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Abstract

In Newtonian physics, it commonly assumed that conservations of linear momentum and angular momentum

are independent. This paper shows the gradient of the angular momentum field is populated by components of

linear momentum: ∂Lk/∂xj = ϵijkPi where i /∈ (j, k), which allows calculation of linear momentum from a few

angular momentum values displaced an arbitrary distance s:

P⃗ = ( Lz(O⃗ + sŷ)− Lz(O⃗) , Lx(O⃗ + sẑ)− Lx(O⃗)) , Ly(O⃗ + sx̂)− Ly(O⃗) )/s .

Therefore conservation of linear momentum is a necessary condition for Full conservation of angular momentum

(unchanging angular momentum at every (x, y, z), with unchanging gradient). These results are shown to be

equally valid under left hand convention. Examples analyzed include a body orbiting in a central force, which

has angular momentum changing at every observation point but one, contrasted with actual conservation of

angular momentum (unchanging at every observation point, in every frame of reference). Translating angular

momentum of the center of mass within and between frames of reference are discussed. A Python script is

provided, to conveniently generate and evaluate random groups of particles.
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1 Introduction

The pattern of Newtonian angular momentum around an undisturbed moving particle takes a distinctive tunnel

shape. The pattern existed and exists, along the path, unchanged (conserved) over all time. If we could see the

angular momentum visually, it would advertise the particle long before it arrived locally, and remain unchanged

after the particle had passed. This static pattern does not indicate the changing particle position. The value of L⃗

at any one point means little. The overall pattern tells us much.

Figure 1: Angular momentum around a single particle

We can choose coordinates such that the particle is traveling along the x axis with position = (rx, 0, 0), momentum

(px, 0, 0). At observation point (x, y, z) the angular momentum is

L⃗(x, y, z) = ((rx, 0, 0)− (x, y, z))× (px, 0, 0) ; (1)

L⃗(x, y, z) = (rx − x , − y , − z)× (px, 0, 0) ; (2)

L⃗(x, y, z) = (0,−zpx, ypx) rx, x play no role ; (3)

∂Ly/∂z = −px ; (4)

∂Lz/∂y = px ; (5)

∂Lk/∂xj = ϵijkpi where i /∈ (j, k), see Eq.(101) . (6)

Later we will see that (using P⃗total), Eqs.(4), (5), (6), and (101) are always true, regardless of the the chosen

observation point, or the number, positions, or momentums of particles, or even right or left hand convention.

The x coordinate of the observation point (in the direction of linear momentum) does not affect the value of L⃗

found there.

As we travel further from the path, angular momentum changes (Eqs. (3)-(6)), at a constant rate equal to the

linear momentum of the particle. Given values of angular momentum at various positions, we can calculate the

∂Lk/∂xj rates of change, and therefore the linear momentum, both magnitude and direction.

It is well-known that angular momentum around a system of particles is equal to angular momentum at the center

of mass position, plus angular momentum of an imaginary particle at the position of the center of mass with

momentum P⃗total. So every system of bodies with non-zero linear momentum provides a single-particle-like tunnel

pattern, possibly with a constant pseudovector L⃗CoM added to every pattern position. L⃗CoM does not affect the

∂Lk/∂xj rate of change.

From values of angular momentum at various positions, we can calculate the rate of change, and therefore the

linear momentum of the imaginary particle, which is the total linear momentum of the system (Eq. 20)). We can

calculate linear momentum from angular.
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2 Iterative Proof

This proof makes no specific reference to right or left hand convention, it is equally valid under either, assuming

appropriate (left or right) orthogonal coordinates consistent with:

ẑ = x̂× ŷ ; x̂ = ŷ × ẑ ; ŷ = ẑ × x̂ . (7)

For a single particle with position r⃗i and momentum p⃗i, observed from point O = (x, y, z):

L⃗i(x, y, z) ≡ (r⃗i − (x, y, z))× p⃗i ; (8)

L⃗i(x, y, z) = ( (riy − y)piz − (riz − z)piy ,

(riz − z)pix − (rix − x)piz ,

(rix − x)piy − (riy − y)pix ) ;

(9)

Lix = riypiz − ypiz − rizpiy + zpiy ; (10)

Liy = rizpix − zpix − rixpiz + xpiz ; (11)

Liz = rixpiy − xpiy − riypix + ypix . (12)

Choosing an arbitrary distance s, if we evaluate

(Liz(O⃗ + sŷ)− Liz(O⃗) , Lix(O⃗ + sẑ)− Lix(O⃗) , Liy(O⃗ + sx̂)− Liy(O⃗))/s (13)

= ( (rixpiy − xpiy − riypix + (y + s)pix)

− (rixpiy − xpiy − riypix + ypix) ,

(riypiz − ypiz − rizpiy + (z + s)piy)

− (riypiz − ypiz − rizpiy + zpiy) ,

(rizpix − zpix − rixpiz + (x+ s)piz)

− (rizpix − zpix − rixpiz + xpiz) )/s ;

(14)

=(spix, spiy, spiz)/s ; (15)

=(pix, piy, piz) ; (16)

=p⃗i ; (17)

we get momentum. This equation embodies (px, py, pz) = (∂Lz/∂y, ∂Lx/∂z, ∂Ly/∂x) in a way that can be used

with available angular momentum values.

Since each of N particles obeys

p⃗i = (Liz(O⃗ + sŷ)− Liz(O⃗) , Lix(O⃗ + sẑ)− Lix(O⃗) , Liy(O⃗ + sx̂)− Liy(O⃗))/s ; (18)∑
i

p⃗i =
∑
i

(Liz(O⃗ + sŷ)− Liz(O⃗) , Lix(O⃗ + sẑ)− Lix(O⃗) , Liy(O⃗ + sx̂)− Liy(O⃗))/s ; (19)

P⃗ = ( Lz(O⃗ + sŷ)− Lz(O⃗) , Lx(O⃗ + sẑ)− Lx(O⃗)) , Ly(O⃗ + sx̂)− Ly(O⃗) )/s ; (20)

Pi = ϵijk(Lk(O + sĵ)− Lk(O))/s where ϵijk = 1 . (21)

We can calculate linear momentum from spatially separated values of angular momentum.
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Similarly,

(Liy(O⃗)− Liy(O⃗ + sẑ) , Liz(O⃗)− Liz(O⃗ + sx̂) , Lix(O⃗)− Lix(O⃗ + sŷ))/s (22)

= ( (rizpix − zpix − rixpiz + xpiz)

− (rizpix − (z + s)pix − rixpiz + xpiz) ,

(rixpiy − xpiy − riypix + ypix)

− (rixpiy − (x+ s)piy − riypix + ypix) ,

(riypiz − ypiz − rizpiy + zpiy)

− (riypiz − (y + s)piz − rizpiy + zpiy) )/s ;

(23)

=(spix, spiy, spiz)/s ; (24)

=(pix, piy, piz) ; (25)

=p⃗i ; (26)

is also momentum. This equation embodies (px, py, pz) = (−∂Ly/∂z,−∂Lz/∂x,−∂Lx/∂y) in a useful fashion.

Since each of N particles obeys

p⃗i = (Liy(O⃗)− Liy(O⃗ + sẑ) , Liz(O⃗)− Liz(O⃗ + sx̂) , Lix(O⃗)− Lix(O⃗ + sŷ))/s ; (27)∑
i

p⃗i =
∑
i

(Liy(O⃗)− Liy(O⃗ + sẑ) , Liz(O⃗)− Liz(O⃗ + sx̂) , Lix(O⃗)− Lix(O⃗ + sŷ))/s ; (28)

P⃗ = ( Ly(O⃗)− Ly(O⃗ + sẑ) , Lz(O⃗)− Lz(O⃗ + sx̂)) , Lx(O⃗)− Lx(O⃗ + sŷ) )/s ; (29)

P⃗ = −( Ly(O⃗ + sẑ)− Ly(O⃗) , Lz(O⃗ + sx̂)− Lz(O⃗)) , Lx(O⃗ + sŷ)− Lx(O⃗) )/s ; (30)

Pi = ϵijk(Lk(O + sĵ)− Lk(O))/s where ϵijk ∈ (1,−1) . (31)

If we combine terms from Eq.(20) and Eq.(29), we only need L⃗ at three points: O⃗, O⃗ + sŷ, O⃗ + sẑ :

P⃗ = ( Lz(O⃗ + sŷ)− Lz(O⃗) , Lx(O⃗ + sẑ)− Lx(O⃗)) , Lx(O⃗)− Lx(O⃗ + sŷ) )/s . (32)

This is the main finding of this paper: at time t, we can calculate total linear momentum solely from angular

momentum values, without knowing the number of particles, their masses, positions, or momentums. If these

angular momentum values are conserved over time, linear momentum is also conserved.

The demonstration script, shown later, can generate unlimited detailed examples on demand.

Linear momentum is associated with the gradients of angular momentum.

Any value of angular momentum at a single observation point can be associated with any value of linear momentum.

A series of angular momentum values across x, y, z defines a specific linear momentum.

Any single value of velocity can be associated with any value of acceleration.

A series of velocity values across time defines a specific acceleration.
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3 Real Vector vs PseudoVector

We can doubly verify that this expression

(Lz(O⃗ + sŷ)− Lz(O⃗) , Lx(O⃗ + sẑ)− Lx(O⃗) , Ly(O⃗ + sx̂)− Ly(O⃗))/s

is a vector, not a pseudovector. (s is a distance, typically in meters.)

Because it contains components of the pseudovector angular momentum L⃗, this expression may raise concern.

The result needs to be a real vector to actually equal the real vector P⃗total.

Before we jump into the derivation, we should understand that

Lx(O⃗ + sẑ)− Lx(O⃗) = −(Lx(O⃗ − sẑ)− Lx(O⃗)) .

We know this because the components Lx, Ly, Lz are linear functions of (rix, riy, riz, pix, piy, piz, Ox, Oy, Oz). There-

fore, if we add sẑ to Oz and get a delta, then adding −sẑ to Oz must produce the equal but opposite delta.

The cross product right hand rule is only a convention. If we used a left hand rule instead, pseudovectors would

point in the physically opposite direction, but physics would still work correctly, we would arrive at the same

physical results.

If we change to left-hand cross-product, and left-hand coordinates, does the candidate expression transform like a

vector or pseudovector?

Using left hand coordinates that reflect z:

x′ = x ; y′ = y ; z′ = −z ; (33)

x′ ×left y
′ = z′ ; y′ ×left z

′ = x′ ; z′ ×left x
′ = y′ . (34)

When switching to this left-hand system, real vectors like P⃗ ′ will physically be the same, but its z′ coefficient will

be negated:

P ′
x = Px ; P ′

y = Py ; P ′
z = −Pz ; (35)

P ′
xx̂

′ = Pxx̂ ; P ′
y ŷ

′ = Py ŷ ; P ′
z ẑ

′ = Pz ẑ . (36)

The left hand rule will physically negate pseudovectors like L⃗′, which means their x and y coefficients will negate,

and their z coefficient will remain:

L′
x = −Lx ; L′

y = −Ly ; L′
z = Lz ; (37)

L′
xx̂

′ = −Lxx̂ ; L′
y ŷ

′ = −Ly ŷ ; L′
z ẑ

′ = −Lz ẑ . (38)

Evaluation:

( (L′
z(O⃗ + sŷ′)− L′

z(O⃗))x̂′ + (L′
x(O⃗ + sẑ′)− L′

x(O⃗))ŷ′ + (L′
y(O⃗ + sx̂′)− L′

y(O⃗)ẑ′) )/s ; (39)

= ( (Lz(O⃗ + sŷ′)− Lz(O⃗))x̂′ + (−Lx(O⃗ + sẑ′) + Lx(O⃗))ŷ′ + (−Ly(O⃗ + sx̂′) + Ly(O⃗)ẑ′) )/s ; (40)

= ( (Lz(O⃗ + sŷ)− Lz(O⃗))x̂′ + (−Lx(O⃗ − sẑ) + Lx(O⃗))ŷ′ + (−Ly(O⃗ + sx̂) + Ly(O⃗)ẑ′) )/s ; (41)

= ( (Lz(O⃗ + sŷ)− Lz(O⃗))x̂ + (−Lx(O⃗ − sẑ) + Lx(O⃗))ŷ + (Ly(O⃗ + sx̂)− Ly(O⃗)ẑ) )/s ; (42)

= ( Lz(O⃗ + sŷ)− Lz(O⃗))x̂ + (Lx(O⃗ + sẑ)− Lx(O⃗))ŷ + (Ly(O⃗ + sx̂) + Ly(O⃗)ẑ) )/s . (43)

This is the exact same physical vector, calculated right-hand or left hand. The expression is a vector, and it is

eligible to be equated to other physical vectors like P⃗ , when appropriate.
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Two examples can illustrate why Eqs.(6) and (101 work equally in both right-hand rule and left-hand rule.

In this example, we know that Px = P ′
x, Lz = L′

z, and y = y′ are all unchanged by transforming to left-hand

coordinates:

Px = ∂Lz/∂y ; (44)

P ′
x = ∂L′

z/∂y
′ . (45)

In this example, we know that Pz = −P ′
z and Ly = −L′

y, while x is unchanged by transforming to left-hand

coordinates:

Pz = ∂Ly/∂x ; (46)

−Pz = −∂Ly/∂x ; (47)

P ′
z = ∂L′

y/∂x
′ . (48)

Regardless of chosen convention:

dLk/dxj = ϵijkPi where i /∈ (j, k)− Eq.(101). (49)
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4 Landau and Lifshitz

Total linear momentum is

P⃗total ≡
n∑

i=1

p⃗i . (50)

Angular momentum, which varies by the chosen observation point O, is

L⃗(O⃗) ≡
n∑

i=1

(r⃗i − O⃗)× p⃗i . (51)

From these definitions, in their book Mechanics,1 Landau and Lifshitz derived their Equation 9.4, proving that

angular momentum L⃗, calculated in reference to observation points O1 and O2, differ by

L⃗(O⃗2)− L⃗(O⃗1) =

n∑
i=1

(
((r⃗i − O⃗2)× p⃗i)− ((r⃗i − O⃗1)× p⃗i)

)
(52)

L⃗(O⃗2)− L⃗(O⃗1) =
n∑

i=1

(O⃗1 − O⃗2)× p⃗i (53)

L⃗(O⃗2) = L⃗(O⃗1) + (O⃗1 − O⃗2)×
n∑

i=1

p⃗i (54)

L⃗(O⃗2) = L⃗(O⃗1) + (O⃗1 − O⃗2)× P⃗total (LLM 9.4) . (55)

In classical mechanics, LLM 9.4 Eq.(55) is always true, for any group of particles, at any time t, in any chosen

inertial frame of reference, as long as O1, O2 are unmoving in that frame, and p⃗1..p⃗n are taken in reference to that

frame, with or without external forces present. See Eqs. (133)-(138).

Thus, if you know angular momentum at a single observation point L⃗(O⃗1), and you know total linear momentum

P⃗total, this establishes angular momentum at every observation point. You now know the “angular momentum of

the system”. Knowing AM at a single observation point is feeling the elephant’s trunk. Additionally knowing the

total linear momentum, you see the entire elephant (in this frame of reference).

This specific linear momentum is necessary to produce this infinite pattern of angular momentum. Other systems,

with a different linear momentum, can only match angular momentum values at a limited set of points.

Notice that the cross product term is unable to produce any component parallel to P⃗total. If L⃗ has a component

parallel to P⃗total, it is equal at all observation points.

Notice that if P⃗total ̸= 0 and it is parallel to the displacement (O⃗1 − O⃗2), then (O⃗1 − O⃗2) × P⃗total = 0, and

L⃗(O⃗2) = L⃗(O⃗1). So angular momentum has a constant unchanging value along any line parallel to P⃗ . This means

that every plane perpendicular to P⃗total repeats the angular momentum values of other perpendicular planes.

In each plane perpendicular to P⃗total, every possible combination of angular momentum components perpendicular

to P⃗total appear exactly once. If we knew the value of angular momentum at the center of mass, the single point in

the plane with that same value would be a point on the projected path of the center of mass, parallel to the tunnel

centerline. If L⃗CoM is zero, or parallel to P⃗ , the centerline is the projected path.

By setting O1 to the position of the center of mass, Mechanics1 uses this equation to prove the well-known result

that: total angular momentum at any point O2 is equal to (angular momentum at the Center Of Mass (O1)) plus

angular momentum of (an imaginary particle with momentum P⃗total at) the Center of Mass:

L⃗(x, y, z) = L⃗(R⃗CoM ) + (R⃗CoM − (x, y, z))× P⃗total . (56)

LLM 9.4 directly states this is true, not only for the center of mass, but for any O1.

LLM 9.4 delivers another well-known result, that: if overall linear momentum P⃗ = 0 , then (O⃗1 − O⃗2)× P⃗ = 0, and

L⃗(O⃗2) = L⃗(O⃗1), angular momentum is equal at all (x, y, z) observation points.
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5 Perpendicular Cross Division

Given any system of particles, if we know L⃗(O⃗1) and L⃗(O⃗2), then

L⃗(O⃗2)− L⃗(O⃗1) = (O⃗1 − O⃗2)× P⃗total . (57)

If we want to calculate P⃗ , we cannot simply divide L⃗(O⃗2)− L⃗(O⃗1) by (O⃗1 − O⃗2) because the vector cross product

ignores the component of P⃗ parallel to (O⃗1 − O⃗2), and only uses the perpendicular component(s). The parallel

component is discarded, and irretrievable.

We can obtain the component(s) of P⃗ perpendicular to (O⃗1 − O⃗2) via perpendicular division:

Given A⃗ perpendicular to B⃗perp , A⃗ parallel to B⃗parr , and C⃗ = A⃗× (B⃗perp + B⃗parr), then:

0 = A⃗× B⃗parr ; (58)

C⃗ = A⃗× B⃗perp ; (59)

B⃗perp = (C⃗ × A⃗)/(A⃗ · A⃗) ; (60)

L⃗(O⃗2)− L⃗(O⃗1) = (O⃗1 − O⃗2)× (P⃗perpendicular + P⃗parallel) ; (61)

L⃗(O⃗2)− L⃗(O⃗1) = (O⃗1 − O⃗2)× P⃗perpendicular ; (62)

P⃗perpendicular =
(
(L⃗(O⃗2)− L⃗(O⃗1))× (O⃗1 − O⃗2)

)
/
(
(O⃗1 − O⃗2) · (O⃗1 − O⃗2)

)
. (63)

In the case where O⃗2 − O⃗1 is parallel to an axis, for example O⃗2 − O⃗1 = sx̂ :

P⃗yz =
(
(L⃗(O⃗2)− L⃗(O⃗1)× (−sx̂)

)
/s2 ; (64)

P⃗yz =
(
(Lx(O⃗2)− Lx(O⃗1) , Ly(O⃗2)− Ly(O⃗1) , Lz(O⃗2)− Lz(O⃗1))× (−1, 0, 0)

)
/s ; (65)

(0, Py, Pz) = ( 0 , Lz(O⃗1)− Lz(O⃗2) , Ly(O⃗2)− Ly(O⃗1) )/s ; (66)

Py = (Lz(O⃗1)− Lz(O⃗1 + sx̂))/s ; (−∂Lz/∂x) (67)

Pz = (Ly(O⃗1 + sx̂)− Ly(O⃗1))/s . (∂Ly/∂x) (68)

Of course, we can repeat this process for sŷ and sẑ, which is another path to deriving Eqs. (20),(29),(31)

So knowing L⃗ at two points delivers two components of linear momentum. Perpendicular cross division reveals

components of linear momentum perpendicular to the displacement. We need a third point, not co-linear with

O⃗1 − O⃗2, to find the remaining component, as in Eq.32
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6 If L⃗ is unchanging at position O1

Given a system of particles where angular momentum at a chosen point L⃗(O1) is unchanging over time,

L⃗(O1, t1) = L⃗(O1, t2). If p⃗(t1) ̸= p⃗(t2) linear momentum has changed, then

L⃗(O2, t1) = L⃗(O1) + (O⃗1 − O⃗2)× p⃗(t1); (69)

L⃗(O2, t2) = L⃗(O1) + (O⃗1 − O⃗2)× p⃗(t2) ; (70)

L⃗(O2, t2)− L⃗(O2, t1) = (O⃗1 − O⃗2)× (p⃗(t2)− p⃗(t1)) . (71)

For some O2 observation points, (O⃗1 − O⃗2) will be parallel to (p⃗(t2)− p⃗(t1)), so the cross product will be zero, and

L⃗(O2, t2) = L⃗(O2, t1) angular momentum at O⃗2 will be unchanged.

For most O2, (O⃗1 − O⃗2) will not be parallel to (p⃗(t2)− p⃗(t1)), so the cross product will be nonzero, and L⃗(O2, t2) ̸=
L⃗(O2, t1).

So changing linear momentum demands changing angular momentum, not everywhere, but

almost everywhere.

Conversely, if angular momentum is conserved everywhere, then linear momentum must be conserved also.

Of course, there are countless examples of angular momentum unchanging at some chosen reference point, while

linear momentum is changing. In all of these examples, angular momentum is not conserved, changing at nearby

observation points.

If L⃗(O1) is unchanging at O1, and p⃗(t2) = p⃗(t1) is also conserved, then

p⃗(t2)− p⃗(t1) = (0, 0, 0) ; (72)

L⃗(O2, t2)− L⃗(O2, t1) = (O⃗1 − O⃗2)× (0, 0, 0) ; (73)

L⃗(O2, t2) = L⃗(O2, t1) ; (74)

angular momentum is conserved at all O2 (at every (x, y, z)).

Angular momentum unchanging at one observation point, plus conservation of linear momentum, is full conservation

of angular momentum.
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7 Linear Algebra Equations

For a system of particles at time t, the coefficient values of angular momentum Lx, Ly, Lz are a linear combination

of the position coefficients rix, riy, riz of the particles, the momentum coefficients of the particles pix, piy, piz, and

the position coefficients of the observation point x, y, z .

Each observation point O⃗j = (xj , yj , zj) provides us with three linear equations:

Ljx =
∑
i

riypiz − yjpiz − rizpiy + zjpiy ; (75)

Ljy =
∑
i

rizpix − zjpix − rixpiz + xjpiz ; (76)

Ljz =
∑
i

rixpiy − xjpiy − riypix + yjpix . (77)

We have 6N unknowns: r1x, r1y, r1z, p1x, p1y, p1z...rNx, rNy, rNz, pNx, pNy, pNz. If we know the value of angular

momentum at unlimited observation points, we can gather more equations than unknowns, which raises the possi-

bility of solving for all the unknowns. But the equations are linearly co-dependent, so we are unable to solve for

each particle position and momentum.

L⃗(x2, y2, z2) = L⃗(x1, y1, z1) + ((x1, y1, z1)− (x2, y2, z2))× P⃗total . Eq.(55)

If two different systems have identical linear momentum, and identical angular momentum at one observation point

(x1, y1, z1), then they have identical angular momentum at every observation point (x2, y2, z2). For any system,

there are infinite other systems with identical AM values. Their angular momentum values will not distinguish

between them. Their numerous linear equations will not solve to individual particle positions and momentums.

Ljx =
(∑

riypiz − rizpiy

)
−
(∑

yjpiz

)
+
(∑

zjpiy

)
; (78)

Ljx = Lx(0, 0, 0)− yjPz + zjPy . (79)

Given angular momentum values in a single reference frame, we can only solve for total linear momentum (Px, Py, Pz).

The center of mass remains elusive.

Given the total mass, position and velocity of the center of mass, and angular momentum at the center of mass

in one frame, we can calculate angular momentum at any point, in any frame. We can also generate infinite other

systems that share these same values, and therefore have identical angular momentum at every observation point,

in every frame.

Not coincidentally, if we know angular momentum at enough points, in enough frames, we can calculate total mass,

position and velocity of the center of mass, and angular momentum at the center of mass.

We can solve for P⃗ in two frames, obtaining total mass and CoM velocity, then find the frame where P⃗ = 0. In this

frame L⃗ is constant everywhere, which is also the value of L⃗CoM at the Center of Mass in every frame (Eq.115).

In every frame where the CoM is moving, the single line where L⃗(x, y, z) = L⃗CoM is the projected path of the CoM.

In a frame where CoM is moving parallel to x̂, the path provides the coordinates y and z. In a frame where CoM is

moving parallel to ŷ, the path provides the coordinates x and z. Having the coordinates in the frame where CoM

is unmoving, we can calculate its position in any frame.

Full knowledge of angular momentum fully describes the center of mass.
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8 Camouflage

It is a curious mathematical quirk that the tunnel pattern can completely camouflage components of L⃗CoM perpen-

dicular to P⃗ . For example, two particles traveling in opposite directions along parallel paths produce an angular

momentum pattern completely identical to an imaginary single particle, but the imaginary single particle travels

parallel to the center of mass, such that it produces the necessary non-zero angular momentum at the center of

mass position.

Figure 2: two particles anti-parallel

Given two particles:

particle 1 mass 3 position (0,−1, 0) momentum (2, 0, 0) (80)

particle 2 mass 1 position (0,−2, 0) momentum (−1, 0, 0) (81)

Total linear momentum is (1, 0, 0).

Particle two is twice as far from the x axis, but has half the momentum, in the opposite direction. At the axis, the

two angular momentums add to zero.

At any observation point (x, y, z), total angular momentum is

L⃗(x, y, z) = (((0,−1, 0)− (x, y, z))× (2, 0, 0)) + (((0,−2, 0)− (x, y, z))× (−1, 0, 0)) ; (82)

L⃗(x, y, z) = (0, 0, 2)− (0, 2z,−2y) + (0, 0,−2)− (0,−z, y) ; (83)

L⃗(x, y, z) = (0,−z, y) ; (84)

which is exactly the angular momentum produced by a particle traveling along the x axis with momentum (1,0,0).

It is also equal to

L⃗(x, y, z) = (0, 0,−1.25) + (0,−z, y + 1.25) ;

which is exactly the angular momentum at the center of mass, plus angular momentum produced by an imaginary

particle at the center of mass, with this same momentum (1,0,0).

While the pattern of angular momentum reveals P⃗ , the value of L⃗CoM is completely hidden among the forest of

various L⃗(x, y, z) values.
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So any system that has same linear momentum as our imaginary x-axis particle, and same angular momentum

at any single observation point, has the same identical pattern of angular momentum at every observation point.

Using only AM values in this single frame, we cannot distinguish between these systems, we cannot deduce the

path of the center of mass, or deduce the angular momentum at the CoM.

We can produce an infinite number of particle systems with this identical pattern of angular momentum. Each

system must have linear momentum of (1, 0, 0), and a center of mass offset from the pattern centerline to compensate

for angular momentum at the center of mass.

Shifting the pattern sideways completely hides components of angular momentum at the center of mass that are

perpendicular to linear momentum, but tunnel pattern has no component parallel to total linear momentum. If

angular momentum at the center of mass has a component parallel to total linear momentum, every observation

point has that same component. The pattern cannot hide it, it will be obvious along the centerline of the pattern,

and elsewhere. The angular momentum pseudovectors will not lie in a plane perpendicular to P⃗ .

These two particles are not moving parallel to each other:

Figure 3: two particles with L⃗ · P⃗ ̸= 0

12



9 Torque Translation

Around any observation point O⃗, external forces provide net force and net torque.

The net force provides acceleration of the center of mass.

Over time, the net torque alters the angular momentum around O⃗.

τ⃗((0, 0, 0)) =
∑
i

r⃗i × f⃗i ; (85)

τ⃗(O⃗) =
∑
i

(r⃗i − O⃗)× f⃗i ; (86)

τ⃗(O⃗2)− τ⃗(O⃗1) =
∑
i

(
((r⃗i − O⃗2)× f⃗i)− ((r⃗i − O⃗1)× f⃗i)

)
; (87)

τ⃗(O⃗2) = τ⃗(O⃗1) +
∑
i

(O⃗1 − O⃗2)× f⃗i ; (88)

τ⃗(O⃗2) = τ⃗(O⃗1) + (O⃗1 − O⃗2)×
∑
i

f⃗i ; (89)

τ⃗(O⃗2) = τ⃗(O⃗1) + (O⃗1 − O⃗2)× F⃗net . (90)

Given torque τ⃗ with respect to one observation point, and net force F⃗net, we can derive torque at any observation

point.

Due to pairwise f⃗ij = −f⃗ji cancellation, the sum of internal forces is zero, so F⃗net (sum of all forces) is also the

sum of all external forces.

If the forces add to zero F⃗net = 0, conserving linear momentum, (O⃗1 − O⃗2) × F⃗net = 0, so then τ⃗(O⃗2) = τ⃗(O⃗1),

torque is the same at all observation points. The angular momentum at all observation points may change, but the

differences in angular momentum between any two points remain unchanged.

If F⃗net ̸= 0 then torque varies across x, y, z (but stays constant in the direction of F⃗net):

τ⃗((x, y, z)) = τ⃗((0, 0, 0))− (x, y, z)× F⃗net ; (91)

τ⃗((x, y, z)) = τ⃗((0, 0, 0))− (yFz − zFy, zFx − xFz, xFy − yFx) ; (92)

∇τ⃗(x, y, z) =


∂τx
∂x

∂τx
∂y

∂τx
∂z

∂τy
∂x

∂τy
∂y

∂τy
∂z

∂τz
∂x

∂τz
∂y

∂τz
∂z

 =

 0 −Fz Fy

Fz 0 −Fx

−Fy Fx 0

 ; (93)

∂τk/∂j = ϵijkFi where i /∈ (j, k) . (94)

At time t, the torque τ varies linearly across space, which helps explain why angular momentum varies linearly

across space. If F⃗net ̸= 0, torque produces a tunnel pattern.
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10 Jacobian of Angular Momentum

At time t, angular momentum at some chosen observation point (x, y, z) is

L⃗(x, y, z) ≡
n∑

i=1

(r⃗i − (x, y, z))× p⃗i ; (95)

L⃗(x, y, z) =

n∑
i=1

r⃗i × p⃗i −
n∑

i=1

(x, y, z)× p⃗i ; (96)

L⃗(x, y, z) =

n∑
i=1

r⃗i × p⃗i − (x, y, z)×
n∑

i=1

p⃗i ; (97)

L⃗(x, y, z) = L⃗(0, 0, 0)− (x, y, z)× P⃗total ; (98)

L⃗(x, y, z) = L⃗(0, 0, 0)− ( yPz − zPy, zPx − xPz, xPy − yPx ) ; (99)

∇L⃗(x, y, z) =


∂Lx

∂x
∂Lx

∂y
∂Lx

∂z
∂Ly

∂x
∂Ly

∂y
∂Ly

∂z
∂Lz

∂x
∂Lz

∂y
∂Lz

∂z

 =

 0 −Pz Py

Pz 0 −Px

−Py Px 0

 ; (100)

dLk/dxj = ϵijkPi where i /∈ (j, k). (101)

At time t, Eq. (100) shows the jacobian has the same value at each and every (x, y, z). Components of Linear

momentum are the constant partial derivatives of angular momentum. Significantly, each component of angular

momentum varies linearly across (x, y, z).

The value of L⃗(0, 0, 0) is arbitrary, so the value of angular momentum at any single point does not determine

linear momentum. But at every x, y, z, the partial derivatives of L⃗(x, y, z) are coefficients of P⃗total, or zero , and

can be used to determine linear momentum, as seen in the iterative proof Eq.(20).

Angular and linear momentum have a relationship something like velocity and constant acceleration, but across the

three dimensions of space instead of the single dimension of time. Linear momentum linearly “accelerates” angular

momentum over distance.

If L⃗(x, y, z) is fully conserved (across all x, y, z) then the gradient ∇(L⃗(x, y, z)) is also conserved, Px, Py, Pz are

conserved, and P⃗ is conserved. Conservation of linear momentum is a necessary condition of full conservation of

angular momentum.

“Conservation of Angular Momentum at all x, y, z” requires and enforces “Conservation of Linear

Momentum”.

This shows that cases where angular momentum is only unchanging at a single point are very different than those

where angular momentum is fully conserved. There are countless examples of “angular momentum unchanging at

some chosen point” where linear momentum is not conserved.
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11 Rise over Run

Using the x component of Eq. (99),

Lx = Lx(0, 0, 0)− yPz + zPy . (102)

At time t , Lx(0, 0, 0) , Pz , Py are all constants. If we consider the line where x = Cx , z = Cz are held constant,

then along that line

Lx(Cx, y, Cz) = (Lx(0, 0, 0) + CzPy)− yPz (103)

is a straight line with slope dLx/dy = −Pz and intercept Lx(0, 0, 0) + CzPy .

( dLx/dx = 0 , the value of Lx is constant with respect to x .)

Figure 4: Lx plotted as a straight line over y with slope −Pz

To calculate the Pz ( - slope ) of the line, we calculate rise/run between two points on the line:

Pz = −(Lx(Cx, Cy + s, Cz)− Lx(Cx, Cy, Cz))/s ;

which is the Pz term of Eq. (29).

Changing the constant value L⃗(0, 0, 0) will not affect the slope, but it will raise or lower the line, and change where

Lx = 0. This shifts the position of the centerline of the angular momentum “tunnel” sideways (orthogonal to P⃗ ),

but does not affect its direction.
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12 Center of Mass

It is well known that angular momentum around a group of particles is equal to angular momentum at the center

of mass position, plus angular momentum of an imaginary particle at the position of the center of mass with

momentum P⃗total. This is not a special property of the Center of Mass.

Laundau and Lifshitz Mechanics1 Equation 9.4 (Eq.55) shows this applies to every point, not just the CoM.

We can illustrate this:

Given a system of bodies with center of mass at position R⃗CoM1, we know that angular momentum at observation

point R⃗obv is L⃗(R⃗CoM1) plus (R⃗CoM1 − R⃗obv)× P⃗total .

If we add a new unmoving body, at a new position, angular momentum will not change at any observation point,

but the position of the Center of Mass will change. Depending on the position and mass of the new body, the

Center of Mass R⃗CoM2 can be anywhere we choose, without affecting linear or angular momentum (in this frame

of reference).

We then know that angular momentum at observation point R⃗obv, with or without the unmoving body, is L(R⃗CoM2)

plus (R⃗CoM2− R⃗obv)× P⃗total, and R⃗CoM2 can be any point we want. Which agrees with Mechanics1 Equation (9.4).

Although the CoM is not special in that way, it is special in another way:

M =
∑
i

mi ; (104)

R⃗CoM ≡
∑
i

r⃗imi/M ; (105)

V⃗CoM =
∑
i

v⃗imi/M ; (106)

L⃗CoM =
∑
i

(r⃗i − R⃗CoM )× v⃗imi . (107)

In any other frame of reference, angular momentum at the center of mass L⃗′
CoM has the same value :

v⃗′i = vi + V ′ ; (108)

r⃗′i − R⃗′
CoM = r⃗i − R⃗CoM ; (109)

L⃗′
CoM =

∑
i

(r⃗′i − R⃗′
CoM )× v⃗′imi ; (110)

=
∑
i

(r⃗i − R⃗CoM )× (v⃗i + V⃗ ′)mi ; (111)

=
∑
i

(r⃗i − R⃗CoM )× v⃗imi +
∑
i

(r⃗i − R⃗CoM )× V⃗ ′mi ; (112)

= L⃗CoM +

((∑
i

r⃗imi

)
−

(∑
i

R⃗CoMmi

))
× V⃗ ′ ; (113)

= L⃗CoM +
(
MR⃗CoM −MR⃗CoM

)
× V⃗ ′ ; (114)

L⃗′
CoM = L⃗CoM . (115)

The angular momentum at the CoM is equal in all frames of reference, (and equal along all projected paths of the

CoM, because angular momentum does not vary in the direction of P⃗total).

So if we find the frame of reference where P⃗total = 0, which is also the frame where L⃗ is constant everywhere, that

value of L⃗ is the value of L⃗CoM for every frame of reference.
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13 Parabolic Projectile

When a projectile travels in a parabolic curved arc due to a constant external force (−mg) of gravity, we do not

usually think of it as “conserving” angular momentum.

If we choose an observation point that the projectile passes over, at that instant, the force will be co-linear with

the observation-projectile displacement, so instantaneous torque will be zero.

If we choose a moving inertial frame, in the same horizontal direction and speed as the projectile, then it looks like

the projectile is moving and accelerating only in the z direction. If we choose an observation point in that frame

directly above or below the projectile, angular momentum at that point is zero, and unchanging.

This does not mean that projectiles “conserve” angular momentum. When angular momentum is conserved, it

is unchanging at every observation point. We are choosing to ignore observation points with changing angular

momentum.

Still, Eq. (63) holds true, under any and all conditions. In our chosen frame, suppose the projectile at time t1 is at

z = z1 rising with momentum (0, 0, 3)kg·m/s. If we choose O⃗1 to be at ground level below the projectile, and we

choose a second observation point such that O⃗2 − O⃗1 = (2, 0, 0)m , we can get P⃗ perpendicular to O⃗2 − O⃗1 from

their angular momentum values:

O⃗2 − O⃗1 = (0, 0, 2); (116)

L⃗1 = (0, 0, z1)× (0, 0, 3) = (0, 0, 0); (117)

L⃗2 = (−2, 0, z1)× (0, 0, 3) = (0, 6, 0); (118)

L⃗2 − L⃗1 = (0, 6, 0); (119)

P⃗perpendicular =
(
(L⃗(O⃗2)− L⃗(O⃗1))× (O⃗1 − O⃗2)

)
/
(
(O⃗1 − O⃗2) · (O⃗1 − O⃗2)

)
Eq.(63);

P⃗yz = ((0, 6, 0)× (−2, 0, 0)) /(2 · 2) ; (120)

(0, Py, Pz) = (0, 0, 12)/(2 · 2); (121)

(0, Py, Pz) = (0, 0, 3) . (122)

Components Py and Pz calculated from angular momentum values match the momentum given. We would need to

use a different displacement to obtain Px.

If later, at time t2, the projectile is at z = z2 with momentum (0,0,-7).

L⃗1 = (0, 0, z2)× (0, 0,−7) = 0; (123)

L⃗2 = (−2, 0, z2)× (0, 0,−7) = (0,−14, 0); (124)

P⃗yz = ((0,−14, 0)× (−2, 0, 0)) /(2 · 2) ; (125)

(0, Py, Pz) = (0, 0,−28)/(2 · 2); (126)

(0, Py, Pz) = (0, 0,−7) . (127)

Any time we have angular momentum values at two points, we can calculate the component(s) of momentum per-

pendicular to their displacement. If the difference between their AM values changes between t1 and t2, momentum

has changed. If the difference between their AM values remains the same, those components of momentum remain

unchanged. If all AM values across (x, y, z) remain the same, linear momentum is entirely unchanged.
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14 Central Force

If particle i is orbiting in an external gravitational field centralized around origin O⃗1 = (0, 0, 0), if we only observe

at the origin, it appears as if there is no torque, and that angular momentum is unchanging, but linear momentum

is changing. There is zero torque around (0,0,0).

This is like viewing a leaky pump from one specific position, and deciding it looks good.

There is non-zero torque around all points not linearly aligned with the (r⃗i − O⃗).

Example: if the particle is at position r⃗1 = (10, 10, 10) meters, and the central force is currently f⃗1 = (−3,−3,−3)

newtons, then the chosen alternative observation point O⃗2 = (10, 0, 0) will view that force as a torque of

τ⃗(O⃗2) = (r⃗1 − O⃗2)× f⃗1 ;

τ⃗(O⃗2) = ((10, 10, 10)− (10, 0, 0))× (−3,−3,−3)nm ;

τ⃗(O⃗2) = (0,−30, 30)nm .

Angular momentum around O⃗2 = (10, 0, 0) is not conserved, it is changing. If all observation points voted, the

proposition “angular momentum is being conserved” would lose, infinity-to-1. Unbalanced central forces do not

obey the law “Conservation of Angular Momentum at all x, y, z” like isolated systems do. We choose specific

observation points to filter out and ignore existing inconvenient non-conservation.

And still, at any time t, Eqs. (55) and (63) both hold true. Even though P⃗ and L⃗(10, 0, 0) are both changing over

time, they are linked. Since we chose an O⃗2 with displacement O⃗2 − O⃗1 = (10, 0, 0):

P⃗yz = (0, Py, Pz) =
(
(L⃗(10, 0, 0)− L⃗(0, 0, 0))× (−10, 0, 0)

)
/(10 · 10) ; (128)

P⃗yz = (0, Py, Pz) = (0 , Lz(0, 0, 0)− Lz(10, 0, 0) , Ly(10, 0, 0)− Ly(0, 0, 0)) /10 ; (129)

is always true, for any group of particles, under any forces, in an inertial frame.

If, instead, for n particles, L⃗(0, 0, 0) and L⃗(10, 0, 0) were both unchanging (neither see torque, which rules out the

unbalanced central force, but would allow internal forces, and certain law-abiding external forces), then Py and

Pz would therefore be unchanging also. And if L⃗(0, 7, 0) was unchanging as well, by Eq. (63), Px would also be

unchanging:

P⃗xz = (Px, 0, P z) =
(
(L⃗(0, 7, 0)− L⃗(0, 0, 0))× (0,−7, 0)

)
/(7 · 7) ; (130)

P⃗xz = (Px, 0, P z) = (Lz(0, 7, 0)− Lz(0, 0, 0) , 0 , Lx(0, 0, 0)− Lx(0, 7, 0)) /7 . (131)

So conservation of angular momentum at any three non-linear points, like (0, 0, 0), (10, 0, 0),(0, 7, 0), completely

guarantees conservation of total linear momentum P⃗ = (Px, Py, Pz).
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15 Angular Momentum Conserved

Given a group of bodies moving with various momentums, they may possibly completely conserve angular momen-

tum.

It does not matter if the bodies are converging, orbiting, or separating. It does not matter if they interact using

internal body-body forces, or if there are external forces present.

It does matter that internal forces directly oppose, as in f⃗ij = −f⃗ji and f⃗ij × (r⃗i − r⃗j) = 0 , which cancels internal

torques pairwise.

It does matter that external torque is
∑

(r⃗i − O⃗)× f⃗i Ext = 0 zero at some chosen observation point.

It does matter that external forces balance
∑

f⃗i Ext = 0 , so torque is equal at all observation points.

(Therefore torque is zero at every observation point.)

The angular momentum at any (every) point O⃗ is

L⃗(O⃗) = L⃗(R⃗CoM ) + (R⃗CoM − O⃗)× (P⃗total) . (132)

The unchanging angular momentum at the center of mass, along with the unchanging linear momentum, guarantees

that the angular momentum is unchanging everywhere, forming the classic tunnel pattern. This also carries over

to all other frames of reference. Every frame of reference has an unchanging pattern of angular momentum.

This is what conservation of angular momentum looks like.

In each frame of reference, the unchanging pattern of angular momentum there expresses the frame-relative un-

changing total linear momentum. The complete angular momentum pattern cannot remain unchanged without the

partnership of conserved linear momentum.

The constraints f⃗ij = −f⃗ji and
∑

f⃗i Ext = 0 enact the foundation of linear momentum conservation. Upon that

foundation, the constraints f⃗ij × (r⃗i − r⃗j) = 0 and
∑

(r⃗i − O⃗) × f⃗i Ext = 0 are able to construct conservation of

angular momentum.
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16 Demonstration Script

A computer script can quickly choose random particles and perform the math, to easily demonstrate the relationship

between Linear and Angular momentum.

The script ”angularLinearDemo01” can be run at this www.glowscript.org link (user davidbgraham).

Glowscript.org allows users to safely run scripts shared by others, which is useful to educators.

The code of the script is:

Web VPython 3.2
cm = ’,’
print options(width=1400, height=650, readonly=False, digits=5)

bodyCt =input(’Enter number of particles to randomly generate\n ( integer )\n ( 3 is plenty ):’)

s=input(’Enter an offset distance\n ( floating point )\n ( 0 will cause divide errors )\n ( simplest is 1 ):’)
s=float(s)

print( ’Please note that VPython uses <> to delimit vectors !’ )

print()
print( ’randomly choose’, bodyCt, ’body positions and momentums:’ )
rvec = [vector( 20*random() - 10, 20*random() - 10, 20*random() - 10 ) for i in range(bodyCt)] # get random positions
pvec = [vector( 20*random() - 10, 20*random() - 10, 20*random() - 10 ) for i in range(bodyCt)] # get random momentums

ptotal = vector(0,0,0)
for i in range(bodyCt):

print ( ’r ’+str(i),’=’,rvec[i], ’ p ’+str(i),’=’,pvec[i] )
ptotal = ptotal + pvec[i] # sum(p i)

LO = vector(0,0,0) # A.M. observed at O
LOsx = vector(0,0,0) # A.M. observed at (O + (s,0,0)
LOsy = vector(0,0,0) # A.M. observed at (O + (0,s,0)
LOsz = vector(0,0,0) # A.M. observed at (O + (0,0,s)

ovec = vector( 20*random() - 10, 20*random() - 10, 20*random() - 10 ) # get random observation point
Osx = ovec + vector(s,0,0) # get offset observation point
Osy = ovec + vector(0,s,0) # get offset observation point
Osz = ovec + vector(0,0,s) # get offset observation point

for i in range(bodyCt):
LO = LO + (rvec[i]-ovec).cross(pvec[i]) # AM = sum(r i X p i)
LOsx = LOsx + (rvec[i]-Osx).cross(pvec[i]) # AM = sum(r i X p i)
LOsy = LOsy + (rvec[i]-Osy).cross(pvec[i]) # AM = sum(r i X p i)
LOsz = LOsz + (rvec[i]-Osz).cross(pvec[i]) # AM = sum(r i X p i)

print()
print( ’s =’,s, ’ # offset distance between observation points’ )
print( ’O = ’,ovec, ’ # random observation point’ )
print( ’define Osx as O + (s,0,0) = ’,Osx, ’ # observation point offset by s in x direction’ )
print( ’define Osy as O + (0,s,0) = ’,Osy, ’ # observation point offset by s in y direction’ )
print( ’define Osz as O + (0,0,s) = ’,Osz, ’ # observation point offset by s in z direction’ )

print()
print(’Angular Momentum at observation points equals sum(( r i - r observationPt ) X p i ):’)
print( ’define LO as L(O) = ’, LO )
print( ’define LOsx as L(Osx) = ’, LOsx )
print( ’define LOsy as L(Osy) = ’, LOsy )
print( ’define LOsz as L(Osz) = ’, LOsz )

print()
print( ’Differential Angular Momentum:’)
print( ’(LOsx-LO)/s = <(LOsx x-LO x)/s , (LOsx y-LO y)/s , (LOsx z-LO z)/s >= ’, (LOsx-LO)/s, ’ # should equal <0, P z, -P y >’)
print( ’(LOsy-LO)/s = <(LOsy x-LO x)/s , (LOsy y-LO y)/s , (LOsy z-LO z)/s >= ’, (LOsy-LO)/s, ’ # should equal <-P z, 0, P x >’)
print( ’(LOsz-LO)/s = <(LOsz x-LO x)/s , (LOsz y-LO y)/s , (LOsz z-LO z)/s >= ’, (LOsz-LO)/s, ’ # should equal <P y, -P x, 0 >’)

print()
print( ’Linear Momentum:’ )
print( ’P total = <P x, P y, P z >= calculated as sum(p i) = ’, ptotal )
print( ’<(LOsy z-LO z)/s, (LOsz x-LO x)/s, (LOsx y-LO y)/s >= <’, ((LOsy-LO)/s).dot(vector(0,0,1)), cm, ((LOsz-LO)/s).dot(vector(1,0,0)),
cm, ((LOsx-LO)/s).dot(vector(0,1,0)), ”>” )
print( ’<(LO y-LOsz y)/s, (LO z-LOsx z)/s, (LO x-LOsy x)/s >= <’, ((LO-LOsz)/s).dot(vector(0,1,0)), cm, ((LO-LOsx)/s).dot(vector(0,0,1)),
cm, ((LO-LOsy)/s).dot(vector(1,0,0)), ”>” )

print()
print( ’For this random group of particles, \n\ndid differential angular momentum components produce accurate linear momentum?’ )

Typically, the rate of change of angular momentum matches total linear momentum, as in these sample results from

17 randomly generated particles:

P total = <P x, P y, P z >= calculated as sum(p i) = <-15.271, 31.293, 12.191 >

<(LOsy z-LO z)/s, (LOsz x-LO x)/s, (LOsx y-LO y)/s >= <-15.271 , 31.293 , 12.191 >

<(LO y-LOsz y)/s, (LO z-LOsx z)/s, (LO x-LOsy x)/s >= <-15.271 , 31.293 , 12.191 >
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17 Momentum Field

Equation (55) and its descendants still hold true even if there is an integrated momentum field, regardless of forces

present :

L⃗(O⃗) ≡
∑

(r⃗i − O⃗)× p⃗i +

∫
(r⃗ − O⃗)× dp⃗ ; (133)

L⃗(O⃗2)− L⃗(O⃗1) =
∑

(r⃗i − O⃗2)× p⃗i −
∑

(r⃗i − O⃗1)× p⃗i

+

∫
(r⃗ − O⃗2)× dp⃗−

∫
(r⃗ − O⃗1)× dp⃗ ; (134)

L⃗(O⃗2)− L⃗(O⃗1) =
∑

(O⃗1 − O⃗2)× p⃗i +

∫
(O⃗1 − O⃗2)× dp⃗ ; (135)

L⃗(O⃗2)− L⃗(O⃗1) = (O⃗1 − O⃗2)×
(∑

p⃗i +

∫
dp⃗

)
; (136)

L⃗(O⃗2)− L⃗(O⃗1) = (O⃗1 − O⃗2)× P⃗ ; (137)

L⃗(O⃗2) = L⃗(O⃗1) + (O⃗1 − O⃗2)× P⃗ . (138)
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18 Concluding

Linear momentum determines the rate of variation of angular momentum across x, y, z, and the rate of variation of

angular momentum across x, y, z can be used to calculate total linear momentum.

Using Eq. (20), Eq. (29), or perpendicular cross division Eq. (63), linear momentum can be calculated from dif-

ferences of angular momentum, without needing the number of particles, their mass, positions, velocities, or the

position of Center of Mass.

Angular momentum values in various frames of reference are determined by, and also divulge, total mass, total

momentum, position, velocity, and angular momentum of/at the center of mass.

The MKS units for angular momentum are Kg ·m2 ·/s, units for linear momentum Kg ·m ·/s, which is appropriate

as linear momentum acts as the derivative with respect to displacement.

The mechanisms which enforce full conservation of angular momentum

f⃗ij = −f⃗ji (equal and opposite); (139)

(r⃗i − r⃗j)× f⃗ij = 0 (internal forces are co-linear); (140)∑
(r⃗i − O⃗)× f⃗i Ext = 0 (zero torque at some O⃗); (141)∑

f⃗i Ext = 0 (zero torque gradient); (142)

also enforce conservation of linear momentum.

Angular momentum changing at infinite observation points, but unchanging at some specific points, is not conser-

vation of angular momentum.

Conservation of linear momentum, plus angular momentum unchanging at one point guarantees, and is, full con-

servation of angular momentum.

Full conservation of angular momentum implies conservation of linear momentum.
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