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Abstract 
 
In this paper, we present a theoretical analysis of Norbert Feist's acoustic Michelson-Morley experiment. We 
demonstrate that, by employing Galilean transformations and standard assumptions about sound 
propagation, we can fully account for the experimental results. This analysis highlights the importance of 
considering the geometry of the reflector when interpreting the results of Michelson-Morley type 
experiments and invites a re-examination of the traditional interpretation of the original electromagnetic 
experiment." 
 

Introduction 
 

The acoustic Michelson-Morley experiment conducted by Norbert Feist has provided a unique 
perspective on the behavior of sound waves in a moving reference frame. Feist's experiment, which utilized 
an ultrasonic range finder, yielded a null result for the anisotropy of the two-way speed of sound (Feist, 
2010/2019). This outcome invites a re-examination of the conventional interpretation of the Michelson-
Morley experiment and its implications for the nature of light and the existence of a preferred reference 
frame. In a series of experiments, Feist demonstrated that the two-way velocity of sound is isotropic in a 
moving system, similar to the optical Michelson-Morley experiment. In this paper, we delve into the 
theoretical foundations of Feist's experiment, aiming to provide a comprehensive explanation for the 
observed results while adopting standard assumptions about sound propagation. 
 

Feist's experiment can be described as follows: an ultrasonic range finder and a reflector were 
mounted on a rigid rail, ensuring a constant distance, L, between them. This rail was placed horizontally on 
the roof of a car, allowing the entire source-reflector system to move with the car at a constant velocity, v, 
in a straight line. The rail was designed to rotate horizontally, enabling the experimenter to vary the angle, 
φ, between the source-reflector joining line and the direction of the car's motion. 
 

This allowed for measuring the round-trip time of the ultrasonic signal at different orientations relative 
to the car's motion. For each angle φ, Feist measured the round-trip time of the ultrasonic signal, determining 
the two-way velocity of sound as a function of the car's velocity and the orientation of the source-reflector 
system. Surprisingly, the results showed that the two-way velocity of sound, c₂, was isotropic, independent 
of the angle φ. 

 
This result is analogous to the famous optical Michelson-Morley experiment, which is widely regarded 

as demonstrating the isotropy of the speed of light in all inertial reference frames. However, as this paper 
will argue, such a conclusion is not necessarily implied by the experimental results. 
 
Assumptions To theoretically analyze Feist's experiment, I make the following assumptions: 
 

 Galilean transformations are valid for linking observations made by different inertial observers. 
 The standard theory of sound propagation is applicable. 
 The ultrasonic waves emitted by the source have isotropic propagation velocities only in the 

privileged reference frame where the medium (air) is at rest. 
 
Analysis I consider two cases: a point-like reflector and an extended reflector. 
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Case 1: Point-like Reflector 
 
Under the simplifying assumption that the reflector can be treated as a point-like object, which requires its 
dimensions to be much smaller than the wavelength of the sound waves, I derive the expression for the two-
way velocity of sound. 
 
Let us graphically represent the system consisting of an ultrasound source (S) and a reflector (R). 

 
Let L be the source-reflector distance. 
 
Let v be the system’s translational velocity in the medium (air). 
 
Let   be the angle between the source-reflector joining line 
and the direction of motion of the system. 
 
Let c be the speed of sound in the medium. 
 
We can assume that the sound waves emitted are spherical. 
This approximation is reasonable if the source-reflector 
distance is large compared to the source size. 

 
Let us perform this analysis in two phases; in the first we consider the forward path from source to reflector; 
in the second we consider the return path from reflector to source. 

 
 
Suppose that, at a given initial instant (t = 0), a wave front is emitted from the source. 
Let S0 and R0 be the source and reflector positions, respectively, at the initial instant. 
Let 𝑡ଵ be the time interval needed by the wave front to reach the reflector. 
Let S1 and R1 be the source and reflector positions, respectively, at instant 𝑡ଵ. 
In the inertial reference frame in which the air is still, the sound has a constant and isotropic speed c. 
In the time interval 𝑡ଵ, the wave front has propagated a distance equal to 𝑐 𝑡ଵ. 
In the same time interval, the source-reflector system, moving away from the incoming wave front, has 
moved horizontally a distance equal to 𝑣 𝑡ଵ. 
Therefore, applying the Pythagorean theorem, we can write: 

S0 S1 

R1 

L sin() 

v t1 L cos() 

R0 

c t1 

Forward Path 

S  

L 

R 

v 
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[𝐿 cos(𝜑) + 𝑣 𝑡ଵ]ଶ + [𝐿 sin 𝜑]ଶ = [𝑐 𝑡ଵ]ଶ 

It follows that: 
𝐿ଶ cosଶ(𝜑) + 𝑣ଶ𝑡ଵ

ଶ + 2 𝐿 𝑣 𝑡ଵ cos(𝜑) + 𝐿ଶ sinଶ(𝜑) = 𝑐ଶ𝑡ଵ
ଶ 

It follows that:  
𝐿ଶ + 𝑣ଶ𝑡ଵ

ଶ + 2 𝐿 𝑣 𝑡ଵ cos(𝜑) − 𝑐ଶ𝑡ଵ
ଶ = 0 

It follows that:  
(𝑐ଶ − 𝑣ଶ)𝑡ଵ

ଶ − 2 𝐿 𝑣 𝑡ଵ cos(𝜑) − 𝐿ଶ = 0 
 
The roots of this second degree equation are: 
 

𝑡ଵ± =
𝐿 𝑣 cos(𝜑) ± 𝐿ඥ𝑣ଶ cosଶ(𝜑) + (𝑐ଶ − 𝑣ଶ)

𝑐ଶ − 𝑣ଶ
 

 
The positive root equation provides the propagation time for the forward path. 
 

𝑡ଵ = 𝐿
ඥ𝑐ଶ + 𝑣ଶ cosଶ(𝜑) − 𝑣ଶ + 𝑣 cos(𝜑)

𝑐ଶ − 𝑣ଶ
 

 
which we can rewrite in the following form: 
 

𝑡ଵ = 𝐿
ඥ𝑐ଶ − 𝑣ଶ sinଶ(𝜑) + 𝑣 cos(𝜑)

𝑐ଶ − 𝑣ଶ
 

 
It follows that, in the reference frame fixed to the source-reflector system, the speed associated with the 
forward path is: 

𝑐ଵ ≡
𝐿

𝑡ଵ
=

𝑐ଶ − 𝑣ଶ

ඥ𝑐ଶ − 𝑣ଶ sinଶ(𝜑) + 𝑣 cos(𝜑)
 

 

 
 
At the instant 𝑡ଵ the reflected wave front starts from the position R1. 
Let us denote 𝑡ଶ as the time interval necessary for the reflected wave front to reach the source. 
Let S2 and R2 be the source and reflector positions, respectively, at the time 𝑡ଵ + 𝑡ଶ. 

S0 S1 

R0 R1 

c t2 

v t2 

L cos() 

S2 

R2 Return Path 
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In the inertial reference frame in which the air is still, during the time interval 𝑡ଶ the reflected wave front has 
propagated a distance equal to 𝑐 𝑡ଶ. In the same time interval the source-reflector system, moving towards 
the reflected wave front, has moved horizontally f a distance 𝑣 𝑡ଶ. 
 
Therefore, applying the Pythagorean theorem, we can write: 
 

[𝐿 cos(𝜑) − 𝑣 𝑡ଶ]ଶ + [𝐿 sin 𝜑]ଶ = [𝑐 𝑡ଶ]ଶ 
It follows that: 

𝐿ଶ cosଶ(𝜑) + 𝑣ଶ𝑡ଶ
ଶ − 2 𝐿 𝑣 𝑡ଶ cos(𝜑) + 𝐿ଶ sinଶ(𝜑) = 𝑐ଶ𝑡ଶ

ଶ 
It follows that:  

𝐿ଶ + 𝑣ଶ𝑡ଶ
ଶ − 2 𝐿 𝑣 𝑡ଶ cos(𝜑) − 𝑐ଶ𝑡ଶ

ଶ = 0 
It follows that:  

(𝑐ଶ − 𝑣ଶ)𝑡ଶ
ଶ + 2 𝐿 𝑣 𝑡ଵ cos(𝜑) − 𝐿ଶ = 0 

 
The positive root of this equation provides the propagation time for the return path. 
 

𝑡ଶ = 𝐿
ඥ𝑐ଶ + 𝑣ଶ cosଶ(𝜑) − 𝑣ଶ − 𝑣 cos(𝜑)

𝑐ଶ − 𝑣ଶ
 

 

𝑡ଶ = 𝐿
ඥ𝑐ଶ − 𝑣ଶ sinଶ(𝜑) − 𝑣 cos(𝜑)

𝑐ଶ − 𝑣ଶ
 

 
It follows that, in the reference frame fixed to the source-reflector system, the speed associated with the 
return path is: 

𝑐ଵ ≡
𝐿

𝑡ଶ
=

𝑐ଶ − 𝑣ଶ

ඥ𝑐ଶ − 𝑣ଶ sinଶ(𝜑) − 𝑣 cos(𝜑)
 

 
At this point we can calculate the total round-trip time: 
 

𝑡௧௧ = 𝑡ଵ + 𝑡ଶ = 𝐿
ඥ𝑐ଶ − 𝑣ଶ sinଶ(𝜑) + 𝑣 cos(𝜑)

𝑐ଶ − 𝑣ଶ
+ 𝐿

ඥ𝑐ଶ − 𝑣ଶ sinଶ(𝜑) − 𝑣 cos(𝜑)

𝑐ଶ − 𝑣ଶ
 

 
So: 

𝑡௧௧ = 2𝐿
ඥ𝑐ଶ − 𝑣ଶ sinଶ(𝜑)

𝑐ଶ − 𝑣ଶ
 

 
The two-way velocity is, than: 
 

𝑐௧௪ି௪௬ ≡
2𝐿

𝑡௧௧
=

𝑐ଶ − 𝑣ଶ

ඥ𝑐ଶ − 𝑣ଶ sinଶ(𝜑)
 

 
 
This expression is equal to (2) shown in the article and it is valid only if the reflector can be represented as a 
point. 
The point-like reflector hypothesis assumes that the linear dimensions of the reflecting object are much 
smaller than the wavelength of the incident signal. In the actual experiment, the reflector used was a flat 
surface with dimensions much larger than the wavelength of the ultrasonic signal. 
 
  



5 
 

Case 2: Extended Reflector 
 
I derive the expression for the two-way velocity of sound, considering an extended reflector. 
 
Here we will treat the reflector as an extended flat surface. 
We will assume that the reflecting surface is perpendicular to the line joining the source and the center of 
the reflector 
 
Forward Path 

 
 
Suppose that, at a given initial instant (𝑡 = 0), a wave front is emitted from the source. 
Let 𝑡ଵ be the time interval needed by the wave front to reach the reflector. 
At instant 𝑡ଵ, as is easy to see by observing the geometric construction represented above, the wave front 
will touch the reflector at a point different from the center (point D instead of C). 
In the time interval 𝑡ଵ the wave front has propagated a distance 𝑐 𝑡ଵ. 
In the same time interval the source-reflector system has moved horizontally a distance equal to 𝑣 𝑡ଵ. 
 
Therefore, applying the Pythagorean theorem, we can write: 
 

[𝐿 cos(𝜑) + 𝑣 𝑡ଵ 𝑐𝑜𝑠ଶ(𝜑)]ଶ + [𝐿 sin(𝜑) + 𝑣 𝑡ଵ cos(𝜑) sin(𝜑)]ଶ = [𝑐 𝑡ଵ]ଶ 
 
 
By expanding and rearranging the terms according to the degree of 𝑡ଵ, and utilizing the trigonometric 
identity 𝑐𝑜𝑠ଶ(𝜑) + 𝑠𝑖𝑛ଶ(𝜑) = 1, we simplify the equation to a quadratic form. 
 

v t1e L cos() 

 

L sin() 

v t1e cos() 

v t1e sin() 

c t1e 

v t1e cos2() 

v t1e cos() sin() 

C 
C 

D 



6 
 

𝐿ଶ𝑐𝑜𝑠ଶ(𝜑) + 𝑣ଶ 𝑡ଵ
ଶ𝑐𝑜𝑠ସ(𝜑) + 2 𝐿 𝑣 𝑡ଵ 𝑐𝑜𝑠ଷ(𝜑) + 

+𝐿ଶ𝑠𝑖𝑛ଶ(𝜑) + 𝑣ଶ 𝑡ଵ
ଶ𝑐𝑜𝑠ଶ(𝜑)𝑠𝑖𝑛ଶ(𝜑) + 2 𝐿 𝑣 𝑡ଵ 𝑠𝑖𝑛ଶ(𝜑) cos(𝜑) = 𝑐ଶ 𝑡ଵ

ଶ 
 
So: 
 
𝑐ଶ 𝑡ଵ

ଶ − 𝑣ଶ 𝑡ଵ
ଶ𝑐𝑜𝑠ସ(𝜑) − 𝑣ଶ 𝑡ଵ

ଶ𝑐𝑜𝑠ଶ(𝜑)𝑠𝑖𝑛ଶ(𝜑) + 
−2 𝐿 𝑣 𝑡ଵ 𝑠𝑖𝑛ଶ(𝜑) cos(𝜑) − 2 𝐿 𝑣 𝑡ଵ 𝑐𝑜𝑠ଷ(𝜑) − 𝐿ଶ𝑠𝑖𝑛ଶ(𝜑) − 𝐿ଶ𝑐𝑜𝑠ଶ(𝜑) = 0 

So: 
 
𝑐ଶ 𝑡ଵ

ଶ − 𝑣ଶ 𝑡ଵ
ଶ𝑐𝑜𝑠ଶ(𝜑)[𝑐𝑜𝑠ଶ(𝜑) + 𝑠𝑖𝑛ଶ(𝜑)] + 

−2 𝐿 𝑣 𝑡ଵ 𝑠𝑖𝑛ଶ(𝜑) cos(𝜑) − 2 𝐿 𝑣 𝑡ଵ  cos(𝜑) 𝑐𝑜𝑠ଶ(𝜑) − 𝐿ଶ[𝑠𝑖𝑛ଶ(𝜑) + 𝑐𝑜𝑠ଶ(𝜑)] = 0 
So: 
 

𝑐ଶ 𝑡ଵ
ଶ − 𝑣ଶ 𝑡ଵ

ଶ𝑐𝑜𝑠ଶ(𝜑) − 2 𝐿 𝑣 𝑡ଵ 𝑠𝑖𝑛ଶ(𝜑) cos(𝜑) − 2 𝐿 𝑣 𝑡ଵ  cos(𝜑) 𝑐𝑜𝑠ଶ(𝜑) − 𝐿ଶ = 0 
So: 
 

𝑐ଶ 𝑡ଵ
ଶ − 𝑣ଶ 𝑡ଵ

ଶ𝑐𝑜𝑠ଶ(𝜑) − 2 𝐿 𝑣 𝑡ଵ 𝑠𝑖𝑛ଶ(𝜑) cos(𝜑) − 2 𝐿 𝑣 𝑡ଵ  cos(𝜑) [1 − 𝑠𝑖𝑛ଶ(𝜑)] − 𝐿ଶ = 0 
 
So: 

[𝑐ଶ  − 𝑣ଶ 𝑐𝑜𝑠ଶ(𝜑)]𝑡ଵ
ଶ − 2 𝐿 𝑣 cos(𝜑) 𝑡ଵ − 𝐿ଶ = 0 

 
This equation is a quadratic in 𝑡ଵ, the time for the forward path in the case of an extended reflector. 
We can solve it to find the propagation time. 
The roots of this equation are: 
 

𝑡ଵ± =
𝐿 𝑣 cos(𝜑) ± ඥ𝐿ଶ 𝑣ଶ𝑐𝑜𝑠ଶ(𝜑) − 𝐿ଶ[𝑐ଶ  − 𝑣ଶ 𝑐𝑜𝑠ଶ(𝜑)]

𝑐ଶ  − 𝑣ଶ 𝑐𝑜𝑠ଶ(𝜑)
 

 

𝑡ଵ± =
𝐿 𝑣 cos(𝜑) ± 𝐿 𝑐

[𝑐 − 𝑣 cos(𝜑)] [𝑐 + 𝑣 cos(𝜑)]
=

⎩
⎨

⎧
𝐿

𝑐 − 𝑣 cos(𝜑)
−𝐿

𝑐 + 𝑣 cos(𝜑)

 

 
The positive root provides the propagation time for the forward path. 
 

𝑡ଵ =
𝐿

𝑐 − 𝑣 cos(𝜑)
 

 
 
In the reference frame constrained to the source-reflector system, the speed associated with the forward 
path is: 
 

𝑐ଵ ≡
𝐿

𝑡ଵ
= 𝑐 − 𝑣 cos(𝜑) 
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Return Path 

 
 
At the instant 𝑡ଵ the reflected wave front starts (from point D). 
Let us denote 𝑡ଶ as the time interval necessary for the reflected wave front to reach the source. 
 
Proceeding in a similar way to the previous case, applying the Pythagorean theorem to the right triangle with 
hypotenuse 𝑐 𝑡ଶand the two catheti drawn in orange, we can write: 
 
 

[𝐿 cos(𝜑) − 𝑣 𝑡ଵ −𝑣 𝑡ଶ + 𝑣 𝑡ଵ 𝑐𝑜𝑠ଶ(𝜑)]ଶ + [𝐿 sin(𝜑) + 𝑣 𝑡ଵ cos(𝜑) sin(𝜑)]ଶ = [𝑐 𝑡ଶ]ଶ 
 
Indicating: 
 
𝐴 = [𝐿 cos(𝜑) − 𝑣 𝑡ଵ −𝑣 𝑡ଶ + 𝑣 𝑡ଵ 𝑐𝑜𝑠ଶ(𝜑)]ଶ  = [𝑣 𝑡ଵ (cosଶ(𝜑) − 1) + 𝐿 cos(𝜑) − 𝑣 𝑡ଶ]ଶ, 
 
𝐵 = [𝐿 sin(𝜑) + 𝑣 𝑡ଵ cos(𝜑) sin(𝜑)]ଶ, 
 
the previous expression can be rewritten: 
 

𝑐ଶ𝑡ଶ
ଶ − 𝐴 − 𝐵 = 0 

 
After substituting the expressions for 𝐴 and 𝐵 and simplifying, we obtain a quadratic equation in 𝑡ଶ. 
This involves expanding the terms, rearranging them, and simplifying the resulting expression. 
  

L cos() 

L sin() 

v t1e cos2() 

c t2e 

v t1e v t2e 

C 

D v t1e cos() sin() 
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Introducing the expression of 𝑡ଵ, in 𝐴 we obtain: 
 

𝐴 = ቈ
𝑣 𝐿 (cosଶ(𝜑) − 1) 

𝑐 − 𝑣 cos(𝜑)
 + 𝐿 cos(𝜑) − 𝑣 𝑡ଶ

ଶ

= ቈ 
𝑣 𝐿 cosଶ(𝜑) − 𝑣 𝐿

𝑐 − 𝑣 cos(𝜑)
 + 𝐿 cos(𝜑) − 𝑣 𝑡ଶ

ଶ

 

 

𝐴 = ቈ 
𝑣 𝐿 cosଶ(𝜑) − 𝑣 𝐿 + 𝑐 𝐿 cos(𝜑) − 𝑣 𝐿 cosଶ(𝜑)

𝑐 − 𝑣 cos(𝜑)
 − 𝑣 𝑡ଶ

ଶ

= ቈ 
𝑐 𝐿 cos(𝜑) − 𝑣 𝐿

𝑐 − 𝑣 cos(𝜑)
 − 𝑣 𝑡ଶ

ଶ

 

 

𝐴 =
𝐿ଶ [𝑐 cos(𝜑) − 𝑣 ]ଶ

[𝑐 − 𝑣 cos(𝜑) ]ଶ
+ 𝑣ଶ 𝑡ଶ

ଶ −
 2 𝑣 𝐿 [𝑐 cos(𝜑) − 𝑣 ]

𝑐 − 𝑣 cos(𝜑)
 𝑡ଶ 

 
 
Introducing the expression of 𝑡ଵ, in 𝐵 we obtain: 
 

𝐵 = ቈ𝐿  sin(𝜑) + 
𝑣 𝐿 cos(𝜑) sin(𝜑)

𝑐 − 𝑣 cos(𝜑)


ଶ

 

 

𝐵 = ቈ
𝑐 𝐿 sin(𝜑) − 𝑣 𝐿 cos(𝜑) sin(𝜑) + 𝑣 𝐿  cos(𝜑) sin(𝜑)

𝑐 − 𝑣 cos(𝜑)


ଶ

=
[𝑐 𝐿 sin(𝜑)]ଶ

[𝑐 − 𝑣 cos(𝜑)]ଶ
=

𝑐ଶ 𝐿ଶ 𝑠𝑖𝑛ଶ(𝜑)

[𝑐 − 𝑣 cos(𝜑)]ଶ
 

 
 
So the original expression becomes: 
 

𝑐ଶ𝑡ଶ
ଶ − ቊ

𝐿ଶ [𝑐 cos(𝜑) − 𝑣 ]ଶ

[𝑐 − 𝑣 cos(𝜑)]ଶ
+ 𝑣ଶ 𝑡ଶ

ଶ −
 2 𝑣 𝐿 [𝑐 cos(𝜑) − 𝑣 ]

𝑐 − 𝑣 cos(𝜑)
 𝑡ଶቋ − ቊ

𝑐ଶ 𝐿ଶ 𝑠𝑖𝑛ଶ(𝜑)

[𝑐 − 𝑣 cos(𝜑)]ଶቋ = 0 

So: 

(𝑐ଶ − 𝑣ଶ) 𝑡ଶ
ଶ +

 2 𝑣 𝐿 [𝑐 cos(𝜑) − 𝑣 ]

𝑐 − 𝑣 cos(𝜑)
 𝑡ଶ − ቊ

𝐿ଶ [𝑐 cos(𝜑) − 𝑣 ]ଶ

[𝑐 − 𝑣 cos(𝜑)]ଶ
+

𝑐ଶ 𝐿ଶ 𝑠𝑖𝑛ଶ(𝜑)

[𝑐 − 𝑣 cos(𝜑)]ଶቋ = 0 

So: 
 

(𝑐ଶ − 𝑣ଶ) 𝑡ଶ
ଶ +

 2 𝑣 𝐿 [𝑐 cos(𝜑) − 𝑣 ]

𝑐 − 𝑣 cos(𝜑)
 𝑡ଶ −

 𝐿ଶ[𝑐ଶ𝑐𝑜𝑠ଶ(𝜑) + 𝑣ଶ  − 2 𝑣 𝑐 cos(𝜑) + 𝑐ଶ𝑠𝑖𝑛ଶ(𝜑)]

[𝑐 − 𝑣 cos(𝜑)]ଶ
= 0 

 

(𝑐ଶ − 𝑣ଶ) 𝑡ଶ
ଶ +

 2 𝑣 𝐿 [𝑐 cos(𝜑) − 𝑣 ]

𝑐 − 𝑣 cos(𝜑)
 𝑡ଶ −

 𝐿ଶ[𝑐ଶ + 𝑣ଶ  − 2 𝑣 𝑐 cos(𝜑)]

[𝑐 − 𝑣 cos(𝜑)]ଶ
= 0 

 

(𝑐ଶ − 𝑣ଶ) 𝑡ଶ
ଶ + 2 𝑣 𝐿

𝑐 cos(𝜑) − 𝑣 

𝑐 − 𝑣 cos(𝜑)
 𝑡ଶ −

𝐿ଶ[𝑐ଶ + 𝑣ଶ − 2 𝑣 𝑐 cos(𝜑)]

[𝑐 − 𝑣 cos(𝜑)]ଶ
= 0 

 
 
To find the propagation time for the return path,  𝑡ଶ, we solve this quadratic equation. 
The roots are: 
 

𝑡ଶ± =

−
 𝑣 𝐿 [𝑐 cos(𝜑) − 𝑣 ]

𝑐 − 𝑣 cos(𝜑)
± ඨ𝑣ଶ𝐿ଶ [𝑐 cos(𝜑) − 𝑣  ]ଶ

[𝑐 − 𝑣 cos(𝜑) ]ଶ +
(𝑐ଶ − 𝑣ଶ) 𝐿ଶ[𝑐ଶ + 𝑣ଶ − 2 𝑣 𝑐 cos(𝜑)]

[𝑐 − 𝑣 cos(𝜑) ]ଶ

(𝑐ଶ − 𝑣ଶ)
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𝑡ଶ± =
−𝑣 𝐿 [𝑐 cos(𝜑) − 𝑣] ± 𝐿 ඥ 𝑣ଶ[𝑐 cos(𝜑) − 𝑣  ]ଶ + (𝑐ଶ − 𝑣ଶ)[𝑐ଶ + 𝑣ଶ − 2 𝑣 𝑐 cos(𝜑)]

(𝑐ଶ − 𝑣ଶ)[𝑐 − 𝑣 cos(𝜑)]
= 

 

=
−𝑣 𝐿 [𝑐 cos(𝜑) − 𝑣] ± 𝐿ඥ 𝑣ଶ[𝑐ଶcosଶ(𝜑) + 𝑣ଶ − 2 𝑣 𝑐 cos(𝜑)] + (𝑐ଶ − 𝑣ଶ)[𝑐ଶ + 𝑣ଶ − 2 𝑣 𝑐 cos(𝜑)]

(𝑐ଶ − 𝑣ଶ)[𝑐 − 𝑣 cos(𝜑)]
 

 
Let's develop the mathematical expression under the square root sign: 
 

ඥ 𝑣ଶ[𝑐ଶcosଶ(𝜑) + 𝑣ଶ − 2 𝑣 𝑐 cos(𝜑)] + (𝑐ଶ − 𝑣ଶ)[(𝑐ଶ + 𝑣ଶ) − 2 𝑣 𝑐 cos(𝜑)] = 
 

= ඥ 𝑣ଶ𝑐ଶcosଶ(𝜑) + 𝑣ସ − 2 𝑣ଷ𝑐 cos(𝜑) + (𝑐ସ − 𝑣ସ) − 2 𝑣 𝑐 (𝑐ଶ − 𝑣ଶ) cos(𝜑) = 
 

= ඥ 𝑣ଶ𝑐ଶcosଶ(𝜑) + 𝑣ସ − 2 𝑣ଷ𝑐 cos(𝜑) + 𝑐ସ − 𝑣ସ − 2 𝑣 𝑐ଷ cos(𝜑) + 2 𝑣ଷ𝑐 cos(𝜑) = 
 

= ඥ 𝑣ଶ𝑐ଶcosଶ(𝜑) + 𝑐ସ − 2 𝑣 𝑐ଷ cos(𝜑) = ඥ [𝑐ଶ − 𝑣 𝑐 cos(𝜑)]ଶ 
 
By simplifying the expression under the square root, we can see that it is a perfect square. 
This allows us to simplify the solution for 𝑡ଶ. 
So: 
 

𝑡ଶ± =
−𝑣 𝐿 [𝑐 cos(𝜑) − 𝑣] ± 𝐿[𝑐ଶ − 𝑣 𝑐 cos(𝜑)]

(𝑐ଶ − 𝑣ଶ)[𝑐 − 𝑣 cos(𝜑)]
 

So: 
 

𝑡ଶ± =
−𝐿 𝑣 𝑐 cos(𝜑) + 𝐿 𝑣ଶ ± 𝐿 𝑐ଶ  ∓ 𝐿 𝑣 𝑐 cos(𝜑)

(𝑐ଶ − 𝑣ଶ)[𝑐 − 𝑣 cos(𝜑)]
 

So: 
 

𝑡ଶ± =

⎩
⎪
⎨

⎪
⎧−𝐿 𝑣 𝑐 cos(𝜑) + 𝐿 𝑣ଶ + 𝐿 𝑐ଶ − 𝐿 𝑣 𝑐 cos(𝜑)

(𝑐ଶ − 𝑣ଶ)[𝑐 − 𝑣 cos(𝜑)]

−𝐿 𝑣 𝑐 cos(𝜑) + 𝐿 𝑣ଶ − 𝐿 𝑐ଶ + 𝐿 𝑣 𝑐 cos(𝜑)

(𝑐ଶ − 𝑣ଶ)[𝑐 − 𝑣 cos(𝜑)]

 

So: 
 

𝑡ଶ± =

⎩
⎪
⎨

⎪
⎧−2 𝐿 𝑣 𝑐 cos(𝜑) + 𝐿 𝑣ଶ + 𝐿 𝑐ଶ

(𝑐ଶ − 𝑣ଶ)[𝑐 − 𝑣 cos(𝜑)]

𝐿 𝑣ଶ − 𝐿 𝑐ଶ

(𝑐ଶ − 𝑣ଶ)[𝑐 − 𝑣 cos(𝜑)]

=

⎩
⎪
⎨

⎪
⎧𝐿 [𝑐ଶ + 𝑣ଶ − 2 𝑣 𝑐 cos(𝜑)]

(𝑐ଶ − 𝑣ଶ)[𝑐 − 𝑣 cos(𝜑)]
− 𝐿 

[𝑐 − 𝑣 cos(𝜑)]

 

 
The positive root provides the propagation time for the forward path. 
 

𝑡ଶ =
𝐿 [𝑐ଶ + 𝑣ଶ − 2 𝑣 𝑐 cos(𝜑)]

(𝑐ଶ − 𝑣ଶ)[𝑐 − 𝑣 cos(𝜑)]
 

 
In the reference frame constrained to the source-reflector system, the speed associated with the return path 
is: 

𝑐ଶ ≡
𝐿

𝑡ଶ
=

(𝑐ଶ − 𝑣ଶ)(𝑐 + 𝑣 cos(𝜑))

𝑐ଶ + 𝑣ଶ − 2 𝑣 𝑐 cos(𝜑)
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Now that we have the expressions for the forward and return propagation times, we can calculate the total 
round-trip time by summing 𝑡ଵ and 𝑡ଶ. 
 

𝑡௧௧_ = 𝑡ଵ + 𝑡ଶ = 𝐿 ቊ
1

𝑐 − 𝑣 cos(𝜑)
+

[𝑐ଶ + 𝑣ଶ − 2 𝑣 𝑐 cos(𝜑)]

(𝑐ଶ − 𝑣ଶ)[𝑐 − 𝑣 cos(𝜑)]
ቋ 

 

𝑡௧௧_ = 𝐿 ቊ
(𝑐ଶ − 𝑣ଶ) + [𝑐ଶ + 𝑣ଶ − 2 𝑣 𝑐 cos(𝜑)]

(𝑐ଶ − 𝑣ଶ)[𝑐 − 𝑣 cos(𝜑)]
ቋ = 𝐿 ቊ

2 𝑐ଶ − 2 𝑣 𝑐 cos(𝜑)

(𝑐ଶ − 𝑣ଶ)[𝑐 − 𝑣 cos(𝜑)]
ቋ =

2 𝐿 𝑐 

𝑐ଶ − 𝑣ଶ
 

 
 
The two-way velocity is, than: 
 

𝑐௧௪ି௪௬ ≡
2𝐿

𝑡௧௧_
=

𝑐ଶ − 𝑣ଶ

𝑐
 

 
 
The final expression for the two-way velocity in the case of an extended reflector is independent of the angle 
φ, which is consistent with Feist's experimental results. 
This highlights the importance of considering the extended nature of the reflector in the analysis. 
 

 
Conclusions 

 
The analysis presented in this paper provides a convincing explanation for the experimental results obtained 
by Norbert Feist in his acoustic Michelson-Morley experiment. By using Galilean transformations and 
considering the extended nature of the reflector, we demonstrate that the null result can be theoretically 
justified. The commonly used expression for the bidirectional speed of sound is valid only under the 
simplifying assumption of a point-like reflector. By deriving the correct expression for an extended reflector, 
we show that the experimental results can be explained using classical physics. 
 
This reasoning can be extended to the original electromagnetic Michelson-Morley experiment, suggesting 
that also in that case, considering the extended nature of the reflectors, it might be possible to explain the 
null result without resorting to Lorentz transformations. 
The analysis developed in this paper invites a re-examination of the traditional interpretation of the 
Michelson-Morley experiment. 
Historically, the null result has been taken to exclude the existence of a luminiferous aether and to 
necessitate the adoption of Lorentz transformations as the only viable framework to explain the constancy 
and isotropy of the speed of light. 
However, the reasoning proposed here — grounded in Galilean kinematics and a detailed consideration of 
the reflector’s geometry — demonstrates that the null result can also be understood within a framework 
that retains the notion of a preferred reference frame (i.e., the rest frame of the medium) and adheres to 
classical principles of motion. 
This underscores an important epistemological point: the Michelson-Morley experiment does not logically 
compel the adoption of Lorentz transformations. 
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