
on the activation or deactivation of pressure forces,
depending on whether they arise from the concave
side of a contracting field or the convex side of an
expanding one.

It also reinterprets the neutron as the moment
when Euclidean geometry briefly emerges within the
non-Euclidean system, when the transverse subspaces
equalize and the verticals cross the system’s symme-
try center.

At this point, the central subspaces would act as
gluons, transmitting forces and energy between the
doubly decompressing expanding transverse subspace
and the doubly compressing one.

3



Figure 1: Non-Euclidean parallel lines in the
opposite-phase system. This diagram illustrates
the non-Euclidean parallel lines that emerge in the
opposite-phase system. Note the specular reflection of
the blue lines traced on the transverse plane of both
contracting and expanding transverse subspaces.

Figure 2: Non-Euclidean non-parallel lines in the
equal-phase system. This diagram illustrates the non-
Euclidean non-parallel lines observed in the equal-
phase system. Observe how the two red lines converge
towards the Y+ axis when both transverse subspaces
expand while the source spaces contract.
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