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1 Introduction

A growing community of researchers has become interested in the application of division alge-

bras and the corresponding split composition algebras to a structural description of the Standard

Model of particle physics.[1–18] The use of triality in this context, relating three generations of

fermions, has gathered increasing interest.[19] The existence of the quaternion group, Q8, within

the CPT Group generated by charge, parity, and time conjugation symmetries, and its extension

to the CPTt Group—acting on three generations of fermions related by triality—strongly indicates

division algebras are intricately woven into the fabric of reality. Despite this indication of its use-

fullness, explicit mathematical descriptions of exactly how triality can be used in model building

are sparse. It is the purpose of this work to remedy this deficit—to provide a detailed description of

the mathematical scaffolding relating division algebras, triality, Clifford algebras, and Lie algebras

related to the Standard Model and gravity. This paper largely follows and complements Baez’s

excellent paper, “The Octonions”,[20] but in more painful detail, and with an eye to physics.

We begin by introducing division algebras: the complex numbers, C, quaternions, H, and

octonions, O, and the related split-signature composition algebras, C′, H′, and O′, and use them

to construct Clifford algebras. The Clifford bivectors generate Spin groups, which act on spinors

with negative and positive-chiral parts. A structural isomorphism (or “confusion”) then exists,

between 2, 4, or 8-dimensional vectors, v, negative-chiral spinors, ψ, positive-chiral spinors, χ, and

sets of three division algebra elements. (We casually use “division algebra”, D, to also encompass

the corresponding split-signature composition algebras, and sometimes not the reals.)

A real, cyclic, trilinear triality function is defined by the division algebra product (or vice

versa), and is invariant under the triality group of symmetries on its arguments. These symmetries

relate to generalized reflections, producing duality automorphisms related to twistor incidence

relations,[21] as well as triality automorphisms, which transform and cycle the arguments. Each

division algebra has a Lie algebra, its triality algebra, corresponding to this triality group. Each

triality algebra is a subalgebra of the triality Lie algebra formed by the joining of a triality algebra

with the three elements corresponding to a vector, negative-chiral spinor, and positive-chiral spinor.

Using these elements, these triality Lie algebras can be expressed heuristically as su(3,D).[22]
Triality inner automorphisms act within these Lie algebras, and can be displayed graphically in

their root systems.

Two division algebras can also be combined to construct a compound division algebra repre-

sentation of a Clifford algebra. The corresponding two triality Lie algebras combine to give Lie

algebras in the exceptional magic square.[23] These magic square Lie algebras, and their triality

automorphisms, are explicitly formulated. Detailed examples are provided for Lie algebras e6, e7,

and e8, each of which is relevant to Exceptional Unification models in physics. The algebra of

the SO(10) Grand Unified Theory embeds in e6. Three generations of Dixon algebra fermions,

related to C⊗H⊗O, embed in complex e7. And three generations of fermions, related by triality,

embed in real forms of e8, along with Standard Model gauge, Higgs, and (Euclidean) gravitational

fields. The paper ends with a brief description of division algebra automorphisms, which brings

the remaining exceptional Lie algebra, g2.

– 2 –



2 Division Algebra Representation of Clifford Algebras

A n-dimensional division algebra, D, or split-signature composition algebra, D′, is spanned by its

basis elements, ea, which have a conjugation,

ẽ0 = e0̃ = e0 = 1 ẽ1 = e1̃ = −e1 ... ẽn−1 = e
ñ−1

= −en−1

and a multiplication table, eaeb =Mab
cec, allowing the definition of its metric,

(ea, eb) =
1
2(ẽaeb + ẽbea) = nab

with nab = δab for the usual division algebras, and nab having split signature, {+,−}, for the

split-algebras. Under conjugation, division algebra multiplication satisfies

(̃eaeb) = eb̃eã Mab
c̃ =Mb̃ã

c

Standard multiplication tables, Mab
cec, for the division algebras and their split-algebras are:

C :

[
e0 e1
e1 −e0

]
C′ :

[
e0 e1
e1 e0

]

H :


e0 e1 e2 e3
e1 −e0 e3 −e2
e2 −e3 −e0 e1
e3 e2 −e1 −e0

 H′ :


e0 e1 e2 e3
e1 e0 e3 e2
e2 −e3 −e0 e1
e3 −e2 −e1 e0



O :



e0 e1 e2 e3 e4 e5 e6 e7
e1 −e0 e4 e7 −e2 e6 −e5 −e3
e2 −e4 −e0 e5 e1 −e3 e7 −e6
e3 −e7 −e5 −e0 e6 e2 −e4 e1
e4 e2 −e1 −e6 −e0 e7 e3 −e5
e5 −e6 e3 −e2 −e7 −e0 e1 e4
e6 e5 −e7 e4 −e3 −e1 −e0 −e2
e7 e3 e6 −e1 e5 −e4 −e2 −e0


O′ :



e0 e1 e2 e3 e4 e5 e6 e7
e1 −e0 e3 −e2 −e5 e4 −e7 e6
e2 −e3 −e0 e1 −e6 e7 e4 −e5
e3 e2 −e1 −e0 −e7 −e6 e5 e4
e4 e5 e6 e7 e0 e1 e2 e3
e5 −e4 −e7 e6 −e1 e0 e3 −e2
e6 e7 −e4 −e5 −e2 −e3 e0 e1
e7 −e6 e5 −e4 −e3 e2 −e1 e0



(2.1)

Division algebra multiplication allows the construction of chiral Clifford basis elements of

Cl(n), Cl(0, n), or Cl(n2 ,
n
2 ), which act on chiral division algebra spinors,

γc=

[
0 ±ẽc
ec 0

]
∼

[
0 ±(Γ̄c)

a
b

(Γc)
b
a 0

]
=

[
0 ±Mc̃b̃

a

Mca
b̃ 0

]
Ψ=

[
ψ

χ̃

]
=

[
ψaea
χbẽb

]
∼

[
ψaQ−

a

χbQ+
b

]
(2.2)

with (Γ̄c) = ncc(Γc)
T and multiplication understood to be to the right by division algebra elements

(accounting for non-associativity of octonions), or represented equivalently as 2n×2n real matrices

built from the multiplication table coefficients,

(Γc)
b
a =Mca

b̃ (Γ̄c)
a
b =Mc̃b̃

a =Mbc
ã =Mc

a
b̃ = (Γc)b

a
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These representative Clifford basis vector elements satisfy the fundamental Clifford identity,

γa · γb = 1
2 (γaγb + γbγa) = ±1

2

[
ẽaeb + ẽbea 0

0 eaẽb + ebẽa

]
= ±nab = ηab (2.3)

with the “±” signature usually chosen to be “−” for our purposes. Division algebra multiplication

coefficients, and the corresponding Clifford matrix elements, satisfy a cyclic identity,

Γ̄abc = Γ̄bca = Γ̄cab = Γacb = Γcba = Γbac =Mabc̃ =Mbcã =Mcab̃ =Mãc̃b =Mc̃b̃a =Mb̃ãc (2.4)

in which nab is used to lower indices. The Clifford pseudoscalar for each division algebra and

split-algebra is γ = γ0...γn−1 = ±[ 1 −1 ].

The 1
2n(n− 1) representative Clifford bivector basis elements, for c < d, are:

γcd =

[
±ẽced

±ecẽd

]
∼

[
±(Γ̄c)

a
b(Γd)

b
e

±(Γc)
b
a(Γ̄d)

a
f

]
=

[
±Mc̃b̃

aMde
b̃

±Mca
b̃Md̃f̃

a

]
with it understood that, for example, ed, multiplies to the right before ẽc multiplies the result.

Since ecẽd = −edẽc for c ̸= d, we also have the reverse-indexed bivectors, γdc = −γcd, and will

sometimes account for these with a 1/2 in sums, such as for B = 1
2B

cdγcd. These bi-product

division algebra operators are the chiral basis elements of the corresponding spin Lie algebra,

which act on division algebra spinors. Spinors are the fundamental representation space of spin

groups, which have spin Lie algebras spanned by Clifford algebra bivectors that are represented

by matrices that act on the spinors. For the complex numbers and quaternions, multiplication is

associative, so these bi-product basis elements are themselves purely imaginary complex numbers

or quaternions, ẽced ∈ B = Im(D), and the corresponding spin Lie algebras, B2 = so(2) = u(1)

and B4 = so(4) = su(2) + su(2), are 1 and 6-dimensional. For the octonions, multiplication is not

associative, and these octonionic bi-products span 28-dimensional B8 = so(8) ̸= Im(O).

From the division algebra representation of Clifford algebras we have a natural confusion

between sets of three n-dimensional division algebra elements and corresponding sets of Clifford

algebra vectors, negative real chiral spinors, and positive real chiral spinors,

v = vcec ∼ v = vcγc

ψ = ψaea ∼ ψ = ψaQ−
a

χ̃ = χbẽb ∼ χ = χbQ+
b

χ̃ = v ψ ∼ χ = v ψ

It is the chiral division algebra representative matrices of Clifford algebras, Γc
b
a =Mca

b̃, that allow

this direct identification between a set of vector, negative, and positive chiral spinors, (v, ψ, χ),

and a triplet of division algebra elements, and their multiplication,

χbeb̃ = χ̃ = v ψ = vcψaMca
b̃eb̃ ∼ χb = vcψa(Γc)

b
a

This confusion of vectors and spinors with division algebra elements, and the division algebra con-

struction of Clifford algebras, leads to the explicit construction and understanding of the structure

of many Lie algebras and their automorphisms.
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3 Generalized Reflections and Triality

Division algebras (and their split versions) have a cubic form—a real, cyclic, trilinear triality

function, T (v, ψ, χ), of three elements, or, equivalently, of vectors and chiral spinors,

χbvcψaΓcba = χT v ψ = T (v, ψ, χ) = (χ̃, v ψ) = 1
2

(
χ(vψ) + χ̃(vψ)

)
= χbvcψaMcab̃

The triality function is cyclic, T (v, ψ, χ) = T (ψ, χ, v), by virtue of the cyclic nature of division

algebra multiplication, (2.4). Although one usually considers the triality function as built from the

division algebra product, it is possible, alternatively, to use the existence of a triality function, as

a cyclic cubic form on a vector space, to define the division algebra product. The triality function

is invariant under the triality group, Tri(D), with elements r ∈ Tri(D) satisfying:

r : (v, ψ, χ) 7→ (v′, ψ′, χ′) ∋ T (v′, ψ′, χ′) = T (v, ψ, χ)

The triality group acts linearly on (v, ψ, χ) as its representation space.

Consider reflections, Ruv , through a unit-length Clifford vector or division algebra element,

−u · u = uaubnab = su = ũu = ±1

in which the signature, su, is space-like, +1, for division algebra elements or Cl(0, n) Clifford

vectors, or can be time-like, −1, for some split-composition algebra elements or the corresponding

time-like Cl(n2 ,
n
2 ) Clifford vectors. Note that we have chosen the “−” sign in (2.2, 2.3), to later

match Lie algebra elements. Reflections can then be expressed as

v′ = Ruvv = −uvu− v′ = Ruvv = −suuṽu v′ = Rumχ =
√
suχ̃ũ v′ = Rupψ =

√
suũψ̃

Ψ′ = RuvΨ =
√
suuγΨ ψ′ = Ruvχ =

√
suũχ̃ ψ′ = Rumψ = −suuψ̃u ψ′ = Rupv =

√
suṽũ

χ′ = Ruvψ =
√
suψ̃ũ χ′ = Rumv =

√
suũṽ χ′ = Rupχ = −suuχ̃u

and, since triality is cyclic, we also have generalized reflections, Rum and Rup , acting as reflections

through negative and positive chiral spinors. These generalized reflections, through a space-like or

time-like unit element, u, can be equivalently expressed as operations on Clifford basis vector and

spinor elements,

Ruv Rum Rup

γ′c = (δac − 2suu
auc)γa γ′c =

√
suu

a(Γa)
b
cQ

+
b γ′c =

√
suu

b(Γ̄b)
a
cQ

−
a

Q−
a
′
=
√
suu

c(Γ̄c)
b
aQ

+
b Q−

a
′
= (δba − 2suu

bua)Q
−
b Q−

a
′
=
√
suu

c(Γc)
b
aγb

Q+
b
′
=
√
suu

c(Γc)
a
bQ

−
a Q+

b
′
=
√
suu

c(Γ̄c)
a
bγa Q+

b
′
= (δab − 2suu

aub)Q
+
a

(3.1)

The triality function is anti-invariant under these generalized reflections, such as

T (v′, ψ′, χ′) = T (Ruvv,R
u
vχ,R

u
vψ) = T (−suuṽu,

√
suũχ̃,

√
suψ̃ũ) = (uψ, (−uṽu)ũχ̃) = −T (v, χ, ψ)

Generalized reflections through non-unit-length u give duality functions, such as v′ = Rχpψ = ψ̃χ.

These duality functions come from dualizing the triality function: if we demand that T (v, ψ, χ) = 1,
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then we can obtain an expression for the vector, negative spinor, or positive spinor from the two

others,

v =
1

|ψχ|2
ψ̃χ ψ =

1

|χv|2
χ̃v χ =

1

|vψ|2
ṽψ

These “incidence relations” are at the heart of the twistor program.[21]

Combining two generalized reflections of the same type gives a generalized rotation—an el-

ement of the triality group. Combining two generalized reflections of different types gives an

element of the triality group that isn’t a rotation. Combining four generalized reflections through

two unit-length elements, u and w, gives a triality automorphism,

tuw = Rwp R
u
vR

ũ
mR

ũ
p

an element of the triality group that takes vectors to negative spinors, negative spinors to positive

spinors, and positive spinors to vectors,

tuw : (v, ψ, χ) 7→ (v′, ψ′, χ′) =
(√
susww̃(uψ),

√
susw(χu)w̃, susww(ũvũ)w

)
with T (v′, ψ′, χ′) = T (v, ψ, χ). Via Clifford algebra confusion, pairs of unit elements, u and

w, produce general triality automorphisms of sets of three division algebra elements or of the

corresponding Clifford vector and spinors,

v′ =
√
susww̃(uψ) =

√
susww

ducψaMd̃b̃
fMca

b̃ef

∼ v′ =
√
susww

ducψa(Γ̄d)
f
b(Γc)

b
aQ

−
f =

√
suswwuψ

ψ′ =
√
susw(χu)w̃ =

√
suswχ

bucwdMbc
ãMãd̃

fef

∼ ψ′ =
√
suswχ

bucwd(Γd)
f
a(Γ̄c)

a
bQ

+
f = (χTuw)T =

√
susww

TuTχ

χ′ = susww(ũvũ)w = susww
aubvcudweMaf

gMb̃c
aMad̃

fMge
heh

∼ χ′ = vb(δab − 2sww
awb)(δ

c
a − 2suu

cua)γc = suswwuvuw

(3.2)

Choosing u = 1 (∼ u = γ0) and w = 1 (∼ w = γ0) gives the canonical triality automorphism,

t : (v, ψ, χ) 7→ (v′, ψ′, χ′) = (ψ, χ, v)

consistent with the invariance of triality under cyclic permutation of its arguments.

The triality algebra of a division algebra, tri(D), is the Lie algebra of its triality group, and its

elements, R ∈ tri(D), satisfy:

R : (v, ψ, χ) 7→ (v′, ψ′, χ′) T (v′, ψ′, χ′) = 0

For the complex numbers, quaternions, and octonions, and their split versions, the triality algebras

are:
tri(C) = u(1) + u(1) tri(C′) = gl(1) + gl(1)

tri(H) = su(2) + su(2) + su(2) tri(H′) = sl(2) + sl(2) + sl(2)

tri(O) = so(8) tri(O′) = so(4, 4)
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4 Triality Lie Algebras

The best way to understand how triality algebras act on the corresponding triplets, (v, ψ, χ), is

via their embedding in the corresponding triality Lie algebras,

su(3) = tri(C) + C+ C+ C = u(1) + u(1) + (1 + 1̄)v + (1 + 1̄)m + (1 + 1̄)p

sp(3) = tri(H) +H+H+H = su(2) + su(2) + su(2) + (2, 2, 1)v + (2, 1, 2)m + (1, 2, 2)p

f4(−52) = tri(O) +O+O+O = so(8) + 8v + 8s− + 8s+

sl(3) = tri(C′) + C′ + C′ + C′ = gl(1) + gl(1) + (1 + 1̄)v + (1 + 1̄)m + (1 + 1̄)p

sp(6,R) = tri(H′) +H′ +H′ +H′ = sl(2) + sl(2) + sl(2) + (2, 2, 1)v + (2, 1, 2)m + (1, 2, 2)p

f4(4) = tri(O′) +O′ +O′ +O′ = so(4, 4) + 8v + 8s− + 8s+

Generalized reflections, and triality automorphisms, are real automorphisms of triality Lie algebras.

The structures of these Lie algebras fully elucidate these symmetries, and are worth examining in

each case.

4.1 su(3)

The eight Lie algebra basis generators for the special unitary group, SU(3), may be represented by

3× 3 traceless, anti-Hermitian matrices of complex numbers, related to the Gell-Mann matrices,

A =

 i B
1 + i√

3
B2 −v0 + i v1 ψ0 + i ψ1

v0 + i v1 −i B1 + i√
3
B2 −χ0 + i χ1

−ψ0 + i ψ1 χ0 + i χ1 − 2i√
3
B2

 =

 V −M −v∗ ψ

v P − V −χ∗

−ψ∗ χ M − P


= B1T1 +B2T2 + vaγa + ψaQ−

a + χaQ+
a

= V Hv +M Hm + P Hp + (v E−
v − v∗E+

v ) + (ψE−
m − ψ∗E+

m) + (χE−
p − χ∗E+

p )

∈ su(3)

(4.1)

with {v, ψ, χ} complex numbers, v = v0 + i v1 = v0e0 + v1e1, and {V,M,P} pure imaginary

numbers. Note that since su(3) elements are traceless, V , M , and P correspond to only two

degrees of freedom, B1 and B2—the same su(3) element is specified if V , M , and P are all shifted

by a constant. These V , M , and P generators are motivated by the existence of three overlapping

su(2) subalgebras, spanned by {Hv, γa}, {Hm, Q
−
a }, and {Hp, Q

+
a }. As a triality Lie algebra, su(3)

relates to the complex division algebra representation of Cl(0, 2), with basis vectors γ0 =
[

0 −1

1 0

]
and γ1 =

[
0 i

i 0

]
. This C division algebra representation of Cl(0, 2) is not the representation from

the complex multiplication table, (2.1), which is instead, from (Γc)
b
a =Mca

b̃,

M00
0̃ = 1 M01

1̃ =M10
1̃ = −1 M11

0̃ = −1 Γ0 =

[
1

−1

]
Γ1 =

[
−1

−1

]
γc =

[
0 −Γ̄c
Γc 0

]
In general, a triality Lie algebra can either be described directly as ∼su(3,D), or equivalently

by constructing the corresponding Clifford algebra and its bivector and vector matrix represen-

tatives (identified with the upper-left 2 × 2 block in su(3,D)) which act on negative and positive

– 7 –



chiral spinors, then closing the algebra via the Lie brackets between spinors. The representation of

the Clifford algebra may be by division algebra elements, by their matrix representatives, or from

the equivalent division algebra multiplication table coefficients.

We can compute the su(3) Lie brackets directly from the commutator of its representative

matrices, (4.1), [(
B1

1 , B
2
1 , v1, ψ1, χ1

)
,
(
B1

2 , B
2
2 , v2, ψ2, χ2

)]
=

(
B1

3 , B
2
3 , v3, ψ3, χ3

)
2i B1

3 = −2(v∗1v2 − v∗2v1)− (ψ1ψ
∗
2 − ψ2ψ

∗
1)− (χ1χ

∗
2 − χ2χ

∗
1)

2i√
3
B2

3 = (χ1χ
∗
2 − χ2χ

∗
1) + (ψ∗

1ψ2 − ψ∗
2ψ1)

v3 = −2i(B1
1v2 −B1

2v1) + (χ∗
1ψ

∗
2 − χ∗

2ψ
∗
1)

ψ3 = i(B1
1 +

√
3B2

1)ψ2 − i(B1
2 +

√
3B2

2)ψ1 + (v∗1χ
∗
2 − v∗2χ

∗
1)

χ3 = i(B1
1 −

√
3B2

1)χ2 − i(B1
2 −

√
3B2

2)χ1 + (ψ∗
1v

∗
2 − ψ∗

2v
∗
1)

Alternatively, using our basis elements, {T1, T2, γa, Q−
a , Q

+
a }, the non-vanishing su(3) brackets

between them are, explicitly,

[T1, γ0] = −2 γ1
[
T1, Q

−
0

]
= +Q−

1

[
T1, Q

+
0

]
= +Q+

1

[T1, γ1] = +2 γ0
[
T1, Q

−
1

]
= −Q−

0

[
T1, Q

+
1

]
= −Q+

0[
T2, Q

−
0

]
= +

√
3Q−

1

[
T2, Q

+
0

]
= −

√
3Q+

1[
T2, Q

−
1

]
= −

√
3Q−

0

[
T2, Q

+
1

]
= +

√
3Q+

0

[γ0, γ1] = −2T1
[
Q−

0 , Q
−
1

]
= T1 +

√
3T2

[
Q+

0 , Q
+
1

]
= T1 −

√
3T2[

γa, Q
−
b

]
= −Mãb̃

cQ+
c

[
γa, Q

+
b

]
= Mãb̃

cQ−
c

[
Q−
a , Q

+
b

]
= −Mãb̃

c γc

(4.2)

and their anti-symmeterized partners.

With orthogonal Cartan subalgebra basis generators, {T1, T2}, or non-orthogonal Cartan basis

generators, {Hv, Hm, Hp}, the root vectors and their Lie brackets are:

E+
v = 1

2(−γ0 − i γ1) [T1, E
±
α ] = ±i g1αE±

α [E±
v , E

±
m] = ∓E∓

p

E−
v = 1

2(+γ0 − i γ1) [T2, E
±
α ] = ±i g2αE±

α

[
E±
m, E

±
p

]
= ∓E∓

v

E+
m = 1

2(−Q
−
0 − iQ−

1 )
[
E±
p , E

±
v

]
= ∓E∓

m

E−
m = 1

2(+Q
−
0 − iQ−

1 ) [Hv, E
±
α ] = ±i vαE±

α [E+
v , E

−
v ] = −i T1 = −iHv

E+
p = 1

2(−Q
+
0 − iQ+

1 ) [Hm, E
±
α ] = ±imαE

±
α [E+

m, E
−
m] = −i (−1

2T1 −
√
3
2 T2) = −iHm

E−
p = 1

2(+Q
+
0 − iQ+

1 ) [Hp, E
±
α ] = ±i pαE±

α

[
E+
p , E

−
p

]
= −i (−1

2T1 +
√
3
2 T2) = −iHp

with the {g1α, g2α, vα,mα, pα} roots in Table 1. This structure of su(3) is consistent with its trial-

ity decomposition, in which each of the three triples, {Hv/m/p, E
+
v/m/p, E

−
v/m/p} ∼ {H,E+, E−},

corresponds to a different su(2), related to each other by triality, with disjoint root vectors but

overlapping Cartan generators. The relevant triality function is,

T (v, ψ, χ) = vcψaχbMabc̃ = v0ψ0χ0 − v0ψ1χ1 − v1ψ1χ0 − v1ψ0χ1
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and the canonical inner triality automorphism of su(3) is:

t : A 7→ A′ = gtAg
−
t gt =

[
1

1
1

]
∈ SU(3)

in which gt is an element of the 3× 3 representation of the SU(3) Lie group, and t transforms the

generators, root vectors, and Cartan subalgebra elements as:

t : γa 7→ Q−
a 7→ Q+

a 7→ γa E±
v 7→ E±

m 7→ E±
p 7→ E±

v Hv 7→ Hp 7→ Hm 7→ Hv

This triality automorphism corresponds to a rotation on root space coordinates, (g1α, g
2
α), by t

−,

and a transformation of the Cartan subalgebra basis elements, {T1, T2}, by the triality matrix, t,[
g1α

′

g2α
′

]
=

[
−1

2

√
3
2

−
√
3
2 −1

2

][
g1α
g2α

] [
T1

′

T2
′

]
=

[
−1

2 −
√
3
2√

3
2 −1

2

][
T1
T2

]
t =

[
−1

2 −
√
3
2√

3
2 −1

2

]
Within the triality algebra of su(3), which is also its Cartan subalgebra, the two basis genera-

tors, {T1, T2}, are each rotated between three directions by the canonical triality automorphism.

Specifically, T I1 = Hv = T1, T
II
1 = Hp = −1

2T1 +
√
3
2 T2, and T

III
1 = Hm = −1

2T1 −
√
3
2 T2.

su(3) g1 g2 v m p

v+ +2 0 +2 −1 −1

v− −2 0 −2 +1 +1

m+ −1 −
√
3 −1 +2 −1

m− +1 +
√
3 +1 −2 +1

p+ −1 +
√
3 −1 −1 +2

p− +1 −
√
3 +1 +1 −2

T1
I

T2
I

T1
II

T2
II

T1
III

T2
III

Table 1. Roots of su(3) with respect to the orthogonal Cartan subalgebra basis generators, {T1, T2}, or
non-orthogonal Cartan basis generators, {Hv, Hm, Hp}, and their automorphism under triality.

The split-complex numbers, a composition algebra, are represented by {e′0 = 1, e′1 = I}, with
M ′

11
0 = I2 = 1. Repeating our Lie algebra construction, using real Gell-Mann matrices, we get

the Lie algebra sl(3), with non-vanishing brackets:

[T ′
1, γ

′
0] = −2 γ′1

[
T ′
1, Q

′−
0

]
= +Q′−

1

[
T ′
1, Q

′+
0

]
= +Q′+

1

[T ′
1, γ

′
1] = −2 γ′0

[
T ′
1, Q

′−
1

]
= +Q′−

0

[
T ′
1, Q

′+
1

]
= +Q′+

0[
T ′
2, Q

′−
0

]
= +

√
3Q′−

1

[
T ′
2, Q

′+
0

]
= −

√
3Q′+

1[
T ′
2, Q

′−
1

]
= +

√
3Q′−

0

[
T ′
2, Q

′+
1

]
= −

√
3Q′+

0

[γ′0, γ
′
1] = −2T ′1 [

Q′−
0 , Q

′−
1

]
= T ′1 +

√
3T ′2 [

Q′+
0 , Q

′+
1

]
= T ′1 −

√
3T ′2[

γ′a, Q
′−
b

]
= −M ′

ãb̃
cQ′+

c

[
γ′a, Q

′+
b

]
= M ′

ãb̃
cQ′−

c

[
Q′−
a , Q

′+
b

]
= −M ′

ãb̃
c γ′c

(4.3)

The triality automorphism structure for sl(3) is the same as for su(3).
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4.2 sp(3)

The structure of the 21-dimensional symplectic Lie algebra, sp(3)—the triality Lie algebra of the

quaternions—is similar to that of su(3). Instead of 3 × 3 traceless matrices of complex numbers,

elements of sp(3) can be represented by matrices of quaternions,

A =

 M −ṽ ψ

v P −χ̃
−ψ̃ χ V

 ∈ sp(3) = su(3,H) (4.4)

with {v, ψ, χ} quaternions and {M,P, V } purely imaginary quaternions. The Lie brackets are thus:

[(M1, P1, V1, v1, ψ1, χ1) , (M2, P2, V2, v2, ψ2, χ2)] = (M3, P3, V3, v3, ψ3, χ3)

M3 = M1M2 −M2M1 − (ṽ1v2 − ṽ2v1)− (ψ1ψ̃2 − ψ2ψ̃1)

P3 = P1P2 − P2P1 − (χ̃1χ2 − χ̃2χ1)− (v1ṽ2 − v2ṽ1)

V3 = V1V2 − V2V1 − (ψ̃1ψ2 − ψ̃2ψ1)− (χ1χ̃2 − χ2χ̃1)

v3 = (P1v2 − P2v1) + (v1M2 − v2M1) + (χ̃1ψ̃2 − χ̃2ψ̃1)

ψ3 = (M1ψ2 −M2ψ1) + (ψ1V2 − ψ2V1) + (ṽ1χ̃2 − ṽ2χ̃1)

χ3 = (V1χ2 − V2χ1) + (χ1P2 − χ2P1) + (ψ̃1ṽ2 − ψ̃2ṽ1)

Each of the three diagonal matrix elements is a su(2) subalgebra, which act on two out of the three

off-diagonal elements. The Cartan subalgebra basis consists of one element from each diagonal

element, {TM3 , TP3 , T
V
3 }.

The sp(3) Lie algebra, and its brackets, relate to the Clifford algebra matrix representation of

Cl(0, 4) from the quaternion multiplication table, as in (2.2), in which case (4.4) gives a 12 × 12

real representation. Or, using the usual Pauli matrix representation of quaternions,

e0 = σ0 e1 = −i σ1 e2 = −i σ2 e3 = −i σ3

(4.4) results in a 6 × 6 complex representation. Using the quaternion mulitplication table, (2.1),

the Cl(0, 4) chiral representative matrices (2.2) are (Γc)
b
a =Mca

b̃ and −(Γ̄c)
a
b = −Mc̃b̃

a, so

v ∼ vcΓc =


v0 v1 v2 v3

−v1 v0 −v3 v2

−v2 v3 v0 −v1

−v3 −v2 v1 v0

 −ṽ ∼ −vcΓ̄c =


−v0 v1 v2 v3

−v1 −v0 −v3 v2

−v2 v3 −v0 −v1

−v3 −v2 v1 −v0


The negative and positive Cl(0, 4) chiral bivector matrices separate into independent degrees of

freedom, corresponding to so(4) = su(2)M + su(2)P ,

M ∼ BM = −1
2B

abΓ̄aΓb = BA
M ΓA P ∼ BP = −1

2B
abΓaΓ̄b = BA

P ΓA

in which BA
M/P = ∓B0A + 1

2ϵ
BCABBC , and the capital indices, {A,B,C}, range over {1, 2, 3}.
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The sp(3) Lie algebra elements can be written in an orthoganal, Killing-normalized basis as

A =MATMA + PATPA + V AT VA + vaγa + ψaQ−
a + χaQ+

a =

 MAeA −va 1√
2
ẽa ψa 1√

2
ea

va 1√
2
ea PAeA −χa 1√

2
ẽa

−ψa 1√
2
ẽa χa 1√

2
ea V AeA


with the sp(3) Lie brackets between these basis elements computed explicitly:[
TMA , TMB

]
= TMC (2M[AB]

C)
[
γa, Q

−
b

]
= Q+

c
1√
2
(−Mb̃ã

c)
[
TMA , γb

]
= γc (−MbA

c)[
TPA , T

P
B

]
= TPC (2M[AB]

C)
[
γa, Q

+
b

]
= Q−

c
1√
2
(Mãb̃

c)
[
TMA , Q−

b

]
= Q−

c (MAb
c)[

T VA , T
V
B

]
= T VC (2M[AB]

C)
[
Q−
a , Q

+
b

]
= γc

1√
2
(−Mb̃ã

c)
[
TPA , γb

]
= γc (MAb

c)

[γa, γb] = TMC
1
2(Mb̃a

C −Mãb
C) + TPC

1
2(Mbã

C −Mab̃
C)

[
TPA , Q

+
b

]
= Q+

c (−MbA
c)[

Q−
a , Q

−
b

]
= T VC

1
2(Mb̃a

C −Mãb
C) + TMC

1
2(Mbã

C −Mab̃
C)

[
T VA , Q

−
b

]
= Q−

c (−MbA
c)[

Q+
a , Q

+
b

]
= TPC

1
2(Mb̃a

C −Mãb
C) + T VC

1
2(Mbã

C −Mab̃
C)

[
T VA , Q

+
b

]
= Q+

c (MAb
c)

(4.5)

sp(3) M P V

M± ±2 0 0

P± 0 ±2 0

V ± 0 0 ±2

ψ±
e ±1 0 ±1

ψ±
o ±1 0 ∓1

χ±
e 0 ±1 ±1

χ±
o 0 ∓1 ±1

v±e ±1 ±1 0

v±o ∓1 ±1 0

V

MP

Table 2. Roots of sp(3) with respect to the orthogonal Cartan subalgebra basis generators, {TM
3 , TP

3 , T
V
3 },

and their automorphism under canonical triality.

Generalized quaternionic reflections give automorphisms of sp(3). For example, the generalized

reflection along a unit positive spinor, R0
p, gives

R0
p : (M,P, V, v, ψ, χ) 7→ (M ′, P ′, V ′, v′, ψ′, χ′) = (M,V, P, ψ̃, ṽ,−χ̃) (4.6)

which is an inner automorphism,

R0
p : A 7→ A′ = gRAg

−
R gR =

[
−1

1
1

]
∈ SP (3) = SU(3,H)

This corresponds to a reflection of roots in root space coordinates, (αM , αP , αV ), by the R matrix,

and a transformation of the Cartan subalgebra basis elements, {M,P, V }, by R,α′
M
α′
P

α′
V

 =

 1
1

1

αMαP
αV

 =

αMαV
αP

 M ′

P ′

V ′

 =

 1
1

1

MP
V

 =

MV
P

 R =

 1
1

1


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This reflection visually reflects the sp(3) root diagram horizontally.

The collection of all possible generalized quaternion reflections, including their compositions,

is the automorphism group, SP (3), of the sp(3) Lie algebra. The canonical triality automorphism

of sp(3) is:

t : γa 7→ Q−
a 7→ Q+

a 7→ γa TMA 7→ T VA 7→ TPA 7→ TMA

which, as a composition of reflections, t = R0
pR

0
vR

0
mR

0
p, is an inner automorphism,

t : A 7→ A′ = gtAg
−
t gt =

[
1

1
1

]
∈ SP (3) = SU(3,H)

This corresponds to a rotation of roots in root space coordinates, (αM , αP , αV ), by t−, and a

transformation of the Cartan subalgebra basis elements, {M,P, V }, by the triality matrix, t,α′
M
α′
P

α′
V

 =

 1
1

1

αMαP
αV

 =

 αP
αV
αM

 M ′

P ′

V ′

 =

 1
1
1

MP
V

 =

 V
M
P

 t =

 1
1
1


Although one can describe these sorts of Lie algebra automorphisms as reflections or rotations of

roots in root space, which correspond to reflections and rotations within the Cartan subalgebra

and maps between root vectors, these root maps do not specify the signs of the maps between

root vectors. To obtain a consistent set of signs for such maps, it is usually easiest to describe the

automorphisms directly, as transformations of the Lie algebra generators, and then transform to

the Cartan-Weyl basis to get a complete description of the maps between root vectors, including

signs.

To describe the split real form, sp(6,R), of the sp(3) Lie algebra, we can use split-quaternions

in (4.4) instead of quaternions, representing the basis elements as 2× 2 real matrices,

e′0 = σ0 e′1 = σ1 e′2 = −i σ2 e′3 = σ3

Automorphisms of this split real Lie algebra are similar to those of compact sp(3); however, an

interesting difference can occur. For example, a reflection, R3
v, around the u = e′3 unit split-

quaternion vector has su = −1, and the corresponding reflection element,

gR =

[
−ie′3

ie′3
−1

]
∈ SP (6,R) = SU(3,H′)

produces a real sp(6,R) inner automorphism,

M ′ = e′3Pe
′
3 P ′ = e′3Me′3 V ′ = V v′ = e′3ṽe

′
3 ψ′ = −ie′3x̃ χ′ = −iψ̃e′3

which doesn’t look like a real automorphism, but is. This will be further discussed in the next

section.
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4.3 f4

The triality Lie algebra of the octonions, f4, has a similar structure to that of sp(3):

A = 1
2B

abγab + vaγa + ψaQ−
a + χaQ+

a =

BM −ṽ ψ

v BP −χ̃
−ψ̃ χ BV

 ∈̃ su(3,O) ∼ f4 (4.7)

but cannot be directly identified with su(3,O) because of octonion non-associativity. To make the

identification of elements of f4 with matrices, (4.7), we need to define multiplication compositionally—

with octonions multiplying to their right before they are then multiplied by octonions from their

left. The f4 representative matrix is then made of octonions and octonion bi-products. The ma-

trix representation of Cl(0, 8) vectors, bivectors, and chiral spinors, from compositional octonionic

multiplication, is

B = 1
2B

abγab =

[
−1

2B
abΓ̄aΓb

−1
2B

abΓaΓ̄b

]
v = vcγc =

[
−vcΓ̄c

vcΓc

]
Ψ =

[
ψaQ−

a

χbQ+
b

]

using the octonion multiplication table, (2.1), and (Γc)
b
a = Mca

b̃. The su(3,O)-inspired Lie

brackets for the f4 basis generators are:

[γab, γcd] = 2 {nacγbd − nadγbc − nbcγad + nbdγac}
[γab, γc] = 2 {−nbcγa + nacγb} [γc, Q

−
a ] = Q+

b (Γc)
b
a [γa, γb] = 2 γab

[γab, Q
−
c ] = Q−

d (−ΓaΓb)
d
c

[
γc, Q

+
b

]
= Q−

a (−Γ̄c)
a
b

[
Q−
a , Q

−
b

]
= γcd(∓ΓcΓd)ab

[γab, Q
+
c ] = Q+

d (−ΓaΓb)
d
c

[
Q−
a , Q

+
b

]
= γc(∓Γc)ab

[
Q+
a , Q

+
b

]
= γcd(∓ΓcΓd)ab

(4.8)

in which nab = δab is used to raise or lower indices, and we have 28 bivector generators, γab,

identified with −γba for a < b. The choice of − signs above corresponds to the compact real

form, f4(−52), while the choice of + signs gives f4(−20). For the split real form, f4(4), we use the

split-octonionic representation of Cl(4, 4), with the split metric, n′ab = diag(++++−−−−). The

positive and negative spinor metrics come from multiplying the positive signature Clifford vectors,

γ0γ1γ2γ3, giving n
′−
ab = n′+ab = n′ab. Using this Clifford representation and these metrics, the f4(4)

brackets are the same as for f4(−52), above, except for some signs,[
Q−
a , Q

+
b

]
= γc(−Γc)ab

[
Q−
a , Q

−
b

]
= γcd(+ΓcΓd)ab

[
Q+
a , Q

+
b

]
= γcd(+ΓcΓd)ab

For a canonical triality automorphism to exist, he metrics of the vectors, negative spinors, and

positive spinors in f4(−52) or f4(4) must be equal and match the Killing form.

The canonical triality automorphism between vectors and spinors,

t : γa 7→ Q−
a 7→ Q+

a 7→ γa

is an automorphism of f4(−52), with corresponding automorphisms of its so(8) subalgebra,

t : γab 7→ γ′ab = γcd t
cd
ab =

1
2

[
γ′a, γ

′
b

]
= 1

2

[
Q−
a , Q

−
b

]
= γcd

(
∓1

2 Γ̄
cΓd

)
ab
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and

t2 : γab 7→ γ′′ab = γcd t
2 cd

ab =
1
2

[
γ′′a , γ

′′
b

]
= 1

2

[
Q+
a , Q

+
b

]
= γcd

(
∓1

2Γ
cΓ̄d

)
ab

in which a < b and the sum is over the 28 basis bivectors, c < d.

The description of f4 can be made more explicitly octonionic by remembering that Γ̄aΓb comes

from multiplying to the right by eb then multiplying to the right by ẽa, so each so(8) chiral bivector

element corresponds to a sum of compositional octonion multiplications, B− ∼ −1
2B

abẽaeb. The

canonical triality automorphism of so(8) thus corresponds to a transformation of compositional

multiplications of octonions,

t(ẽaeb) = tab
cd ẽced = eaẽb

We can then describe the diagonal entries of the ∼ su(3,O) matrix explicitly as:

BM = −1
2B

abẽaeb

BP = t(BM ) = −1
2B

abtab
cd ẽced = −1

2B
abeaẽb

BV = t(BP ) = t2(BM ) = −1
2B

abtab
cd ecẽd = −1

2B
abt2ab

cd ẽced

This allows us to write the Lie brackets between f4(−52) elements,

[(B1, v1, ψ1, χ1) , (B2, v2, ψ2, χ2)] = (B3, v3, ψ3, χ3)

using compositional octonionic multiplication and triality,

B3 = B1B2 −B2B1 − (ṽ1v2 − ṽ2v1)− t2(ψ̃1ψ2 − ψ̃2ψ1)− t(χ̃1χ2 − χ̃2χ1)

v3 = t2(B1)v2 − t2(B2)v1 + χ̃1ψ̃2 − χ̃2ψ̃1

ψ3 = B1ψ2 −B2ψ1 + ṽ1χ̃2 − ṽ2χ̃1

χ3 = t(B1)χ2 − t(B2)χ1 + ψ̃1ṽ2 − ψ̃2ṽ1

(4.9)

in which the bivectors here are pairs of octonions multiplying to the right in order, such as B1ψ2 =

−1
2B

ab
1 ψ

c
2 ẽa(ebec).

Generalized reflection symmetries of f4(−52), f4(−20), or f4(4) through a space-like or time-

like unit vector, u, are real Lie algebra automorphisms, and their combinations comprise the

corresponding F4 Lie group. As F4 group elements acting via their adjoint action on Lie algebra

elements represented as elements of su(3,O), (4.7), the three types of generalize reflections are

Ruv :

 √
suũ√

suu
−1

 Rum :

 √
suu

−1√
suũ

 Rup :

−1 √
suũ√

suu


Explicitly, in addition to the action of Ruv , R

u
m, and Rup , on f4 vector and chiral spinor basis

generators, (3.1), these each extend to corresponding actions on the so(8) or so(4, 4) subalgebra

basis generators,

Ruv : γab 7→ γ′ab =
1
2 [R

u
vγa, R

u
vγb] = uγabu = 1

2(δ
c
a − 2suu

cua)(δ
d
b − 2suu

dub)γcd

Rum : γab 7→ γ′ab =
1
2 [R

u
mγa, R

u
mγb] =

1
2suu

e(Γe)
c
au

f (Γf )
d
b(∓ΓgΓ̄h)cdγgh

Rup : γab 7→ γ′ab =
1
2

[
Rupγa, R

u
pγb

]
= 1

2suu
e(Γ̄e)

c
au

f (Γ̄f )
d
b(∓Γ̄gΓh)cdγgh
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producing automorphisms of the f4 Lie algebra via these maps of basis generators. For triality

automorphisms, tuw : (γc, Q
−
a , Q

+
b , γab) 7→ (γ′c, Q

−
a
′
, Q+

b
′
, γ′ab), using unit vectors u and w, from

(3.2), we have

γ′c =
√
susww

d(Γ̄d)
f
bu
a(Γa)

b
cQ

−
f

Q−
a
′
=

√
susww

c(Γc)
f
du

b(Γ̄b)
d
aQ

+
f

Q+
b
′
= (δab − 2sww

awb)(δ
c
a − 2suu

cua)γc

γ′ab =
1
2 [γ

′
a, γ

′
b] =

1
2susww

d(Γ̄d)
k
iu
c(Γc)

i
aw

f (Γ̄f )
m
ju
e(Γe)

j
b(∓Γ̄gΓh)kmγgh

As an F4 Lie group element acting via the adjoint, this typical generalized triality element is

tuw = Rwp R
u
vR

ũ
mR

ũ
p :

 1√
suswwũ √

susww̃u


with it again understood that this compositional multiplication operation is ordered to act right-

first—for example, wũψ = w(ũψ).

Note that real automorphisms of f4(−20) or the split real Lie algebra, f4(4), such as reflections,

Ruv , through a unit time-like vector, su = −1, or triality from a unit time-like u and space-like

w, have explicit
√
su = i’s in them. This appears to contradict the fact that these are real

automorphisms, but this is not the case. For example, if we consider complex f4 as f4(4) with

complex coefficients, then the usual anti-linear complex conjugation operator, σ = K, acting on

complex f4 produces f4(4) as the invariant real subspace—the f4(4) real form. Reflections through

a unit time-like vector, ϕ = Ruv , which have i’s in them, are complex and not real automorphisms

with respect to σ because RuvK ̸= KRuv . However, if we consider the reflection, R0
v, through the

unit octonion or space-like Clifford vector, γ0, which is a real involutive automorphism of f4(4),

then an alternative anti-linear complex conjugation operator on complex f4 exists, σ′ = R0
vK,

which gives the same real form, f4(4), and determines that ϕ = Ruv with a time-like u and su = −1

is a real automorphism of f4(4), because

ϕσ′ = RuvR
0
vK = R0

vKR
u
v = σ′ ϕ

The i’s in Ruv are precisely matched with the swapping of the conjugate Q+ and Q− generators by

R0
v in just such a way that this works. This same argument goes through for Rum, R

u
p , and triality

automorphisms—which can all have explicit i’s in them while being real automorphisms.

The canonical triality automorphism matrix, t, for so(8) or so(4, 4) is a 28×28 rotation matrix,

satisfying ttT = 1, of real coefficients,

tcdab =
(
∓1

2 Γ̄
cΓd

)
ab

= ∓1
2M

c̃
eaM

d
b
e

derived from the octonionic multiplication table, with the sign “−” for compact f4(−52) and oth-

erwise “+”, and the 28 basis bivectors, γα = γab, indexed by 1 ≤ α = 1
2(13a − a2) + b ≤ 28,

with 0 ≤ a < b ≤ 7. (The larger, 64 × 64 triality automorphism matrix elements are also defined
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for b ≥ a, and can be deduced from anti-symmetry.) The 28 basis bivectors can be separated

into 7 disjoint sets of 4 intra-commuting basis bivectors, each set spanning a Cartan subalgebra

intra-rotated by triality. The triality automorphism matrix, tα
β, can thus be re-ordered to be

block diagonal, consisting of seven 4× 4 Hadamard matrices. Typical blocks looks like:

t1 =


+1/2 −1/2 +1/2 +1/2

+1/2 −1/2 −1/2 −1/2

+1/2 +1/2 +1/2 −1/2

+1/2 +1/2 −1/2 +1/2

 t2 =


−1/2 +1/2 +1/2 +1/2

−1/2 +1/2 −1/2 −1/2

−1/2 −1/2 +1/2 −1/2

−1/2 −1/2 −1/2 +1/2


but signs may vary, based on the octonionic multiplication table or if we use a non-canonical triality

automorphism. For so(4, 4) triality automorphisms, the four bivectors, γab, spanning each Cartan

subalgebra rotated by triality can be constructed from Clifford basis vectors with space-space, time-

time, or space-time signature. The allowed signature sets are {ss, ss, tt, tt} or {st, st, st, st}. If we
choose one of these triality-adapted Cartan subalgebras for our f4 Cartan-Weyl decomposition,

then t is the triality matrix that rotates these Cartan basis generators, and t− = t2 = tT rotates

the root coordinates.

There are two especially interesting f4 Cartan subalgebra transformations we can do that

emphasize the sp(3) and su(3) subalgebras of f4, matching their previously described triality

automorphisms:

c1 =


1/

√
2 −1/

√
2

1/
√
2 1/

√
2

1/
√
2 1/

√
2

−1/
√
2 1/

√
2

 c2 =


1 0 0 0

0 −1/
√
3 −1/

√
3 −1/

√
3

0 −1/
√
2 1/

√
2 0

0 −1/
√
6 −1/

√
6

√
2/

√
3



t′1 = c1 t1 c
−
1 =

 1

1
1

1

 t′2 = c2 t2 c
−
2 =


−1/2 −

√
3/2

√
3/2 −1/2

1
1


From t′1 we see that triality cycles three su(2)′s in f4, while leaving a complimentary su(2) in-

variant, matching sp(3) triality; while from t′2 we see that triality rotates in a single plane in

4-dimensional root space, matching su(3) triality, while leaving a complimentary su(3) invariant.

The corresponding decompositions of f4(−52) are:

f4(−52) = so(8) + 8v + 8s− + 8s+

= su(2)I + su(2)II + su(2)III + su(2)W + (2, 2, 2, 2)

+ ((2, 2, 1, 1) + (1, 1, 2, 2))v + ((2, 1, 2, 1) + (1, 2, 1, 2))s−

+((1, 2, 2, 1) + (2, 1, 1, 2))s+

(4.10)

and
f4(−52) = so(8) + 8v + 8s− + 8s+

= u(1)p + u(1)B + su(3)g + 3I + 3̄I + 3II + 3̄II + 3III + 3̄III

+(1 + 1̄ + 3 + 3̄)v + (1 + 1̄ + 3 + 3̄)s− + (1 + 1̄ + 3 + 3̄)s+

(4.11)

The f4 roots matching these decompositions, (4.10) and (4.11), are:
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f4 ωT ωs U V

ω
∧/∨
I ∓ ± 0 0

ω
∧/∨
II ∓ ∓ 0 0

ω
∧/∨
III 0 0 ∓ ∓
W± 0 0 ∓ ±

e
∧/∨
T ϕ

/∗
I ± 0 ∓ 0

e
∧/∨
T ϕ

/∗
II 0 ± 0 ±

e
∧/∨
T ϕ

/∗
III 0 ∓ 0 ±

e
∧/∨
s ϕ

∗/
I 0 ± ± 0

e
∧/∨
s ϕ

∗/
II 0 ∓ ± 0

e
∧/∨
s ϕ

∗/
III ± 0 0 ∓

e
∧/∨
T ϕ∗/ ± 0 ± 0

e
∧/∨
T ϕ± ± 0 0 ±
ν
∧/∨
eL ∓1/2 ±1/2 −1/2 +1/2

ν
∧/∨
eR ±1/2 ±1/2 +1/2 +1/2

e
∧/∨
L ∓1/2 ±1/2 +1/2 −1/2

e
∧/∨
R ±1/2 ±1/2 −1/2 −1/2

ν
∧/∨
µL ∓1/2 ∓1/2 −1/2 +1/2

ν
∧/∨
µR +1/2 −1/2 ±1/2 ±1/2

µ
∧/∨
L ∓1/2 ∓1/2 +1/2 −1/2

µ
∧/∨
R −1/2 +1/2 ±1/2 ±1/2

ν∧τL τ∨L 0 0 ∓ 0

ν∨τL τ∧L 0 0 0 ±
ν∧τR τ∨R ± 0 0 0

ν∨τR τ∧R 0 ± 0 0

ωT

ωs

U V

Table 3. The 48 roots of f4, labeled as fermions of three generations, showing both the triality-invariant

su(2)W and the triality mixing of three su(2)’s, as per (4.10).

f4 p x y z

g 0 (+1 −1 0 )

Xrgb
I X̄rgb

I 0 (±1 ±1 0 )

Xrgb
II X̄rgb

II ±1 (∓1 0 0 )

Xrgb
III X̄

rgb
III ∓1 (∓1 0 0 )

lI −1/2 −1/2 −1/2 −1/2

l̄I +1/2 +1/2 +1/2 +1/2

q
(rgb)
I −1/2 (−1/2 +1/2 +1/2 )

q̄
(rgb)
I +1/2 (+1/2 −1/2 −1/2 )

lII −1/2 +1/2 +1/2 +1/2

l̄II +1/2 −1/2 −1/2 −1/2

q
(rgb)
II +1/2 (−1/2 +1/2 +1/2 )

q̄
(rgb)
II −1/2 (+1/2 −1/2 −1/2 )

lIII +1 0 0 0

l̄III −1 0 0 0

q
(rgb)
III 0 (−1 0 0 )

q̄
(rgb)
III 0 (+1 0 0 )

p

x y

z

Table 4. The 48 roots of f4, showing the triality-invariant su(3)g plane, as per (4.11). Coordinates in

parenthesis are permuted over specified columns.
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5 Exceptional Magic

To obtain larger Lie algebras we can consider the tensor product of division algebras or their split

versions, such as the 32-dimensional vector space H⊗O. From any two division algebras, D′ and

D, of dimension n′ and n and signature (p′, q′) and (p, q), we can construct chiral representations

of Clifford algebras, Cl(p′+p, q′+q) or Cl(q′+p, p′+q), in a similar manner to the construction of

Clifford division algebra representations. In a Clifford compound division algebra representation,

(n′ + n)-dimensional Clifford basis vectors are expressed as:

v = vαγα =

[
0 v−
v+ 0

]
v− =

[
1⊗x̃ ±ỹ′⊗1

y′⊗1 −1⊗x

]
v+ =

[
1⊗x ±ỹ′⊗1

y′⊗1 −1⊗x̃

]

which may be understood as matrices of inter-commuting division algebra elements, x ∈ D and

y′ ∈ D′, or as R(4(n′×n)) matrices via their multiplication coefficients. The result of multiplying

two vectors is

u v =

[
u−v+ 0

0 u+v−

]
u−v+ =

[
w̃ ±z̃′

z′ −w

][
x ±ỹ′

y′ −x̃

]
=

[
1⊗w̃x± z̃′y′⊗1 ±ỹ′⊗w̃ ∓ z̃′⊗x̃
z′⊗x− y′⊗w ±z′ỹ′⊗1 + 1⊗wx̃

]

from which we see that the result of squaring a Clifford vector is

v v =

[
1⊗ x̃x± ỹ′y′ ⊗ 1 0

0 ±y′ỹ′ ⊗ 1 + 1⊗ xx̃

]

and so the represented Clifford algebra has signature (p′ + p, q′ + q) or (q′ + p, p′ + q), depending

on the choice of ±. The chiral bivector part of uv is a representative element of a spin Lie algebra,

so(p′ + p, q′ + q) or so(q′ + p, p′ + q), which is

u−v+ ∈

[
(B′

M⊗1)⊕ (1⊗BM ) D′ ⊗ D
D′ ⊗ D (B′

P⊗1)⊕ (1⊗BP )

]

with the direct sum of bi-products on the diagonal, and the tensor product of the division algebras

on the off diagonal. Expanding upon the previous description of Lie algebras using su(3,D), we
have a family of Lie algebras described heuristically as:B′

M ⊕ BM D′
ṽ ⊗ Dṽ D′

ψ ⊗ Dψ
D′
v ⊗ Dv B′

P ⊕ BP D′
χ̃ ⊗ Dχ̃

D′
ψ̃ ⊗ Dψ̃ D′

χ ⊕ Dχ B′
V ⊗ BV

 ∼ su(3,D′ ⊗ D)

This family is the exceptional magic square of Lie algebras,[23] shown in Table 5. Each member

of the magic square has a canonical triality automorphism, t, constructed from the triality auto-

morphisms of its constituent parts. Every member also has three so(p′ + p, q′ + q) ∼ su(2,D′ ⊗D)
subalgebras, related by the canonical triality automorphism.
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gD′⊗D R C H O C′ H′ O′

R su(2) su(3) sp(3) f4 sl(3) sp(6,R) f4(4)

C su(3) 2 su(3) su(6) e6 sl(3,C) su(3, 3) e6(2)

H sp(3) su(6) so(12) e7 sl(3,H) sp(6,H) e7(−5)

O f4 e6 e7 e8 e6(−26) e7(−25) e8(−24)

C′ sl(3) sl(3,C) sl(3,H) e6(−26) 2sl(3) sl(6,R) e6(6)

H′ sp(6,R) su(3, 3) sp(6,H) e7(−25) sl(6,R) so(6, 6) e7(7)

O′ f4(4) e6(2) e7(−5) e8(−24) e6(6) e7(7) e8(8)

Table 5. The exceptional magic square Lie algebras, constructed from pairs of division algebras or their

split versions.

The easiest way to construct the Lie brackets of any member, gD′⊗D, of the exceptional magic

square is by suitably joining the Lie brackets of its constituent pairing of su(2), su(3), sp(3), f4,

sl(3), sp(6,R), or f4(4) subalgebras, corresponding to its compound triality decomposition,

gD′⊗D = Tri(D′) + Tri(D) + D′
v ⊗ Dv + D′

m ⊗ Dm + D′
p ⊗ Dp

The root system of any magic square Lie algebra may also be easily constructed by suitably joining

the roots of the constituent pairing. The triality matrix for its root system is a block diagonal

matrix, t, constructed from the triality matrices of its constituents, such as

t =



+1/2 −1/2 +1/2 +1/2 0 0 0 0

+1/2 −1/2 −1/2 −1/2 0 0 0 0

+1/2 +1/2 +1/2 −1/2 0 0 0 0

+1/2 +1/2 −1/2 +1/2 0 0 0 0

0 0 0 0 −1/2 +1/2 +1/2 +1/2

0 0 0 0 −1/2 +1/2 −1/2 −1/2

0 0 0 0 −1/2 −1/2 +1/2 −1/2

0 0 0 0 −1/2 −1/2 −1/2 +1/2


(5.1)

for a real form of e8. Although the root components of sl(3), sp(6,R), and f4(4) may be a mixture

of imaginary and real, the canonical triality automorphism only rotates between all compact or

between all noncompact Cartan generators, and the triality matrices for these Lie algebras can

only inter-mix all real or all imaginary root components.

The main advantage of having explicit expressions for the structure of a Lie algebra and its

triality automorphisms, over the description via roots and a triality matrix, is that the triality

matrix alone doesn’t determine the signs of the triality maps between root vectors or generators.

We could employ tricks to find these signs, but it’s usually easier to find them from a direct division

algebra description and the corresponding explicit triality automorphism.
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6 The Explicit Structure of e6 and its Canonical Triality Automorphism

The e6 Lie algebra has a compound triality decomposition from combining su(3) and f4,

e6 = u(1) + u(1) + so(8) + (1 + 1̄)v ⊗ 8v + (1 + 1̄)m ⊗ 8s− + (1 + 1̄)p ⊗ 8s+ ∼ su(3,C⊗H)

and a triality automorphism that maps between the triplet of complex octonions, C ⊗ O. The

corresponding set of e6 basis elements is

{T ′
1, T

′
2, γab, γa′a, Q

−
a′a, Q

+
a′a }

with primed index, a′, ranging over complex indices, {0, 1}, un-primed index, a, ranging over

octonion indices, {0, ..., 7}, and the bivector index, ab, ranging over the 28 so(8) basis generator

permutations with a < b. The non-vanishing Lie algebra brackets between these basis elements

come from combining the Lie brackets of su(3) and f4(−52), (4.2) and (4.8):

[γab, γcd] = 2 {nacγbd − nadγbc − nbcγad + nbdγac}

[T ′
1, γ0′a] = −2 γ1′a

[
T ′
1, Q

−
0′a

]
= +Q−

1′a

[
T ′
1, Q

+
0′a

]
= +Q+

1′a

[T ′
1, γ1′a] = +2 γ0′a

[
T ′
1, Q

−
1′a

]
= −Q−

0′a

[
T ′
1, Q

+
1′a

]
= −Q+

0′a[
T ′
2, Q

−
0′a

]
= +

√
3Q−

1′a

[
T ′
2, Q

+
0′a

]
= −

√
3Q+

1′a[
T ′
2, Q

−
1′a

]
= −

√
3Q−

0′a

[
T ′
2, Q

+
1′a

]
= +

√
3Q+

0′a

[γab, γa′c] = 2 {−nbcγa′a + nacγa′b}
[
γab, Q

−
a′c

]
= Q−

a′d(−ΓaΓb)
d
c

[
γab, Q

+
a′c

]
= Q+

a′d(−ΓaΓb)
d
c

[γ0′a, γ1′b] = 2T ′
1nab

[
Q−

0′a, Q
−
1′b

]
= −(T1 +

√
3T2)n

−
ab

[
Q+

0′a, Q
+
1′b

]
= −(T1 −

√
3T2)n

+
ab

[γa′a, γb′b] = −2n′a′b′γab
[
Q−

a′a, Q
−
b′b

]
= n′−a′b′γcd(Γ

cΓd)ab
[
Q+

a′a, Q
+
b′b

]
= n′+a′b′γcd(Γ

cΓd)ab[
γa′a, Q

−
b′b

]
= −M ′

ã′b̃
′
c′(Γa)

c
bQ

+
c′c

[
γa′a, Q

+
b′b

]
= M ′

ã′b̃
′
c′(Γ̄a)

c
bQ

−
c′c

[
Q−

a′a, Q
+
b′b

]
= M ′

ã′b̃
′
c′(Γc)abγc′c

in which M ′
ã′b̃

′
c′ and (Γc)

b
a = Mca

b̃ are the complex and octonion multiplication tables with

conjugations, and {n′, n′±, n, n±} are the complex and octonion metrics, also used to raise or lower

indices. Different real forms of e6 come from combining different real forms of su(3) and f4, using

correspondingly different multiplication tables and metrics. The canonical triality automorphism

of e6(−78) is

t : T ′
1 7→ T ′′

1 = −1
2T

′
1 −

√
3
2 T

′
2 T ′

2 7→ T ′′
2 =

√
3
2 T

′
1 − 1

2T
′
2 γab 7→ γ′ab = γcdt

cd
ab = γcd

(
−1

2 Γ̄
cΓd

)
ab

γa′a 7→ γ′a′a = Q−
a′a Q−

a′a 7→ Q′−
a′a = Q+

a′a Q+
a′a 7→ Q′+

a′a = γa′a

from combining the triality automorphisms of the constituent su(3) and f4(−52). For non-compact

real forms of e6, real triality automorphisms may contain explicit i’s in them. It is illustrative

to show the e6 roots and canonical triality automorphism, with a triality matrix from combining

triality matrices of su(3) and f4:
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HU V

x

y z

e6 H U V x y z

g 0 0 0 (+1 −1 0 )

X
(rgb)
2/3 0 0 0 (±1 ±1 0 )

X
(rgb)
2/3 0 0 ±1 (∓1 0 0 )

X
(rgb)
4/3 0 0 ±1 (±1 0 0 )

W± 0 ∓1 ±1 0 0 0

W ′± 0 ±1 ∓1 0 0 0

X
(rgb)
1/3 0 ±1 0 (±1 0 0 )

X
(rgb)
1/3 0 ±1 0 (∓1 0 0 )

νL +
√
3/2 −1/2 +1/2 −1/2 −1/2 −1/2

νR −
√
3/2 +1/2 +1/2 −1/2 −1/2 −1/2

ν̄L +
√
3/2 −1/2 −1/2 +1/2 +1/2 +1/2

ν̄R −
√
3/2 +1/2 −1/2 +1/2 +1/2 +1/2

u
(rgb)
L +

√
3/2 −1/2 +1/2 (−1/2 +1/2 +1/2 )

u
(rgb)
R −

√
3/2 +1/2 +1/2 (−1/2 +1/2 +1/2 )

ū
(rgb)
L +

√
3/2 −1/2 −1/2 (+1/2 −1/2 −1/2 )

ū
(rgb)
R −

√
3/2 +1/2 −1/2 (+1/2 −1/2 −1/2 )

eL +
√
3/2 +1/2 −1/2 −1/2 −1/2 −1/2

eR −
√
3/2 −1/2 −1/2 −1/2 −1/2 −1/2

ēL +
√
3/2 +1/2 +1/2 +1/2 +1/2 +1/2

ēR −
√
3/2 −1/2 +1/2 +1/2 +1/2 +1/2

d
(rgb)
L +

√
3/2 +1/2 −1/2 (−1/2 +1/2 +1/2 )

d
(rgb)
R −

√
3/2 −1/2 −1/2 (−1/2 +1/2 +1/2 )

d̄
(rgb)
L +

√
3/2 +1/2 +1/2 (+1/2 −1/2 −1/2 )

d̄
(rgb)
R −

√
3/2 −1/2 +1/2 (+1/2 −1/2 −1/2 )

Table 6. The 72 roots of e6, labeled as elementary particles.
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7 The Explicit Structure of e7 and its Canonical Triality Automorphism

The e7 Lie algebra has a compound triality decomposition from combining sp(3) and f4,

e7 = su(2)M + su(2)P + su(2)V + so(8) + (2, 2, 1)v ⊗ 8v + (2, 1, 2)m ⊗ 8s− + (1, 2, 2)p ⊗ 8s+

∼ su(3,H⊗O)

and a triality automorphism that maps between the triplet of quaterni-octonions, H ⊗ O. The

corresponding set of e7 basis elements is

{TMA′ , TPA′ , T VA′ , γab, γa′a, Q
−
a′a, Q

+
a′a }

with primed index, a′, ranging over quaternion indices, {0, ..., 3}, primed capitals, A′, ranging

over imaginary quaternion indices, {1, ..., 3}, un-primed index, a, ranging over octonion indices,

{0, ..., 7}, and the bivector index, ab, ranging over the 28 so(8) basis generator permutations with

a < b. The non-vanishing Lie algebra brackets between these basis elements come from combining

the Lie brackets of sp(3) and f4(−52), (4.5) and (4.8):

[γab, γcd] = 2 {nacγbd − nadγbc − nbcγad + nbdγac}[
TM
A′ , TM

B′

]
= TM

C′ (2M ′
[A′B′]

C′
)

[
TP
A′ , TP

B′

]
= TP

C′(2M ′
[A′B′]

C′
)

[
TV
A′ , TV

B′

]
= TV

C′(2M ′
[A′B′]

C′
)[

TM
A′ , γb′a

]
= γc′a (−M ′

b′A′
c′)

[
TP
A′ , γb′a

]
= γc′a (M

′
A′b′

c′)
[
TV
A′ , Q

−
b′a

]
= Q−

c′a (−M ′
b′A′

c′)[
TM
A′ , Q

−
b′a

]
= Q−

c′a (M
′
A′b′

c′)
[
TP
A′ , Q

+
b′a

]
= Q+

c′a (−M ′
b′A′

c′)
[
TV
A′ , Q

+
b′a

]
= Q+

c′a (M
′
A′b′

c′)

[γab, γa′c] = 2 {−nbcγa′a + nacγa′b}
[
γab, Q

−
a′c

]
= Q−

a′d(−ΓaΓb)
d
c

[
γab, Q

+
a′c

]
= Q+

a′d(−ΓaΓb)
d
c

[γa′a, γb′b] = −
(
TM
C′

1
2 (M

′
b̃
′
a′

C′ −M ′
ã′b′

C′
) + TP

C′
1
2 (M

′
b′ã′

C′ −M ′
a′b̃

′
C′
)
)
nab − 2n′a′b′γab[

Q−
a′a, Q

−
b′b

]
= −

(
TV
C′

1
2 (M

′
b̃
′
a′

C′ −M ′
ã′b′

C′
) + TM

C′
1
2 (M

′
b′ã′

C′ −M ′
a′b̃

′
C′
)
)
n−ab + n′−a′b′γcd(Γ

cΓd)ab[
Q+

a′a, Q
+
b′b

]
= −

(
TP
C′

1
2 (M

′
b̃
′
a′

C′ −M ′
ã′b′

C′
) + TV

C′
1
2 (M

′
b′ã′

C′ −M ′
a′b̃

′
C′
)
)
n+ab + n′+a′b′γcd(Γ

cΓd)ab[
γa′a, Q

−
b′b

]
= − 1√

2
M ′

ã′b̃
′
c′(Γa)

c
bQ

+
c′c

[
γa′a, Q

+
b′b

]
= 1√

2
M ′

ã′b̃
′
c′(Γ̄a)

c
bQ

−
c′c

[
Q−

a′a, Q
+
b′b

]
= 1√

2
M ′

ã′b̃
′
c′(Γc)abγc′c

in which M ′
ã′b̃

′
c′ and (Γc)

b
a = Mca

b̃ are the quaternion and octonion multiplication tables with

conjugations, and {n′, n′±, n, n±} are the quaternion and octonion metrics, also used to raise

or lower indices. Different real forms of e7 come from combining different real forms of sp(3)

and f4, using correspondingly different multiplication tables and metrics. The canonical triality

automorphism of e7(−133) is

t : γab 7→ γ′ab = γcdt
cd
ab = γcd

(
−1

2 Γ̄
cΓd

)
ab

TMA′ 7→ T ′M
A′ = T VA′ T VA′ 7→ T ′V

A′ = TPA′ TPA′ 7→ T ′P
A′ = TMA′

γa′a 7→ γ′a′a = Q−
a′a Q−

a′a 7→ Q′−
a′a = Q+

a′a Q+
a′a 7→ Q′+

a′a = γa′a

from combining the triality automorphisms of the constituent sp(3) and f4(−52). For non-compact

real forms of e7, real triality automorphisms may contain explicit i’s in them. It is illustrative to

show the e7 roots and canonical triality automorphism, with a triality matrix from combining the

triality matrices of sp(3) and f4:

– 22 –



ω

W

W'

h

x
y

z

e7 ω W W ′ h x y z

ω∧/∨ ±
√
2 0 0 0 0 0 0

W± 0 ±
√
2 0 0 0 0 0

W ′
± 0 0 ±

√
2 0 0 0 0

g 0 0 0 0 (+1 −1 0 )

Xrgb
I X̄rgb

I 0 0 0 0 (±1 ±1 0 )

Xrgb
II X̄rgb

II 0 0 0 ±1 (∓1 0 0 )

Xrgb
III X̄

rgb
III 0 0 0 ∓1 (∓1 0 0 )

ν
∧/∨
eL ±1/

√
2 +1/

√
2 0 +1/2 −1/2 −1/2 −1/2

ν
∧/∨
eR ±1/

√
2 0 +1/

√
2 −1/2 −1/2 −1/2 −1/2

e
∧/∨
L ±1/

√
2 −1/

√
2 0 +1/2 −1/2 −1/2 −1/2

e
∧/∨
R ±1/

√
2 0 −1/

√
2 −1/2 −1/2 −1/2 −1/2

u
(rgb)∧/∨
L ±1/

√
2 +1/

√
2 0 +1/2 (−1/2 +1/2 +1/2 )

ū
(rgb)∧/∨
L ±1/

√
2 0 −1/

√
2 +1/2 (+1/2 −1/2 −1/2 )

d
(rgb)∧/∨
L ±1/

√
2 −1/

√
2 0 +1/2 (−1/2 +1/2 +1/2 )

d̄
(rgb)∧/∨
L ±1/

√
2 0 +1/

√
2 +1/2 (+1/2 −1/2 −1/2 )

ν
∧/∨
µL 0 ±1/

√
2 +1/

√
2 −1 0 0 0

ν
∧/∨
µR +1/

√
2 ±1/

√
2 0 −1/2 +1/2 +1/2 +1/2

µ
∧/∨
L 0 ±1/

√
2 −1/

√
2 −1 0 0 0

µ
∧/∨
R −1/

√
2 ±1/

√
2 0 −1/2 +1/2 +1/2 +1/2

c
(rgb)∧/∨
L 0 ±1/

√
2 +1/

√
2 0 (−1 0 0 )

c̄
(rgb)∧/∨
L −1/

√
2 ±1/

√
2 0 −1/2 (+1/2 −1/2 −1/2 )

s
(rgb)∧/∨
L 0 ±1/

√
2 −1/

√
2 0 (−1 0 0 )

s̄
(rgb)∧/∨
L +1/

√
2 ±1/

√
2 0 −1/2 (+1/2 −1/2 −1/2 )

ν
∧/∨
τL +1/

√
2 0 ±1/

√
2 +1/2 +1/2 +1/2 +1/2

ν
∧/∨
τR 0 +1/

√
2 ±1/

√
2 +1 0 0 0

τ
∧/∨
L −1/

√
2 0 ±1/

√
2 +1/2 +1/2 +1/2 +1/2

τ
∧/∨
R 0 −1/

√
2 ±1/

√
2 +1 0 0 0

t
(rgb)∧/∨
L +1/

√
2 0 ±1/

√
2 −1/2 (−1/2 +1/2 +1/2 )

t̄
(rgb)∧/∨
L 0 −1/

√
2 ±1/

√
2 0 (+1 0 0 )

b
(rgb)∧/∨
L −1/

√
2 0 ±1/

√
2 −1/2 (−1/2 +1/2 +1/2 )

b̄
(rgb)∧/∨
L 0 +1/

√
2 ±1/

√
2 0 (+1 0 0 )

Table 7. The 126 roots of e7, labeled as elementary particles, with generations related by triality.
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8 The Explicit Structure of e8 and its Canonical Triality Automorphism

The e8 Lie algebra has a compound triality decomposition from combining two f4’s,

e8 = so(8)′ + so(8) + 8′v ⊗ 8v + 8′s− ⊗ 8s− + 8′s+ ⊗ 8s+

∼ su(3,O⊗O)

and a triality automorphism that maps between the triplet of octo-octonions, O ⊗ O. The corre-

sponding set of e8 basis elements is

{ γ′ab, γab, γa′a, Q−
a′a, Q

+
a′a }

with primed and unprimed indices, a′ and a, ranging over octonion indices, {0, ..., 7}, and the

bivector indices, a′b′ and ab, ranging over the 28 so(8) basis generator permutations with a < b.

The non-vanishing Lie algebra brackets between these basis elements come from combining the Lie

brackets of two f4(−52)’s, (4.8):

[γa′b′ , γc′d′ ] = 2 {n′a′c′γb′d′ − n′a′d′γb′c′ − n′b′c′γa′d′ + n′b′d′γa′c′}

[γab, γcd] = 2 {nacγbd − nadγbc − nbcγad + nbdγac}

[γa′b′ , γc′a] = 2 {−n′b′c′γa′a + n′a′c′γb′a}
[
γa′b′ , Q

−
c′a

]
= Q−

d′a(−Γa′Γb′)
d′

c′
[
γa′b′ , Q

+
c′a

]
= Q+

d′a(−Γa′Γb′)
d′

c′

[γab, γa′c] = 2 {−nbcγa′a + nacγa′b}
[
γab, Q

−
a′c

]
= Q−

a′d(−ΓaΓb)
d
c

[
γab, Q

+
a′c

]
= Q+

a′d(−ΓaΓb)
d
c

[γa′a, γb′b] = −2nabγa′b′ − 2n′a′b′γab[
Q−

a′a, Q
−
b′b

]
= n−abγc′d′(Γc′Γd′

)a′b′ + n′−a′b′γcd(Γ
cΓd)ab[

Q+
a′a, Q

+
b′b

]
= n+abγc′d′(Γc′Γd′

)a′b′ + n′+a′b′γcd(Γ
cΓd)ab[

γa′a, Q
−
b′b

]
= (Γa′)c

′
b′(Γa)

c
bQ

+
c′c

[
γa′a, Q

+
b′b

]
= (Γ̄a′)c

′
b′(Γ̄a)

c
bQ

−
c′c

[
Q−

a′a, Q
+
b′b

]
= (Γc′)a′b′(Γ

c)abγc′c

in which (Γc′)
b′
a′ =M ′

c′a′
b̃
′
and (Γc)

b
a =Mca

b̃ are the octonion multiplication tables with conjuga-

tions, and {n′, n′±, n, n±} are the octonion metrics, also used to raise or lower indices. Different real

forms of e8 come from using one or two copies of f4(4), incorporating split-octonion multiplication

tables and metrics, or using two f4(−52)’s and flipping the signs to get split real e8(8).

The canonical triality automorphism of compact real e8(−248) is

t : γab 7→ γ′ab = γcdt
cd
ab = γcd

(
−1

2 Γ̄
cΓd

)
ab

γa′b′ 7→ γ′a′b′ = γc′d′t
c′d′

a′b′ = γc′d′
(
−1

2 Γ̄
c′Γd

′
)
a′b′

γa′a 7→ γ′a′a = Q−
a′a Q−

a′a 7→ Q′−
a′a = Q+

a′a Q+
a′a 7→ Q′+

a′a = γa′a

from combining the triality automorphisms of the constituent f4(−52)’s. For quaternionic e8(−24) or

split real e8(8), real triality automorphisms—obtained by mixing triality automorphisms of f4’s—

may contain explicit i’s. It is illustrative to show the e8 roots and canonical triality automorphism,

with a triality matrix (5.1) from combining the triality matrices of two f4’s:
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e8 ωT ωs U V p x y z

ω
∧/∨
I ∓1 ±1 0 0 0 0 0 0

ω
∧/∨
II ∓1 ∓1 0 0 0 0 0 0

ω
∧/∨
III 0 0 ∓1 ∓1 0 0 0 0
W± 0 0 ∓1 ±1 0 0 0 0

e
∧/∨
T ϕ

/∗
I ±1 0 ∓1 0 0 0 0 0

e
∧/∨
T ϕ

/∗
II 0 ±1 0 ±1 0 0 0 0

e
∧/∨
T ϕ

/∗
III 0 ∓1 0 ±1 0 0 0 0

e
∧/∨
s ϕ

∗/
I 0 ±1 ±1 0 0 0 0 0

e
∧/∨
s ϕ

∗/
II 0 ∓1 ±1 0 0 0 0 0

e
∧/∨
s ϕ

∗/
III ±1 0 0 ∓1 0 0 0 0

e
∧/∨
T ϕ∗/ ±1 0 ±1 0 0 0 0 0

e
∧/∨
T ϕ± ±1 0 0 ±1 0 0 0 0
g 0 0 0 0 0 (+1 −1 0 )

Xrgb
I X̄rgb

I 0 0 0 0 0 (±1 ±1 0 )

Xrgb
II X̄rgb

II 0 0 0 0 ±1 (∓1 0 0 )

Xrgb
III X̄

rgb
III 0 0 0 0 ∓1 (∓1 0 0 )

ν
∧/∨
eL ∓1/2 ±1/2 −1/2 +1/2 −1/2 −1/2 −1/2 −1/2

ν
∧/∨
eR ±1/2 ±1/2 +1/2 +1/2 −1/2 −1/2 −1/2 −1/2

ν̄
∧/∨
eL ±1/2 ±1/2 −1/2 −1/2 +1/2 +1/2 +1/2 +1/2

ν̄
∧/∨
eR ∓1/2 ±1/2 +1/2 −1/2 +1/2 +1/2 +1/2 +1/2

e
∧/∨
L ∓1/2 ±1/2 +1/2 −1/2 −1/2 −1/2 −1/2 −1/2

e
∧/∨
R ±1/2 ±1/2 −1/2 −1/2 −1/2 −1/2 −1/2 −1/2

ē
∧/∨
L ±1/2 ±1/2 +1/2 +1/2 +1/2 +1/2 +1/2 +1/2

ē
∧/∨
R ∓1/2 ±1/2 −1/2 +1/2 +1/2 +1/2 +1/2 +1/2

u
(rgb)∧/∨
L ∓1/2 ±1/2 −1/2 +1/2 −1/2 (−1/2 +1/2 +1/2 )

u
(rgb)∧/∨
R ±1/2 ±1/2 +1/2 +1/2 −1/2 (−1/2 +1/2 +1/2 )

ū
(rgb)∧/∨
L ±1/2 ±1/2 −1/2 −1/2 +1/2 (+1/2 −1/2 −1/2 )

ū
(rgb)∧/∨
R ∓1/2 ±1/2 +1/2 −1/2 +1/2 (+1/2 −1/2 −1/2 )

d
(rgb)∧/∨
L ∓1/2 ±1/2 +1/2 −1/2 −1/2 (−1/2 +1/2 +1/2 )

d
(rgb)∧/∨
R ±1/2 ±1/2 −1/2 −1/2 −1/2 (−1/2 +1/2 +1/2 )

d̄
(rgb)∧/∨
L ±1/2 ±1/2 +1/2 +1/2 +1/2 (+1/2 −1/2 −1/2 )

d̄
(rgb)∧/∨
R ∓1/2 ±1/2 −1/2 +1/2 +1/2 (+1/2 −1/2 −1/2 )

ν
∧/∨
µL ∓1/2 ∓1/2 −1/2 +1/2 −1/2 +1/2 +1/2 +1/2

ν
∧/∨
µR +1/2 −1/2 ±1/2 ±1/2 −1/2 +1/2 +1/2 +1/2

ν̄
∧/∨
µL −1/2 +1/2 ±1/2 ±1/2 +1/2 −1/2 −1/2 −1/2

ν̄
∧/∨
µR ∓1/2 ∓1/2 +1/2 −1/2 +1/2 −1/2 −1/2 −1/2

µ
∧/∨
L ∓1/2 ∓1/2 +1/2 −1/2 −1/2 +1/2 +1/2 +1/2

µ
∧/∨
R −1/2 +1/2 ±1/2 ±1/2 −1/2 +1/2 +1/2 +1/2

µ̄
∧/∨
L +1/2 −1/2 ±1/2 ±1/2 +1/2 −1/2 −1/2 −1/2

µ̄
∧/∨
R ∓1/2 ∓1/2 −1/2 +1/2 +1/2 −1/2 −1/2 −1/2

c
(rgb)∧/∨
L ∓1/2 ∓1/2 −1/2 +1/2 +1/2 (−1/2 +1/2 +1/2 )

c
(rgb)∧/∨
R +1/2 −1/2 ±1/2 ±1/2 +1/2 (−1/2 +1/2 +1/2 )

c̄
(rgb)∧/∨
L −1/2 +1/2 ±1/2 ±1/2 −1/2 (+1/2 −1/2 −1/2 )

c̄
(rgb)∧/∨
R ∓1/2 ∓1/2 +1/2 −1/2 −1/2 (+1/2 −1/2 −1/2 )

s
(rgb)∧/∨
L ∓1/2 ∓1/2 +1/2 −1/2 +1/2 (−1/2 +1/2 +1/2 )

s
(rgb)∧/∨
R −1/2 +1/2 ±1/2 ±1/2 +1/2 (−1/2 +1/2 +1/2 )

s̄
(rgb)∧/∨
L +1/2 −1/2 ±1/2 ±1/2 −1/2 (+1/2 −1/2 −1/2 )

s̄
(rgb)∧/∨
R ∓1/2 ∓1/2 −1/2 +1/2 −1/2 (+1/2 −1/2 −1/2 )

ν∧τL ν̄
∨
τR 0 0 ∓1 0 ±1 0 0 0

ν∨τL ν̄
∧
τR 0 0 0 ±1 ±1 0 0 0

ν∧τR ν̄∨τL ±1 0 0 0 ±1 0 0 0
ν∨τR ν̄∧τL 0 ±1 0 0 ±1 0 0 0
τ∧L τ̄∨R 0 0 0 ∓1 ±1 0 0 0
τ∨L τ̄∧R 0 0 ±1 0 ±1 0 0 0
τ∧R τ̄∨L 0 ∓1 0 0 ±1 0 0 0
τ∨R τ̄∧L ∓1 0 0 0 ±1 0 0 0

t
(rgb)∧
L t̄

(rgb)∨
R 0 0 ∓1 0 0 (∓1 0 0 )

t
(rgb)∨
L t̄

(rgb)∧
R 0 0 0 ±1 0 (∓1 0 0 )

t
(rgb)∧
R t̄

(rgb)∨
L ±1 0 0 0 0 (∓1 0 0 )

t
(rgb)∨
R t̄

(rgb)∧
L 0 ±1 0 0 0 (∓1 0 0 )

b
(rgb)∧
L b̄

(rgb)∨
R 0 0 0 ∓1 0 (∓1 0 0 )

b
(rgb)∨
L b̄

(rgb)∧
R 0 0 ±1 0 0 (∓1 0 0 )

b
(rgb)∧
R b̄

(rgb)∨
L 0 ∓1 0 0 0 (∓1 0 0 )

b
(rgb)∨
R b̄

(rgb)∧
L ∓1 0 0 0 0 (∓1 0 0 )

Table 8. The 240 roots of e8, from combining two f4’s, labeled as elementary particles.
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Figure 1. The 240 roots of e8, labeled as elementary particles, with generations related by triality.
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9 Exceptional Unification

The assignment of elementary particle labels to roots of e6, e7, and e8 corresponds to deeper

underlying theories of Exceptional Unification.[18] Each deserves a long description, but we will

discuss them briefly here.

The particle assignment within e6, shown in Table 6, largely ignores triality and instead

corresponds to the SO(10) Grand Unified Theory. The five dimensional Cartan subalgebra of

so(10) produces the charges (U, V, x, y, z), with U and V combining to produce su(2) weak charge,

W = 1
2(−U +V ), and su(2) weaker charge, W ′ = 1

2(U +V ), while (x, y, z) combines to give strong

su(3) color charges and u(1) baryon minus lepton number charge,

g3 =
1
2(−x+ y) g8 =

1
2
√
3
(−x− y + 2z) B = 2

3(x+ y + z)

Adding the sixth Cartan subalgebra element within e6, for scaled helicity, H, allows the full SO(10)

GUT to be embedded in e6, including one generation of fermions (without spin) as a complex 16+
spinor of spin(10). The canonical triality automorphism within e6 transforms between up and

down type leptons and weak, weaker, and X1
3
bosons, which is pretty but not known to signify

anything interesting.

The particle assignment within e7, shown in Table 7, relates closely to the work of Dixon, Furey,

and Hughes, with C ⊗ H ⊗ O fermions.[1–3] However, it includes three generations of fermions,

with spin, related by triality. Here, the (ω,W,W ′) charges each correspond to a different su(2)

for spin, the weak force, and the weaker force, while the (h, x, y, z) so(8) charges correspond to

helicity, strong color, and B charge. The first generation fermion states necessarily split into half

of two different Dixon algebra (C ⊗ H ⊗ O) blocks, with triality then relating the three blocks

without overlapping states. While this works, this fitting of three fermion generations into e7 is a

bit cramped. For one thing, we need to use complex e7 for the fit. This is somewhat fortuitous, as

it means the complex spin algebra corresponding to ω becomes su(2,C) = sl(2,C), which is nice

for gravity, but it does not act correctly as sl(2,C)L should on the fermions, and using complex Lie

algebras for the weak and weaker forces is problematic, as is so(8,C). Secondly, the Higgs fields

(scalar fields) would need to overlap with the fermion fields, which is allowable but a bit strange.

Also, relating the three generations of fermions by triality within e7 requires that the leptons be

included in a different way than the quarks, which is quirky.

The particle assignment within e8, shown in Table 8, matches the particle assignment in “An

Exceptionally Simple Theory of Everything”.[16] Each generation of particles matches to an O⊗O
or to an O′ ⊗O, depending on whether the (ωT , ωs, U, V ) corresponds to an so(8) or so(4, 4), and

each generation is related to the others by triality. The (p, x, y, z) so(8) charges include a particle

or anti-particle charge, p, which mixes with B under triality. This so(8) can act on 8’s of the same

signature as those of the first so(8) for the compact real form, or 8’s of opposite signature for the

split real form. The downside of this embedding is that it can only be the Euclidean part of a

larger theory, or the physical spinors are matched spin(4, 2) spinors or twistors, which introduces

other complications. Several variations of the embedding of three generations of fermions within

different real forms of e8 are possible, and addressed elsewhere.[18]
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10 Division algebra automorphisms

The division algebras, and their split algebras, are each invariant under transformation by ele-

ments of their automorphism group, Φ ∈ GD. These group transformations leave multiplication

invariant, Φ(a)Φ(b) = Φ(ab). The complex numbers are invariant under complex conjugation. The

quaternions are invariant under SO(3) rotations of their imaginary elements. The octonions are

not invariant under SO(7) rotations of their imaginary elements, but under a subgroup, G2, that

preserves octonionic non-associativity. The automorphism groups of the split algebras are similar,

GC = Z2 GC′ = Z2

GH = SO(3) GH′ = SO(1, 2)

GO = G2(−14) GO′ = G2(2)

Since automorphism group elements leave division algebra multiplication invariant, these groups

are subgroups of the corresponding triality group.

For the quaternions, there is an inner triality automorphism, Adt, corresponding to a 120-

degree rotation around the axis formed by averaging the three unit imaginary quaternions. This

rotation cycles the three imaginary unit quaternions,

t = −1
2(e0 + e1 + e2 + e3) t3 = e0 t e1 t

− = e2 t e2 t
− = e3 t e3 t

− = e1

If we instead interpret t as an octonion, we see that Adt also preserves octonionic multiplication. If

we represent an octonion as an 8-dimensional vector, and use the standard octonionic multiplication

table, Adt acts on the octonions as a matrix,

Adt ∼



1
1
1

1
−1/2 +1/2 +1/2 +1/2

−1/2 −1/2 −1/2 +1/2

−1/2 +1/2 −1/2 −1/2

−1/2 −1/2 +1/2 −1/2


If we use the same t in the split-octonions, we get the automorphism:

Ad′t ∼



1
1
1

1
−1/2 −1/2 −1/2 −1/2

+1/2 −1/2 −1/2 +1/2

+1/2 +1/2 −1/2 −1/2

+1/2 −1/2 +1/2 −1/2


This same t does not give an automorphism in the split-quaternions. However, if we have e′2e

′
2 =

−e′0, we can have an inner triality automorphism from t′ = −1
2(e

′
0 −

√
3e′2), which rotates 120◦ in

the e′0 − e′2 plane.
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11 Discussion

In this work we have explored the deep relationship between division algebras, Clifford algebras,

generalized reflections, triality automorphisms, triality Lie algebras, the magic square of Lie al-

gebras, exceptional Lie algebras, root systems, and the connection with particle physics. From

any of these specific subjects, the others can be understood, so a reader may make their choice of

whichever mathematical starting point is more familiar. Although it is expected that current re-

searchers will merely pull useful computational tools from this paper, it is hoped that they will also

use this paper to better understand and appreciate the other ways of working with this material.

The true heart of this subject is triality—a real, cyclic, trilinear function of three elements of a

vector space—which can be used to define the division algebras and their related split composition

algebras. These division algebras lend themselves to the explicit matrix representation of certain

Clifford algebras, which have a direct geometric interpretation. With this geometric point of view,

we can describe reflections through vectors and, using triality, generalized reflections through

spinors. These generalized reflections can be combined to define triality automorphisms that cycle

vectors and spinors or three division algebra elements. These vectors and spinors combine with the

triality algebras of division algebras to produce the triality Lie algebras, which can be understood

as generalizations of su(3). Within these triality Lie algebras, the relationship between vectors,

chiral spinors, generalized reflections, and triality automorphisms can be described by division

algebra products or more explicitly using representative Clifford algebra matrices. We encounter

the surprising fact that real Lie algebra automorphisms can contain explicit i’s in them, provided

the automorphisms commute with the complex conjugation used to define the real form of the Lie

algebra. The Cartan-Weyl description of these Lie algebras, and their root systems, can be used

to visually appreciate their structure and automorphisms. Although useful, and often visually

appealing, the root system description of Lie algebras and their automorphisms elides the signs of

structure constants and maps between root vectors. These signs can often be guessed or obtained

algorithmically, but are easily obtained by the direct methods presented here. The triality Lie

algebras combine in pairs to produce the magic square Lie algebras, which are also invariant under

generalized reflections and triality automorphisms. Ultimately, building from division algebras,

all exceptional Lie algebras and their automorphisms can be understood and described explicitly

using these methods. The relationship to particle physics has been briefly addressed, and largely

motivates this work, with triality at its center.

If triality is an interesting area of exploration for physics, which it almost certainly is, then

the explicit tools and descriptions provided in this paper are the keys to the castle. It is hoped

that other researchers will use this work to further their own explorations within this rich area of

mathematical physics.
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