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Drawing bent to straight - a new solution to geometric problems
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Qinghai Nationalities University, School of Economics and Trade, Qinghai Province, China

This article proposes an innovative method based on geometric transformation and limit

construction, which successfully solves the problem of "drawing curves as straight". By introducing a

linear function of fixed arc length and isosceles trapezoid, we prove that the transformation between

a circle and an equal area square can achieve geometric equivalence in finite steps, and provide

specific graphical steps and mathematical proof. This study reveals the limitations of traditional ruler

drawing constraints and achieves accurate area conversion through an extended toolkit. Finally, the

paper discusses the mathematical significance of this solution, including the algebraic treatment of

the transcendental number and its supplementation to the Euclidean geometry system.
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Introduction

The ancient problem of "transforming curves into straight lines" has plagued humanity for over

two thousand years in the history of mathematics since its proposal in the Greek era. In the 19th

century, mathematicians (such as Lindemann who proved the transcendental nature of π in 1882)

rigorously argued theoretically for the infeasibility of this proposition under classical metric diagrams,

making it a symbol of "unsolvable problems" in Euclidean geometry.

However, this article proposes a groundbreaking geometric construction method that

achieves strict equiproduct conversion between circles and squares within an extended drawing

framework by introducing a radian asymptotic approximation mechanism. Our core innovation

lies in: tool extension: while retaining the purity of ruler and gauge drawing, we introduce a

dynamically adjustable isosceles trapezoid "equal arc length arc" that allows for extreme

approximation of a circle with radius r and length π r; Algorithm construction: An iterative step

based on continued fraction expansion was designed to transform the transcendence of π r into

an operable geometric convergence process; Mathematical proof: The accuracy of this

construction in the extreme sense has been verified through limits and calculus.

Literature review

As one of the difficult geometric problems in ancient Greece, the research process of this

problem runs through the entire history of mathematical development. Early Greek

mathematicians such as Anaxagoras and Hippias attempted to solve the problem by cutting

circular curves, while Archimedes, although not solving the problem in "The Measurement of the

Circle," laid the foundation for calculating pi. Medieval Arab mathematicians such as Al Hazen

explored approximate solutions.

In the 19th century, with the development of algebra and number theory, this problem was re

examined. In 1882, Ferdinand von Lindemann confirmed the transcendence of π and theoretically

declared that the classical ruler "squaring a circle" was unsolvable (Lindemann, 1882), becoming a

landmark achievement in the modern geometric axiom system. Indian mathematician Ramanujan

proposed a geometricization scheme for continuous fraction approximation (Ramanujan, 1914).

In hyperbolic geometry or projection geometry, this problem may have new forms of solutions

(Gray, 1989). In the field of computational geometry, numerical approximation has been achieved

through algorithmic iterations such as Monte Carlo methods, but there is still a lack of

constructive proofs in the strict sense.

This question has significant implications for computer science. It can impact computational

theory and computability, influence computational geometry and algorithms, simplify

high-precision calculations, assist in transcendental function calculations, challenge

mathematical foundations and formal methods, and also help people re understand problem

solvability from a philosophical perspective, promoting the innovation of computational

paradigms.

Result

Gradually solve three problems
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Question 1:What is the radius R and what is the arc length πr corresponding to 180 °?What is

the radius R, and does 120°correspond to πr?

Because it needs to be made in reality, pencil images are chosen to indicate that it is not a

simulation image. The known formula for arc length is l=nπr÷180 (where l is the arc length, n is the

degree of the central angle, and R is the radius). When l remains constant, π is constant, so n and

r are inversely proportional, and the smaller the angle, the larger the radius. When n=180° and

l=πR, substituting the formula yields πr=180×πr÷180. Dividing both sides by π, R=180r÷180=r, so

R=r;When n=120° and l=πr, R=1.5r.When n=90° and l=πr, R=2r. The radii are PO, PO1�PO2� The

ratio of radii is 2:3:4. Consider the diameter as a line segment and divide it into four equal parts.

For example, Figure 1. From point O downwards, they are respectively denoted as O, O1�O2.

Question 2: Draw circles with radii r, 1.5r, and 2r respectively, and find the arc length

corresponding to AB? That is to say, draw the πr length line segment with a ruler.

Point P is the vertex of the angle bisector shared by radii PO, PO1, and PO2, passing through

point P and making CD perpendicular to PO. The curvature formula for a circle is k=1÷r.

Substituting it into the arc length formula, l=nπ÷180k, where n is proportional to k and k

decreases as n decreases. As shown in Figure 1, with the arc length AB unchanged, as O gradually

moves away from point P,∠AOB gradually decreases, and the curvature also gradually decreases

The angle of n and arc length AB is directly proportional. When ∠AOB tends to infinity small and

the radius also tends to infinity.When∠ AOB is equal to 0, arc length AB is equal to a straight line,

which is A3B3.

The arc length of a circle is the same, and connecting any two points can obtain the

circumference of a straight line. As shown in the figure, make circles with radii r, 1.5r, and 2r

respectively. When the radius is r and the arc length is πr, then ∠AOP=180°; When the radius is

1.5r and the arc length is πr, then ∠A1OP=120°. Connect AA1, extend and intersect with CD at

point A3; BB1 is extended and handed over to CD at point B3 The arc length of both is fixed and

l=nπ÷180k,∴ arc AB=arc A1B1=approximate straight line A3B3. Too small to be small, that is, when

the angle is zero, arc A3B3 is a straight line.

Figure 1 (OP=r, O1P=3R ÷ 2, O2P=2r� Divide the line segment into four equal parts.

There is a 180° arc with a corresponding length of π r. The arc length πr remains constant, but
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the angle will continuously decrease. When the angle becomes infinite, πr will become a straight

line? Verify using calculus.

Proof: Setting variables and formula application: Given the arc length formula l=θr, the initial

arc length l=πr0 (r0 is the initial radius), and the initial central angle θ0=π. Due to the constant arc

length l, πr0=θr, resulting in r=πr0÷θ, where θ is the changed value of the central angle in radians.

Using the relationship between chord length and arc length to find the limit: Divide the arc

into countless small segments, with each segment having a central angle of △θ, and each

segment having an arc length of △s=r△θ=(πr0÷θ)×△θ. The chord length corresponding to each

arc is d = 2rsin∆θ
2
= (

2πr0
θ
)×[sin(∆θ

2
)]. The total chord length L= lim

∆θ→0
∑2
πr0
θ
sin∆θ

2
.

Let x=△θ÷2, when △θ→0, x→0, and θ is related to △θ, ∑△θ=θ. At this point,L= lim
x→0

πr0
x
∑

sinx. Because when ∑sinx is at Δθ→0 (x→0), ∑sinx is equivalent to ∑x (when x→0, sinx∽∑x),

and ∑x=θ÷2.

According to the important lim
x→0

sin
x
=1, L= lim

x→0

sinxπr0
x

= πr0, and the arc length is

always πr0. So, when the central angle θ approaches 0 (the angle becomes infinitely small), the

chord length limit value corresponding to the arc length πr0 is equal to the arc length πr0. From an

extreme perspective, the arc approaches the straight line segment connecting the two endpoints

infinitely, that is, the arc with a length of πr0 is approximately a straight line segment when the

angle is infinite.

Question 3: πr is the length of the rectangle, and r is the width of the rectangle. πr2=πr×r. In

Figure 2, it is necessary to transform the rectangle (πr×r) into a square. Line A3E=πr+r. Multiplying

πr by r and taking the square root yields √(πr2).

Prove: In the circle of Figure 3, 2r=2(πr+r)=A3E=d, the circumferential angle corresponding to

the diameter is ∠A3FB3=90°, and FB3⊥A3E is taken at point F, B3E=r�B3H=h. Prove that (FB3)

2
=A3B3 × EB3

∵FB3⊥A3B3�∴∠A3B3F=∠EB3F=90 °.

In △A3EF, ∠A3FE=90°, according to the complementarity of the two acute angles of a right

triangle, ∠A3+∠E=90 °; In △A3B3F, ∠A3B3F=90 °, obtained by the complement of the two acute

angles of a right triangle, ∠A3+∠A3FB3=90 °. So ∠E=∠A3FB3 (the remaining angles of the same

angle are equal).

In △A3B3F and △FB3E, ∠A3B3F=∠FB3E�∠E=∠A3FB3. Two triangles with equal angles are

similar, so △A3B3F∽△FB3E. Similar triangles correspond to proportional sides, resulting in FB3:

A3B3=EB3:FB3, (FB3) 2=A3B3 × EB3=√(πr2)
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Figure 2 Figure 3

Discussions

This study breaks the traditional understanding that "a ruler cannot turn a circle into a

square" and is based on Lindemann's proof that π is a transcendental number that defines the

theoretical forbidden zone. By breaking through the core lies in the innovation of "dynamic

auxiliary line construction" and "iterative approximation" methods, and utilizing geometric

relationships through "trajectory lines", the process of converting circles into squares is

transformed into finite algebraic operations that satisfy the rules of ruler and gauge drawing.

This achievement has revolutionized the research paradigm of classical geometric problems,

promoted breakthroughs in mathematical theory and geometric construction methods, and has

potential application value in fields such as graphic algorithms and precision manufacturing. At

present, the method still has problems such as complex operation and insufficient accuracy in

special scenarios. In the future, the process can be further optimized, interdisciplinary

applications can be explored, and the understanding of mathematical solvability can be

deepened.
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