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This document continues the systematic exploration of diverse mathemat-
ical methods allowing the decomposition of deformed tensor products. Here,
the discussion is focusing attention on deformed Lie products and on conditions
generalizing, in a four-dimensional mathematical space, what has been called
the initial theorem during the elaboration of the intrinsic method, the purpose
of which was the decomposition of deformed cross products. This mathematical
document sheds a particular light on the (2, 0) representations of the electro-
magnetic �elds.
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2 GENERALIZING THE INITIAL THEOREM

1 Introduction

1.1 Context and motivation

So far, the theory of the (E) question has:

� exposed discussions involving elements in V3 = {C ⊗ E(3, R);

� introduced several intern operations acting on pairs of elements taken in
V3 × V3: the deformed tensor product, the alternated deformed tensor
product and the deformed Lie product;

� presented two complementary methods yielding diverse divisions in the
dual space of V3 for the results of these operations: the intrinsic one for
the deformed cross products [a] and the extrinsic one for the deformed
tensor products [b].

The theory of relativity [01] is developed in a four-dimensional space. Therefore,
it is meaningful to look for extrapolations of these methods in V4 = {C ⊗ E(4,
R)}. The extrinsic method can fortunately be applied in spaces having any
�nite dimension equal or greater than two. In opposition, until today, there is
no intrinsic procedure decomposing the deformed Lie products involving pairs
of elements in V4 × V4.

1.2 Claim

Therefore, the long-term objective of this exploration is the construction of a
method which would be in some way equivalent to the intrinsic one ... but for
the decomposition of deformed tensor products (resp. of Lie products) acting
in V4 × V4.

1.3 The �rst obstacle

The intrinsic method developed in [a] began with the initial theorem. It concerns
only deformed cross products. These products are deformed Lie products in a
three-dimensional space. Two paths to get the theorem were proposed: (i) the
poor man road (algebra) imposing inhuman calculations that will be even more
di�cult to perform in a four-dimensional space; and (ii) the more comfortable
way of a logical analysis.

2 Generalizing the initial theorem

2.1 Preliminaries

In what follows:

∀ (4)u, (4)w ∈ V4 = {C ⊗ E(4, R)}, ∀A ∈ ⊞(4, C)

∃ ((4)[P ], (4)z) : | ⊗A ((4)u, (4)w) >= (4)[P ] . |(4)w > + |(4)z >

Aα
χβ . u

χ = Φαβ

...
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2.1 Preliminaries

A) Exactly as in a discussion concerning a three-dimensional space, one must
calculate the di�erence:

Λ(u)

=

|AΦ((4)u) − [P ]|
=∣∣∣∣∣∣∣∣

A0
χ0 . u

χ − p00 A0
χ1 . u

χ − p01 A0
χ2 . u

χ − p02 A0
χ3 . u

χ − p03
A1

χ0 . u
χ − p10 A1

χ1 . u
χ − p11 A1

χ2 . u
χ − p12 A1

χ3 . u
χ − p13

A2
χ0 . u

χ − p20 A2
χ1 . u

χ − p21 A2
χ2 . u

χ − p22 A2
χ3 . u

χ − p23
A3

χ0 . u
χ − p30 A3

χ1 . u
χ − p31 A2

χ3 . u
χ − p32 A3

χ3 . u
χ − p33

∣∣∣∣∣∣∣∣
=

cαβχδ . u
α . uβ . uχ . uδ

+ cαβχ . u
α . uβ . uχ

+ cαβ . u
α . uβ

+ cα . u
α

+(−1)4 . |P |
A generalization of the initial theorem would be written: "The previous ex-

pression is systematically a polynomial form of at most degree three when the

discussion concerns deformed Lie products acting on elements in a four dimen-

sional space."

B) Per de�nition, within the theory of the (E) question, any deformed Lie
product is an alternated deformed tensor product built with an anti-symmetric
cube; this is a simple extrapolation of [a; de�nition 1.7, p.5]. Hence, here one
must calculate Λ(u) when the deforming cube A is an element in ⊞−(4, C):

∀α, β, χ : Aχ
αβ + Aχ

βα = 0

C) To be more e�cient, it is useful to remark that all coe�cients of degree four
appearing in Λ(u) are resulting from the calculation of the determinant of the
simplest decomposition without residual part, precisely:

cαβχδ . u
α . uβ . uχ . uδ

=

|AΦ((4)u)|
=

|Aα
χβ . u

χ|
=∣∣∣∣∣∣∣∣

A0
χ0 . u

χ A0
χ1 . u

χ A0
χ2 . u

χ A0
χ3 . u

χ

A1
χ0 . u

χ A1
χ1 . u

χ A1
χ2 . u

χ A1
χ3 . u

χ

A2
χ0 . u

χ A2
χ1 . u

χ A2
χ2 . u

χ A2
χ3 . u

χ

A3
χ0 . u

χ A3
χ1 . u

χ A3
χ2 . u

χ A3
χ3 . u

χ

∣∣∣∣∣∣∣∣
This fact means that it is su�cient:

...
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2 GENERALIZING THE INITIAL THEOREM

� (i) to calculate the previous determinant when the cube A is an element
in ⊞−(4, C);

� (ii) to discover the conditions annihilating it,

... to know when Λ(u) is a polynomial form of degree at most equal to three.

2.2 Focus on anti-reduced cubes

Per de�nition, the knots of any completely anti-reduced cube are such that:

∀α, β, χ : Aα
χβ + Aβ

χα = 0

This condition includes the particular one:

∀α, χ : Aα
χα = 0

Proposition 2.1. Each completely anti-reduced cube generates a set of anti-

symmetric matrices. Each of them is representing the most trivial decomposition

without residual part for some deformed tensor products.

Proof. There is the logical suite:

∀A ∈ ⊞↓(4, C) :

⇓

∀α, β, χ : Aα
χβ + Aβ

χα = 0

⇓

∀α, β, χ, ∀uχ : Aα
χβ . u

χ + Aβ
χα . u

χ = 0

⇓

∀α, β, χ, ∀uχ :
∑
χ

Aα
χβ . u

χ +
∑
χ

Aβ
χα . u

χ = 0

⇓

∀α, β : Φαβ + Φβα = 0

⇓

AΦ(
(4)u) + AΦ(

(4)u) = (4)[0]

...
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2.2 Focus on anti-reduced cubes

Corollary 2.1. Consequence of proposition 2.1.

Because of proposition 2.1, each trivial decomposition without residual part
is an anti-symmetric matrix that can be represented as follows:

AΦ(
(4)u)

=

[Φαβ]

=
0 Φ01 Φ02 Φ03

−Φ01 0 Φ12 Φ13

−Φ02 −Φ12 0 Φ23

−Φ03 −Φ13 −Φ23 0


Proposition 2.2. For any completely anti-reduced cube:

∀A ∈ ⊞↓(4, C) :

Λ((4)u)

=

|AΦ((4)u) − [P ]|

=

(Φ01 .Φ23 − Φ02 .Φ13)
2 + (Φ02 .Φ13 − Φ12 .Φ03)

2 + (Φ01 .Φ23 + Φ12 .Φ03)
2

+ cαβχ . u
α . uβ . uχ

+ cαβ . u
α . uβ

+ cα . u
α

+(−1)4 . |P |

Proof. In general:

Λ((4)u) =

β=3∑
β=0

(−1)β . (Φ0β − p0β) .∆0β ; Φ0β = A0
χβ . u

χ

But here one adds the constraint:

∀α, β : Φαβ + Φβα = 0

As consequences:

...
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2 GENERALIZING THE INITIAL THEOREM

� The �rst sub-determinant

∆00 =

∣∣∣∣∣∣
A1

χ1 . u
χ − p11 A1

χ2 . u
χ − p12 A1

χ3 . u
χ − p13

A2
χ1 . u

χ − p21 A2
χ2 . u

χ − p22 A2
χ3 . u

χ − p23
A3

χ1 . u
χ − p31 A2

χ3 . u
χ − p32 A3

χ3 . u
χ − p33

∣∣∣∣∣∣
... is of the same kind than the one intervening in the calculation of
Λ((3)u). This one has already be done in [a] but with an argument (3)u

involving only three components. The result was a polynomial form of
degree at most two depending on the three components u1, u2 and u3.
Here (4)u has four components; hence, the calculation must be done again:

∆00

=

−p11 . [p22 . p33 + (Φ23 + p32) . (Φ23 − p23)]

−(Φ12 − p12) . [p33 . (Φ12 + p21) + (Φ23 − p23) . (Φ13 + p31)]

+(Φ13 − p13) . [−(Φ12 + p21) . (Φ23 − p32)− p22 . (Φ13 + p31)]

The terms which are contributing to the degree three have been written
in blue. Since Φ00 = 0, the sub-determinant ∆00 must only be multiplied
by -p00 which is not depending on the components of (4)u. Therefore, the
part of Λ((4)u) depending on ∆00 is always a polynomial form of degree
at most three depending on the four components of (4)u.

� Let now consider:
∆01

=

− (Φ01 + p10). [p22. p33 + (Φ23 + p32). (Φ23 − p23)]

− (Φ12 − p12). [p33. (Φ02 + p20) + (Φ23 − p23). (Φ03 + p30)]

+ (Φ13 − p13). [(Φ02 + p20). (Φ23 + p32) − p22. (Φ03 + p30)]

=

− Φ01. [p22. p33 + (Φ23 + p32). (Φ23 − p23)]

− p10. [p22. p33 + (Φ23 + p32). (Φ23 − p23)]

− Φ12. [p33. (Φ02 + p20) + (Φ23 − p23). (Φ03 + p30)]

+ p12. [p33. (Φ02 + p20) + (Φ23 − p23). (Φ03 + p30)]

+ Φ13. [(Φ02 + p20). (Φ23 + p32) − p22. (Φ03 + p30)]

− p13. [(Φ02 + p20). (Φ23 + p32) − p22. (Φ03 + p30)]

=

− Φ01 . p22 . p33 − Φ01 . (Φ23 + p32). (Φ23 − p23)

− p10 . p22 . p33 . p10 . (Φ23 + p32) . (Φ23 − p23)

...
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2.2 Focus on anti-reduced cubes

− Φ12 . p33 . (Φ02 + p20) − Φ12 . (Φ23 − p23) . (Φ03 + p30)

+ p12 . p33 . (Φ02 + p20) + p12 . (Φ23 − p23) . (Φ03 + p30)]

+Φ13 . (Φ02 + p20). (Φ23 + p32) − p22. Φ13 . (Φ03 + p30)

− p13 . (Φ02 + p20) . (Φ23 + p32) − p13 . p22 . (Φ03 + p30)

This sub-determinant must be multiplied by

−(Φ01 − p01)

... which contains a term depending on the components of (4)u. Hence,
there is a contribution to the set containing the terms of degree four:

−Φ01 . {−Φ01 .Φ
2
23 − Φ12 .Φ23 .Φ03 + Φ13 .Φ02 .Φ23}

� Let consider:
∆02

=

−(Φ01 + p10) . [(Φ12 + p21) . p33 + (Φ13 + p20) . (Φ23 − p23)]

+p11 . [p33 . (Φ02 + p20) + (Φ23 − p23) . (Φ03 + p30)]

+(Φ13 − p13) . [(Φ02 + p20) . (Φ13 + p20)− (Φ12 + p21) . (Φ03 + p30)]

=

−Φ01 . [(Φ12 + p21) . p33 + (Φ13 + p20) . (Φ23 − p23)]

−p10 . [(Φ12 + p21) . p33 + (Φ13 + p20) . (Φ23 − p23)]

+ p11 . [p33 . (Φ02 + p20) + (Φ23 − p23) . (Φ03 + p30)]

+Φ13 . (Φ02 + p20) . (Φ13 + p20) − Φ13 . (Φ12 + p21) . (Φ03 + p30)

−p13 . [(Φ02 + p20) . (Φ13 + p20) − (Φ12 + p21) . (Φ03 + p30)]

This sub-determinant must be multiplied by

(Φ02 − p02)

... which contains a term depending on the components of (4)u. Hence,
there is a contribution to the set containing the terms of degree four:

Φ02 . {−Φ01. Φ13 .Φ23 + Φ13. Φ02. Φ13 − Φ13. Φ12. Φ03}

� Let consider:
∆03

=

− (Φ01 + p10) . [(Φ12 + p21) . (Φ23 + p32) − p22 . (Φ13 + p20)]

+ p11 . [(Φ02 + p20).(Φ23 + p32) − p22 . (Φ03 + p30)]

+ (Φ12 − p12) . [(Φ02 + p20) . (Φ13 + p20) − (Φ12 + p21) . (Φ03 + p30)]

...
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2 GENERALIZING THE INITIAL THEOREM

=

−Φ01 . (Φ12 + p21) . (Φ23 + p32) + p22 .Φ01 . (Φ13 + p20)

− p10 . [(Φ12 + p21) . (Φ23 + p32)− p22. (Φ13 + p20)]

+p11 . [(Φ02 + p20). (Φ23 + p32)− p22. (Φ03 + p30)]

+Φ12 . (Φ02 + p20) . (Φ13 + p20) − Φ12 . (Φ12 + p21) . (Φ03 + p30)

− p12 . [(Φ02 + p20) . (Φ13 + p20) − (Φ12 + p21) . (Φ03 + p30)]

This sub-determinant must be multiplied by

(−1)3 . (Φ03 − p03)

... which contains a term depending on the components of (4)u. Hence,
there is a contribution to the set containing the terms of degree four:

−Φ03 . {−Φ01 .Φ12 .Φ23 + Φ12 .Φ02 .Φ13 − Φ2
12 .Φ03}

Let now add all contributions with degree four and state that:

−Φ01 . {−Φ01 .Φ
2
23 − Φ12 .Φ23 .Φ03 + Φ13 .Φ02 .Φ23}

+Φ02 . {−Φ01. Φ13 .Φ23 + Φ13. Φ02. Φ13 − Φ13. Φ12. Φ03}

−Φ03 . {−Φ01 .Φ12 .Φ23 + Φ12 .Φ02 .Φ13 − Φ2
12 .Φ03}

=

Φ2
01 .Φ

2
23 + Φ01 .Φ12 .Φ23 .Φ03 − Φ01 .Φ13 .Φ02 .Φ23

−Φ02 .Φ01 .Φ13 .Φ23 + Φ2
02 .Φ

2
13 − Φ02 .Φ13 .Φ12. Φ03

+Φ03 .Φ01 .Φ12 .Φ23 − Φ03 .Φ12 .Φ02 .Φ13 + Φ2
12 .Φ

2
03

=

Φ2
01 .Φ

2
23 + Φ2

02 .Φ
2
13 + Φ2

12 .Φ
2
03

− 2 . {Φ01 .Φ13 .Φ02 .Φ23 + Φ02 .Φ13 .Φ12. Φ03 − Φ01 .Φ12 .Φ23 .Φ03}

=

(Φ01 .Φ23 − Φ02 .Φ13)
2 + (Φ02 .Φ13 − Φ12 .Φ03)

2 + (Φ01 .Φ23 + Φ12 .Φ03)
2

...
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2.2 Focus on anti-reduced cubes

Corollary 2.2. Consequences of proposition 2.2.

It is useful to note that:

1. This expression involves only three products:

a1 = Φ01 .Φ23 ; a2 = −Φ02 .Φ13 ; a3 = Φ03 .Φ12

At the end of this calculation:

cαβχδ . u
α . uβ . uχ . uδ

=

(a1 + a2)
2 + (−a2 − a3)

2 + (a1 + a3)
2

=

2 . (a21 + a22 + a23 + a1 . a2 + a2 . a3 + a3 . a1)

=

||(3)a||2 + ((3)a⊕)2

With:
(3)a : (a1, a2, a3)

||(3)a||2 = a21 + a22 + a23
(3)a⊕ = a1 + a2 + a3

The vanishing of this expression implies an interdependence between the
ais.

Example 2.1. For the pedagogy

The case involving the three complex roots of 1, {a1, a2, a3} = {1, j, j2},
illustrates one particular situation for which this (i) expression vanishes
and (ii) the ais are interdependent since 1 + j + j2 = 0.

2. Each anti-symmetric matrix contains at most only six di�erent and non-
vanishing entries which are usually regrouped in a vector and a pseudo-
vector (synonym: axial vector):

(3)X : (Φ01, Φ02, Φ03)

(3)Y : (−Φ23, Φ13, −Φ12)

This choice allows a rewriting of this determinant as:

|AΦ((4)u)|

=

|Φαβ|

=

...
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2 GENERALIZING THE INITIAL THEOREM

∣∣∣∣∣∣∣∣
0 X1 X2 X3

−X1 0 −Y 3 Y 2

−X2 Y 3 0 −Y 1

−X3 −Y 2 Y 1 0

∣∣∣∣∣∣∣∣
=

−X1 .

∣∣∣∣ −X1 −Y 3 Y 2

−X2 0 −Y 1

−X3 Y 1 0

∣∣∣∣ + X2 .

∣∣∣∣ −X1 0 Y 2

−X2 Y 3 −Y 1

−X3 −Y 2 0

∣∣∣∣ − X3 .

∣∣∣∣ −X1 0 −Y 3

−X2 Y 3 0

−X3 −Y 2 Y 1

∣∣∣∣
=

−X1 . {−X1 . (Y 1)2 − Y 3 . X3 . Y 1 − Y 2 . X2 . Y 1}

+X2 . {X1 . Y 1 . Y 2 + X2 . (Y 2)2 + Y 2 . X3 . Y 3}

−X3 . {−X1 . Y 1 . Y 3 − Y 3 . (X2 . Y 2 + X3 . Y 3)}

=

(X1 . Y 1)2 + (X1 . Y 1) . (X3 . Y 3) + (X1 . Y 1) . (X2 . Y 2)

+ (X2 . Y 2)2 + (X1 . Y 1) . (X2 . Y 2) + (X3 . Y 3) . (X2 . Y 2)

+ (X3 . Y 3)2 + (X1 . Y 1) . (X3 . Y 3) + (X3 . Y 3) . (X2 . Y 2)

=

(<(3) X, (3)Y >Id3)
2

And it reveals that the Euclidean orthogonality between both vectors sys-
tematically induces the vanishing of this determinant.

Furthermore, since this determinant contains all terms of degree four, one
can also write:

cαβχδ . u
α . uβ . uχ . uδ = (<(3) X, (3)Y >Id3)

2 = ||(3)a||2 + ((3)a⊕)2

Example 2.2. The (2, 0) representations of the electromagnetic �eld ten-

sor.

It is well-known that [05; �23, p. 61, (23.5) left]:

[F (2, 0)] =

[
0 (3)E

−(3)E [J ]Φ(
(3)H)

]
The corollary 2.1 suggests that the (2, 0) representation of the electro-
magnetic �eld is sometimes the simplest decomposition without residual
part of some tensor product which has been deformed by an anti-reduced
cube A.

[F (2, 0)] = AΦ(
(4)u), withA ∈ ⊞↓(4, C)

When it is the case:

(3)E ⊥ (3)H ⇒ |F (2, 0)| = |AΦ((4)u)| = 0

...
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2.2 Focus on anti-reduced cubes

And the polynomial:

Λ(u) = |[F (2, 0)] − [P ]| = |AΦ((4)u) − [P ]|

... is at most of degree equal to three. It depends on the four components
of (4)u.

The eventuality which is suggested by this application of corollary 2.1
is only a pedagogical hypothesis. In a less theoretical approach, one can
decompose ⊗Γ(2)(

(4)u, (4)u) appearing in the co-variant version of the
Lorentz law [05; �90, p. 256, (90.7)] with the help of the extrinsic method
[b]. In that case, [F(↑, ↓)] is always the natural main part of the decompo-
sition and one must write [F(2, 0)] = (4)[G].Γ(2)Φ(

(4)u) minus something
where (4)u represents the four-(dimensional )speed of the particle at hand
and (4)[G] is a metric tensor.

Furthermore, in this concrete approach: Λ((4)u) = |Γ(2)Φ(
(4)u) - [F(↑, ↓)]|

and the cube Γ(2) containing the Christo�el's symbols of the second kind
is an element in ⊞+(4, R) [02, p. 49], not in ⊞−(4, R). Hence, the
generalization of the initial theorem cannot directly be applied to the co-
variant version of the Lorentz law. At least, the so-called gravitational

term ⊗Γ(2)(
(4)u, (4)u) must be transformed into a tensor product de-

formed by an anti-symmetric cube. For historical reasons [02, p. 48, (4.)],
the cube Γ(1) containing the Christo�el's symbols of the �rst kind can-
not be a convenient choice because this one is also an element in ⊞+(4, R).

This example will be developed further below in the subsection 3.4.

Proposition 2.3. Anti-reduced cubes can also be anti-symmetric.

Proof.

Aα
χβ = −Aα

βχ = Aχ
βα = −Aχ

αβ = Aβ
αχ = −Aβ

χα = Aα
χβ

Proposition 2.4. Elements belonging to the intersection between anti-symmetric

cubes and anti-reduced cubes are elements in V4.

Proof. The arguments are similar to the ones which have been involved in a
three-dimensional space. A knot is di�erent from another one if and only if
none of the subscripts is repeated.

A ∈ ⊞−(4, C) ∩ ⊞↓(4, C) → (A0
12, A

0
13, A

0
23, A

1
23) = (a, b, c, d) ≡ (4)A

...
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2 GENERALIZING THE INITIAL THEOREM

Corollary 2.3. Consequences of propositions 2.3 and 2.4.

1. The results concerning the anti-reduced cubes can now be applied to cubes
which are simultaneously anti-reduced and anti-symmetric. A �rst and
necessary precaution is needed: the writing A must be replaced by (4)A.

2. Furthermore, in that case:

Φ01 =
∑
χ

A0
χ1 . u

χ = −a . u2 − b . u3 = X1

Φ02 =
∑
χ

A0
χ2 . u

χ = a . u1 − c . u3 = X2

Φ03 =
∑
χ

A0
χ3 . u

χ = b . u1 + c . u2 = X3

Φ12 =
∑
χ

A1
χ2 . u

χ = −a . u0 − d . u3 = −Y 3

Φ13 =
∑
χ

A1
χ3 . u

χ = −b . u0 + d . u2 = Y 2

Φ23 =
∑
χ

A2
χ3 . u

χ = −c . u0 − d . u1 = −Y 1

And:
a1 = Φ01 .Φ23 = −X1 . Y 1

a2 = −Φ02 .Φ13 = −X2 . Y 2

a3 = Φ03 .Φ12 = −X3 . Y 3

3. One can now calculate the terms of degree four for this speci�c family of
cubes:

cαβχδ . u
α . uβ . uχ . uδ

=

(X1 . Y 1 + X2 . Y 2)2 + (X2 . Y 2 + X3 . Y 3)2 + (X1 . Y 1 + X3 . Y 3)2

=

(<(3) X, (3)Y >Id3 −X3 . Y 3)2

+(<(3) X, (3)Y >Id3 −X1 . Y 1)2

+(<(3) X, (3)Y >Id3 −X3 . Y 2)2

=

(<(3) X, (3)Y >Id3)
2 + ||(3)a||2

� But in the circumstances at hand, it is relatively easy to prove that
(3)X and (3)Y are systematically orthogonal:

<(3) X, (3)Y >Id3 = 0

...
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2.2 Focus on anti-reduced cubes

Proof. Let calculate:

X1 . Y 1

=

−(a . u2 + b . u3) . (c . u0 + d . u1)

=

−a . c . u0 . u2 − a . d . u1 . u2− b . c . u0 . u3− b . d . u1 . u3

X2 . Y 2

=

(a . u1 − c . u3) . (−b . u0 + d . u2)

=

−a . b . u0 . u1 + a . d . u1 . u2+ b . c . u0 . u3− c . d . u2 . u3

X3 . Y 3

=

(b . u1 + c . u2) . (a . u0 + d . u3)

=

a . b . u0 . u1+ b . d . u1 . u3+ a . c . u0 . u2+ c . d . u2 . u3

Let add these terms and state with the help of the colors that:

X1 . Y 1 + X2 . Y 2 + X3 . Y 3 = 0

The �rst consequence is that all terms with degree four systematically
vanish when the cube is reduced to a vector A.

� Since one must write in general:

cαβχδ . u
α . uβ . uχ . uδ = (<(3) X, (3)Y >Id3)

2 = ||(3)a||2 + ((3)a⊕)2

And since, speci�cally here:

cαβχδ . u
α . uβ . uχ . uδ = 0 = ||(3)a||2

It is obvious that:

(<(3) X, (3)Y >Id3)
2 = ((3)a⊕)2 = 0

...
©Thierry PERIAT, Decomposing the deformed Lie products in a four-dimensional space; the initial theorem and its
consequences, 1 Mai 2025.

13



2 GENERALIZING THE INITIAL THEOREM

2.3 The initial theorem in V4

Let A be a given anti-symmetric cube in ⊞−(4,C). Per de�nition, it allows the
construction of deformed Lie products [u, ...]A and these products may eventu-
ally be decomposed as [P].|...> + |z>.

The polynomial Λ(u) = |AΦ(u) - [P]| measuring the di�erence between the
simplest decomposition without residual part AΦ(u) and the main part of a
generic non-trivial decomposition [P] is systematically a polynomial form of at
most degree three when the anti-symmetric cube A is also anti-reduced and
therefore equivalent to some vector (4)A.

Corollary 2.4. of the initial theorem in V4.

When a cube A is equivalent to an element (4)A in V4:

� The simplest decomposition without residual part has the formalism:

AΦ((4)u) =

[
0 <(3) X|

−|(3)X > [J ]Φ(
(3)Y)

]
Its determinant vanishes.

� The vectors (3)X and (3)Y are orthogonal.

|AΦ((4)u)| = 0 ⇐⇒ <(3) X, (3)Y >Id3 = 0 ⇐⇒ (3)X ⊥ (3)Y

� The vectors (3)X and (3)Y are associated with a speci�c type of isotropic
vectors, (3)a in V3 [03], the sum of the components of which vanishes.

� If (4)A = (4)u:
(a, b, c, d) = (u0, u1, u2, u3)

Φ01 = −(a . c + b . d) = X1

Φ02 = a . b − c . d = X2

Φ03 = (b2 + c2) = X3

Φ12 = −(a2 + d2) = −Y 3

Φ13 = −b . a + d . c = Y 2

Φ23 = −(c . a + d . b) = −Y 1

Hence:
Φ01 = −(a . c + b . d) = X1 = −Y 1 = Φ23

Φ02 = a . b − c . d = X2 = −Y 2 = −Φ13

The simplest decomposition without residual part writes:

AΦ((4)A) = uΦ(
(4)u) =

∣∣∣∣∣∣∣∣
0 X1 X2 X3

−X1 0 −Y 3 −X2

−X2 Y 3 0 X1

−X3 X2 −X1 0

∣∣∣∣∣∣∣∣
...
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Corollary 2.5. The case of projectiles with only one non-vanishing component.

Inside the family of [(4)u, (4)...]A deformed Lie products let consider the ones
which are such that u0 ̸= 0, u1 = u2 = u3 = 0. For all Lie products in this
sub-family:

Λ((4)u) = c000 . (u
0)3 + c00 . (u

0)2 + c0 . u
0 + |P |

Any decomposition without residual part is characterized by; see [a]:

Λ((4)u) = 0

Therefore, each solution of the polynomial which is associated with the given
sub-family of deformed Lie products at hand characterizes one decomposition
without residual part:

Λ(u0, 0, 0, 0) = 0 ⇐⇒ ∃ [nP ] : |[nu0 . e0, (4)...]A >= (4)[nP ] . |(4)... >

The three roots (n=1, 2, 3) of this polynomial can be calculated with the Tartaglia-
Cardan method [04] as soon as the coe�cients are precisely known.

3 Complement concerning the cubes which are only

anti-reduced

The initial theorem does not concern the tensor products which are exclusively
deformed by anti-reduced cubes because they are not deformed Lie products.

3.1 The terms of degree four

Nevertheless, this kind of tensor products can be decomposed too. In this doc-
ument, it has been proved that -for these products- the simplest decomposition
without residual part has the formalism:

AΦ(
(4)u) =

[
0 <(3) X|

−|(3)X > [J ]Φ(
(3)Y)

]
And that:

cαβχδ . u
α . uβ . uχ . uδ = |AΦ((4)u)| = (<(3) X, (3)Y >Id3)

2 = ||(3)a||2+((3)a⊕)2

Here, the determinant does not systematically vanish and the polynomial Λ(u)
may contain terms of degree four. But what does the vector (3)a describe? What
do its components represent? Looking for answers, let build the Pythagorean
table:

T2(⊗)((3)X, (3)Y)

= −Φ01 .Φ23 −Φ02 .Φ23 −Φ03 .Φ23

Φ01 .Φ13 Φ02 .Φ13 Φ03 .Φ13

−Φ01 .Φ12 −Φ02 .Φ12 −Φ03 .Φ12


=

 −a1 −Φ02 .Φ23 −Φ03 .Φ23

Φ01 .Φ13 −a2 Φ03 .Φ13

−Φ01 .Φ12 −Φ02 .Φ12 −a3


...
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3 COMPLEMENT CONCERNING THE CUBES WHICH ARE ONLY

ANTI-REDUCED

Remark 3.1. The trace of the Pythagorean table T2(⊗)(X,Y)

The trace of the Pythagorean table T2(⊗)(X,Y) has two representations:

� as Euclidean scalar products of the arguments in the pair (X,Y):

Trace{T2(⊗)((3)X, (3)Y)} =< X, Y >Id3

� as minus one times the sum of the components of a:

Trace{T2(⊗)((3)X, (3)Y)} = −(a)⊕

Therefore, for strictly and completely anti-reduced cubes:

∀A ∈ ⊞↓(4, C) :

1. The Euclidean scalar product between the arguments of the pair (X,Y)
is equal to minus the sum of the components of a:

< X, Y >Id3 +(a)⊕ = 0

2. The vector a which can be associated with the pair (X,Y) is an isotropic
vector in V3 [03; see the de�nitions at the bottom of page 3 and p.41]:

||(3)a||2 = 0

3. The sum of all terms of degree four in the polynomial Λ(u) is equal to
the square of Euclidean scalar product between the arguments of the pair
(X,Y) or, equivalently, to the square of the sum of the components of the
isotropic vector which is associated with this pair:

cαβχδ . u
α . uβ . uχ . uδ = |AΦ((4)u)| = (<(3) X, (3)Y >Id3)

2 = ((3)a⊕)2

3.2 The problem

Following the approach explained in [03; �55] one can propose a representation
for (3)a:

(3)a →
[

a3 a1 − i . a2

a1 + i . a2 −a3

]
But here, one must add two constraints:

(a1)2 + (a2)2 + (a3)2 = 0

a1 + a2 + a3+ <(3) X, (3)Y >Id3 = 0

The �rst one implies that (3)a is either the null vector or an element in V3 = C
⊗ E(3, R). In that case, the second constraint allows a discussion for which (3)X

and (3)Y are elements in V3 too (they can have components in C). Inspired
by the approach developed in [07], one may also introduce a vector w2, the

...
©Thierry PERIAT, Decomposing the deformed Lie products in a four-dimensional space; the initial theorem and its
consequences, 1 Mai 2025.

16



3.2 The problem

existence of which will be justi�ed a little bit later in this document, and write
for convenience:

<(3) X, (3)Y >Id3 = −(w0
2)

2, ∀ i = 1, 2, 3 : ai = (wi
2)

2 ⇐⇒ a⊕ = ||w2||2

This choice transforms the two constraints respectively into:∑
i

(wi
2)

4 = 0 and <(4) w2,
(4)w2 >[η̂]= 0

... where [η̂] is the element in M(4, R) representing the Minkowski's geometry.
The �rst advantages of this choice are to allow (i) incorporating this mathe-
matical discussion into a geometrical context usually associated with the empty
regions of the universe; (ii) the involving of Lorentz's transformations. Its dis-
advantage is that neither the components of (3)a nor the ones of (4)w2 can be
related to Stokes parameters. At this stage, one has no interpretation for these
vectors.

With the hope to progress, let reconsider the �rst proposition which has been
made for representing an isotropic vector with the two components of a spinor
in [03; �52]:

a1 = (η0)2 + (η1)2

a2 = i . {(η0)2 − (η1)2}

a3 = 2i . η0 . η1

It's easy to check the coherence of the proposition (no surprise):

||s||2

=

(a1)2 + (a2)2 + (a3)2

=

{(η0)4+(η1)4+2 . (η0)2 . (η1)2}−{(η0)4+(η1)4− 2 . (η0)2 . (η1)2}− 4 . (η0)2 . (η1)2

=

0

But is this historical proposition the unique possible procedure associating the
isotropic vector (3)a with a spinor having the pair (η0 , η1) as components?

Proposition 3.1. A given isotropic vector can be associated in many di�erent

manners with a given pair of scalars.

Proof. Let consider three polynomials of degree two depending on two compo-
nents denoted η0 , η1 such that:

a1(η0 , η1) = a100 . (η
0)2 + a101 . η

0 . η1 + a111 . (η
1)2

a2(η0 , η1) = a200 . (η
0)2 + a201 . η

0 . η1 + a211 . (η
1)2

...
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3 COMPLEMENT CONCERNING THE CUBES WHICH ARE ONLY

ANTI-REDUCED

a3(η0 , η1) = a300 . (η
0)2 + a301 . η

0 . η1 + a311 . (η
1)2

Let calculate the Euclidean norm of (3)a with the help of previous de�nitions.
Let then annihilate the norm. All terms can be reorganized in �ve subsets; each
of them is yielding a condition:

1.
(η0)4 terms : {(a100)2 + (a200)

2 + (a300)
2} = 0

2.
(η0)3 . (η1) terms : a100 . a

1
01 + a200 . a

2
01 + a300 . a

3
01 = 0

3.

(η0)2 . (η1)2 terms : a100 . a
1
11+ a200 . a

2
11+ a300 . a

3
11+ {(a101)2+(a201)

2+(a301)
2} = 0

4.
(η0) . (η1)3 terms : a101 . a

1
11 + a201 . a

2
11 + a301 . a

3
11 = 0

5.
(η1)4 terms : {(a111)2 + (a211)

2 + (a311)
2} = 0

The de�nitions of the components ai (i = 1, 2, 3) introduce a matrix:

[W ] =

 a100 a101 a111
a200 a201 a211
a300 a301 a311


It can be decoded/interpreted as a set of three vectors which are disposed in
the following manner:

[W ] = [|w1 >, |w2 >, |w3 >]

With this interpretation, the �ve conditions can be reformulated as:

1.
(η0)4 terms : ||w1||2 = 0

2.
(η0)3 . (η1) terms :< w1 , w2 >Id3 = 0

3.
(η0)2 . (η1)2 terms :< w1 , w3 >Id3 + ||w2||2 = 0

4.
(η0) . (η1)3 terms :< w2 , w3 >Id3 = 0

5.
(η1)4 terms : ||w3||2 = 0

...
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3.3 An interpretation for the isotropic vector associated with the pair (X,Y)

The �rst and the third vectors in [W] are isotropic vectors. The Euclidean norm
of the second vector in [W] is minus the Euclidean scalar product of the �rst
and of the third vectors. The second vector is orthogonal to the �rst and to
the third vectors. Each triad ((3)w1, (3)w2, (3)w3) composing the matrix [W]
contains a pair of isotropic vectors and any third one which is orthogonal to
these two isotropic vectors.

Let now analyze the calculations and state that a triad generating the vec-
tor (3)a with the help of the above de�nitions in respecting the �ve previous
conditions is:

� (i) insuring the isotropic character of this vector (3)a,

� ... and (ii) compatible with the existence of a pair (η0 , η1) which can be
understood as the components of a spinor associated with (3)a.

With these conditions, (3)a can be associated with any pair (η0 , η1) and the
proposition is true.

3.3 An interpretation for the isotropic vector associated with
the pair (X,Y)

Unfortunately, this fact is telling an embarrassing question: "Are the above
de�nitions compatible with the concept of spinor proposed in [03; �52]? Or do
they introduce new mathematical objects mimicking the spinors?

Considering [03; �53], one gets a new information: each de�nition proposed
previously for the components of (3)a can also be interpreted as the square of
the modi�ed component of some classical (synonym: Cartan's) spinor resulting
from a rotation of the vector with which the initial version of that spinor was
associated.

Here, this interpretation is seemingly useless since spinors associated with isotropic
vectors in V3 have only two components whilst the isotropic vector (3)a has three
components and is not necessarily representing a spinor in some space greater
than V3.

However, among the �ve conditions, the third one attracts attention because
it roughly resembles to one of both constraints linking <(3)X, (3)Y>Id and
(3)a⊕. The third condition and this constraint coincide when:

w1 = X

w2 : ||w2||2 = a⊕

w3 = Y

In that case, the �ve conditions write:

1.
(η0)4 terms : ||X||2 = 0

...
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3 COMPLEMENT CONCERNING THE CUBES WHICH ARE ONLY

ANTI-REDUCED

2.
(η0)3 . (η1) terms :< X , w2 >Id3 = 0

3.
(η0)2 . (η1)2 terms :< X , Y >Id3 +a⊕ = 0

4.
(η0) . (η1)3 terms :< w2 , Y >Id3 = 0

5.
(η1)4 terms : ||Y||2 = 0

Hence each triad ((3)X, (3)w2, (3)Y) of which the arguments respect the �ve
previous conditions and the supplementary condition ||w2||2 = a⊕ generates an
isotropic vector (3)a.

3.4 The (2, 0) representations of the electromagnetic �eld ten-
sor

Each (2, 0) representation of the electromagnetic �eld tensor (as already men-
tioned in example 2.2) is a concrete realization of the simplest decomposition
without residual part for some deformed tensor product ⊗A((4)u, (4)...) when
A is an anti-reduced cube. In that case, obviously:

((3)X, (3)Y) = ((3)E, (3)H)

The new information here concerns the existence of an isotropic vector (3)a of
which the physical meaning is unclear although it is seemingly systematically
associated with the pair ((3)E, (3)H).

Recalling basic knowledge, one can note that the determinant of the (2, 0)
representation of any electromagnetic �eld tensor is an invariant quantity for
each given �eld [05; �25]. Therefore, the unidenti�ed vector (3)a associated with
this �eld respects at least the condition:

<(3) E, (3)H >Id3 = −(3)a⊕((3)E, (3)H) = Invariant1(
(3)E, (3)H)

A lecture on partially polarized light is instructive [05; �50, pp. 121-124] when
one is looking for an interpretation for the vector (3)a within a context concern-
ing electromagnetic �elds. For example, one may ask if the components of this
vector coincide with Stokes parameters [05; �50, p. 122, (50.12)]?

If they would, they would be real scalars and constrained to respect:

∀ i = 1, 2, 3 : ai ∈ [−1, +1]

As consequence of their reality (ai ∈ R) and of the isotropic character of (3)a,
this vector would necessary be null. The simultaneous achievement of all these

...
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3.4 The (2, 0) representations of the electromagnetic �eld tensor

criteria would strongly restrict the domain of validity of this �rst and sponta-
neous interpretation. Precisely, it would only be useful for the description of a
natural and not polarized light characterized with:

a1 = a2 = a3 =<(3) X, (3)Y >Id3 = 0

A cube which would have directly been condensed in a four-vector would have
brought the same result.

Here, one is facing a fairly classical situation in mathematical physics: the
mathematics proposes more possibilities than physical reality can o�er. The
mathematical discussion admits the existence of a vector (3)a with components
in C. This fact opens a debate that can only reach a conclusion if there are
experiences of polarization needing Stokes-like parameters in C to be correctly
interpreted or if the interpretation for (3)a as Stokes parameters is incomplete -
an idea which has been very recently suggested in [06].

Among others alternative interpretations, but not new (2003), one must also
cite the unusual Lorentzian interpretation of the Stokes parameters [07], includ-
ing the interpretation of the polarization P (here related to ||a||2) as equivalent
to (citation) "a relative velocity between the Stokes vectors respectively associ-

ated with natural and partially polarized lights" (end of citation). Within this
unusual context, a vector (3)a in C ⊗ E(3, R) would be associated with very
speci�c situations.

The previous discussion gives a visage to these very speci�c situations:

1.
(η0)4 terms : ||(3)E||2 = 0

2.
(η0)3 . (η1) terms :<(3) E , (3)w2 >Id3 = 0

3.
(η0)2 . (η1)2 terms :<(3) E , (3)H >Id3 + (3)a⊕ = 0

4.
(η0) . (η1)3 terms :<(3) w2 ,

(3)H >Id3 = 0

5.
(η1)4 terms : ||(3)H||2 = 0

6.

<(3) E, (3)H >Id3 = −(w0
2)

2, ∀ i = 1, 2, 3 : ai = (wi
2)

2 ⇐⇒ (3)a⊕ = ||(3)w2||2

7. ∑
i

(wi
2)

4 = 0 and <(4) w2,
(4)w2 >[η̂]= 0

...
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4 THE DIFFICULTY WITH THE CUBES WHICH ARE EXCLUSIVELY

ANTI-SYMMETRIC

All these relations are supporting only one interpretation concerning the vector
(4)w2: it can only be the four-speed associated with an isotropic plane wave in
some empty region without curvature.

(4)w2 = (4)u

For these waves, the �rst invariant of the EM �eld is the sum of the components
of the spatial speed.

<(3) E, (3)H >Id3 = −(3)u⊕((3)E, (3)H) = Invariant1(
(3)E, (3)H)

4 The di�culty with the cubes which are exclusively

anti-symmetric

Per de�nition, the knots of any completely anti-symmetric cube are such that:

∀α, β, χ : Aα
χβ + Aα

βχ = 0

This condition includes the particular one:

∀α, β : Aα
ββ = 0

A completely anti-symmetric cube doesn't automatically generate an anti-symmetric
decomposition without residual part but, instead of that, gigantic calculations:

cαβχδ . u
α . uβ . uχ . uδ

=

|AΦ((4)u)|

=

|Aα
χβ . u

χ|

=∣∣∣∣∣∣∣∣
A0

χ0 . u
χ A0

χ1 . u
χ A0

χ2 . u
χ A0

χ3 . u
χ

A1
χ0 . u

χ A1
χ1 . u

χ A1
χ2 . u

χ A1
χ3 . u

χ

A2
χ0 . u

χ A2
χ1 . u

χ A2
χ2 . u

χ A2
χ3 . u

χ

A3
χ0 . u

χ A3
χ1 . u

χ A3
χ2 . u

χ A3
χ3 . u

χ

∣∣∣∣∣∣∣∣
=∣∣∣∣∣ −A0

01 . u1 − A0
02 . u2 − A0

03 . u3 A0
01 . u0 − A0

12 . u2 − A0
13 . u3 A0

02 . u0 + A0
12 . u1 − A0

23 . u3 A0
03 . u0 + A0

13 . u1 + A0
23 . u2

−A1
01 . u1 − A1

02 . u2 − A1
03 . u3 A1

01 . u0 − A1
12 . u2 − A1

13 . u3 A1
02 . u0 + A1

12 . u1 − A1
23 . u3 A1

03 . u0 + A1
13 . u1 + A1

23 . u2

−A2
01 . u1 − A2

02 . u2 − A2
03 . u3 A2

01 . u0 − A2
12 . u2 − A2

13 . u3 A2
02 . u0 + A2

12 . u1 − A2
23 . u3 A2

03 . u0 + A2
13 . u1 + A2

23 . u2

−A3
01 . u1 − A3

02 . u2 − A3
03 . u3 A3

01 . u0 − A3
12 . u2 − A3

13 . u3 A3
02 . u0 + A3

12 . u1 − A3
23 . u3 A3

03 . u0 + A3
13 . u1 + A3

23 . u2

∣∣∣∣∣
Here again, the four sub-determinants must be calculated.

∆00 =

∣∣∣∣ A1
01 . u0 − A1

12 . u2 − A1
13 . u3 A1

02 . u0 + A1
12 . u1 − A1

23 . u3 A1
03 . u0 + A1

13 . u1 + A1
23 . u2

A2
01 . u0 − A2

12 . u2 − A2
13 . u3 A2

02 . u0 + A2
12 . u1 − A2

23 . u3 A2
03 . u0 + A2

13 . u1 + A2
23 . u2

A3
01 . u0 − A3

12 . u2 − A3
13 . u3 A3

02 . u0 + A3
12 . u1 − A3

23 . u3 A3
03 . u0 + A3

13 . u1 + A3
23 . u2

∣∣∣∣
∆01 =

∣∣∣∣ −A1
01 . u1 − A1

02 . u2 − A1
03 . u3 A1

02 . u0 + A1
12 . u1 − A1

23 . u3 A1
03 . u0 + A1

13 . u1 + A1
23 . u2

−A2
01 . u1 − A2

02 . u2 − A2
03 . u3 A2

02 . u0 + A2
12 . u1 − A2

23 . u3 A2
03 . u0 + A2

13 . u1 + A2
23 . u2

−A3
01 . u1 − A3

02 . u2 − A3
03 . u3 A3

02 . u0 + A3
12 . u1 − A3

23 . u3 A3
03 . u0 + A3

13 . u1 + A3
23 . u2

∣∣∣∣
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∆02 =

∣∣∣∣ −A1
01 . u1 − A1

02 . u2 − A1
03 . u3 A1

01 . u0 − A1
12 . u2 − A1

13 . u3 A1
03 . u0 + A1

13 . u1 + A1
23 . u2

−A2
01 . u1 − A2

02 . u2 − A2
03 . u3 A2

01 . u0 − A2
12 . u2 − A2

13 . u3 A2
03 . u0 + A2

13 . u1 + A2
23 . u2

−A3
01 . u1 − A3

02 . u2 − A3
03 . u3 A3

01 . u0 − A3
12 . u2 − A3

13 . u3 A3
03 . u0 + A3

13 . u1 + A3
23 . u2

∣∣∣∣
∆03 =

∣∣∣∣ −A1
01 . u1 − A1

02 . u2 − A1
03 . u3 A1

01 . u0 − A1
12 . u2 − A1

13 . u3 A1
02 . u0 + A1

12 . u1 − A1
23 . u3

−A2
01 . u1 − A2

02 . u2 − A2
03 . u3 A2

01 . u0 − A2
12 . u2 − A2

13 . u3 A2
02 . u0 + A2

12 . u1 − A2
23 . u3

−A3
01 . u1 − A3

02 . u2 − A3
03 . u3 A3

01 . u0 − A3
12 . u2 − A3

13 . u3 A3
02 . u0 + A3

12 . u1 − A3
23 . u3

∣∣∣∣
It's inhuman work and therefore, it will not be made! In stopping the calculation
at this stage, one must keep in mind that some interesting situations canceling
the determinant may have been omitted.

5 Conclusion of the �rst part.

The claim of this exploration was the discovery of conditions generalizing the
so-called initial theorem in V4. This theorem concerns deformed Lie products
and these products are tensor products deformed by anti-symmetric cubes.

Since the calculation by hand of the discriminant of the system associated with
a decomposition in a four-dimensional environment is an inhuman task, atten-
tion has �rst been focused on tensor products deformed by anti-reduced cubes.
Because anti-reduced cubes can also simultaneously be anti-symmetric with-
out being systematically null, this strategy gave a set of very simple conditions
which generalize the initial theorem in V4.

When the initial theorem holds true in V4, then the simplest decomposition
without residual part is equivalent to a pair of orthogonal vectors and this pair
is automatically associated with an isotropic vector in V3; the sum of the com-
ponents of this isotropic vector vanishes.

The end of the document has looked for a correct interpretation of the isotropic
vector (i) in a context studying the (2, 0) representations of the electromag-
netic �elds and (ii) in focusing attention on exclusively anti-reduced cubes. In
that case, the initial theorem is not valid, the simplest decomposition without
residual part is equivalent to a pair (E,H) representing the EM �eld and this
pair is no more automatically a pair of orthogonal vectors. However, this pair
remains automatically associated with an isotropic vector in V3; the sum of the
components of this isotropic vector does no more systematically vanish.

This quest con�rmed the existence of a mathematical and natural link between
the propagation of a plane wave in vacuum and the theory of spinors [03]. The
progression came to the conclusion that, within this mathematical approach, the
spatial part of the argument of the simplest decomposition without residual part
of ⊗A((4)u, (4)...) - more precisely the spatial part of the four-speed associated
to the EM �eld at hand- can be the isotropic vector associated with the pair
(E,H), provided it is a pair of isotropic vectors.

This strange conclusion will be studied and deepen elsewhere.
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