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1 Introduction

A growing community of researchers has become interested in the application of division alge-
bras and the corresponding split composition algebras to a structural description of the Standard
Model of particle physics.[1-18] The use of triality in this context, relating three generations of
fermions, has gathered increasing interest.[19] The existence of the quaternion group, Qg, within
the CPT Group generated by charge, parity, and time conjugation symmetries, and its extension
to the C PTt Group—acting on three generations of fermions related by triality—strongly indicates
division algebras are intricately woven into the fabric of reality. Despite this indication of its use-
fullness, explicit mathematical descriptions of exactly how triality can be used in model building
are sparse. It is the purpose of this work to remedy this deficit—to provide a detailed description of
the mathematical scaffolding relating division algebras, triality, Clifford algebras, and Lie algebras
related to the Standard Model and gravity. This paper largely follows and complements Baez’s
excellent paper, “The Octonions”,[20] but in more painful detail, and with an eye to physics.

We begin by introducing division algebras: the complex numbers, C, quaternions, H, and
octonions, @, and the related split-signature composition algebras, C’, H', and Q’, and use them
to construct Clifford algebras. The Clifford bivectors generate Spin groups, which act on spinors
with negative and positive-chiral parts. A structural isomorphism (or “confusion”) then exists,
between 2, 4, or 8-dimensional vectors, v, negative-chiral spinors, i, positive-chiral spinors, y, and
sets of three division algebra elements. (We casually use “division algebra”, D, to also encompass
the corresponding split-signature composition algebras, and sometimes not the reals.)

A real, cyclic, trilinear triality function is defined by the division algebra product (or vice
versa), and is invariant under the triality group of symmetries on its arguments. These symmetries
relate to generalized reflections, producing duality automorphisms related to twistor incidence
relations,[21] as well as triality automorphisms, which transform and cycle the arguments. Each
division algebra has a Lie algebra, its triality algebra, corresponding to this triality group. Each
triality algebra is a subalgebra of the triality Lie algebra formed by the joining of a triality algebra
with the three elements corresponding to a vector, negative-chiral spinor, and positive-chiral spinor.
Using these elements, these triality Lie algebras can be expressed heuristically as su(3,1D).[22]
Triality inner automorphisms act within these Lie algebras, and can be displayed graphically in
their root systems.

Two division algebras can also be combined to construct a compound division algebra repre-
sentation of a Clifford algebra. The corresponding two triality Lie algebras combine to give Lie
algebras in the exceptional magic square.[23] These magic square Lie algebras, and their triality
automorphisms, are explicitly formulated. Detailed examples are provided for Lie algebras eg, ez,
and eg, each of which is relevant to Exceptional Unification models in physics. The algebra of
the SO(10) Grand Unified Theory embeds in eg. Three generations of Dixon algebra fermions,
related to C®@ H® O, embed in complex e7. And three generations of fermions, related by triality,
embed in real forms of eg, along with Standard Model gauge, Higgs, and (Euclidean) gravitational
fields. The paper ends with a brief description of division algebra automorphisms, which brings
the remaining exceptional Lie algebra, gs.



2 Division Algebra Representation of Clifford Algebras

A n-dimensional division algebra, D, or split-signature composition algebra, I/, is spanned by its
basis elements, e,, which have a conjugation,

€p=¢e5=¢e =1 €1 =ej = —e En_1 = e~ = —€n-1
and a multiplication table, e e, = My“e., allowing the definition of its metric,
1 ~ ~
(€aser) = 5(€ath + Epea) = Nap

with ng = dgp for the usual division algebras, and ng, having split signature, {+,—}, for the
split-algebras. Under conjugation, division algebra multiplication satisfies

P

(eaty) = €j€a M,,° = M;.©

Standard multiplication tables, M e., for the division algebras and their split-algebras are:

€y €1 €0 €1
C : c
€1 —€o €1 €0
€y €1 €92 €3 €y €1 €9 €3
€1 —€p €3 —€2 €1 €9 €3 €2
H : H -
€y —€3 —€p €1 €2 —€3 —€p €1
€3 €2 —€1 —€ €3 —€y —e1 €
- - - 1 (2.1)
€p €1 €2 €3 €4 €5 €5 €7 €p €1 €2 €3 €4 €5 €5 €7
€1 —€p €4 €7 —€z €g —€5 —€3 €1 —€p €3 —€2 —€5 €4 —€7 C€g
€2 —€4 —€p €5 €1 —€3 €7 —€g €2 —€3 —€p €1 —€g €7 €4 —C€5
o - €3 —€7r —€5 —€p €6 €2 —€4 €1 o - €3 €2 —€1 —€y —€7 —€ €5 €4
" les ex —e1 —eg —eg e ez —es " |les es e er eg er ex e3
€5 —€¢ €3 —€2 —€7 —€) €1 €4 €5 —€4 —€7 €5 —€1 €y €3 —€2
€6 €5 —€7 €4 —€3 —€1 —€y —€2 €6 €7 —€4 —€5 —€z —€3 €9 €1
€7 €3 € —€1 €5 —€4 —€3 —€) €7 —€g €5 —€4 —€3 €2 —€1 €

Division algebra multiplication allows the construction of chiral Clifford basis elements of
Cl(n), Cl(0,n), or Cl(%, %), which act on chiral division algebra spinors,

272
(5] o

with (T'z) = ne(Te)? and multiplication understood to be to the right by division algebra elements

0 +eé.
e. 0

Ye= V=

0 x£T)% | | 0 =£Mz®
Te)a O Mt 0

(accounting for non-associativity of octonions), or represented equivalently as 2n x 2n real matrices
built from the multiplication table coefficients,

(Fc)ba - Mcab (fc)ab - Mg{,a - Mbca - Mcaf, - (Fc)ba



These representative Clifford basis vector elements satisfy the fundamental Clifford identity,

€q€h + €pe 0
Ya Vb = % (Va'}/b + 'Yb'}’a) = :IZ% ¢ ¢ ~ ~ = ENgp = Nab (23)
0 €aq€p T+ €peq
with the “+” signature usually chosen to be “—” for our purposes. Division algebra multiplication

coefficients, and the corresponding Clifford matrix elements, satisfy a cyclic identity,

f‘abc = I_‘bczz = I_‘cab =Tach = Teba = Tbac = Mape = Mpeg = Mca5 = Mz = Mg, = My

cba bac

(2.4)
in which ngp is used to lower indices. The Clifford pseudoscalar for each division algebra and

split-algebra is v = v9...7p—1 = £[! _;].
The in(n — 1) representative Clifford bivector basis elements, for ¢ < d, are:

+(T)% () £ M5 M.

=Mo" M5

+eceq

i(rc)ba(rd)af] B

with it understood that, for example, eg, multiplies to the right before €. multiplies the result.

~

Yed =

+e.€q4

Since e.éq = —egqé. for ¢ # d, we also have the reverse-indexed bivectors, V4. = —7eq, and will
sometimes account for these with a 1/2 in sums, such as for B = %Bc‘i%d. These bi-product
division algebra operators are the chiral basis elements of the corresponding spin Lie algebra,
which act on division algebra spinors. Spinors are the fundamental representation space of spin
groups, which have spin Lie algebras spanned by Clifford algebra bivectors that are represented
by matrices that act on the spinors. For the complex numbers and quaternions, multiplication is
associative, so these bi-product basis elements are themselves purely imaginary complex numbers
or quaternions, é.eq € B = Im(ID), and the corresponding spin Lie algebras, Bs = so(2) = u(1)
and By = so(4) = su(2) + su(2), are 1 and 6-dimensional. For the octonions, multiplication is not
associative, and these octonionic bi-products span 28-dimensional Bg = so(8) # Im(Q).

From the division algebra representation of Clifford algebras we have a natural confusion
between sets of three n-dimensional division algebra elements and corresponding sets of Clifford
algebra vectors, negative real chiral spinors, and positive real chiral spinors,

v = v, ~ v = v,
Yp=1le, o~ Y =9"Q,
x=xa ~ x=x'QF
X =0 ~ X =0Y
It is the chiral division algebra representative matrices of Clifford algebras, rb, = Mcai’ , that allow

this direct identification between a set of vector, negative, and positive chiral spinors, (v,,x),
and a triplet of division algebra elements, and their multiplication,

Xbei, =x= ’01/1 = UcwaMcabei, ~ Xb = Ucwa(rc)ba
This confusion of vectors and spinors with division algebra elements, and the division algebra con-

struction of Clifford algebras, leads to the explicit construction and understanding of the structure
of many Lie algebras and their automorphisms.



3 Generalized Reflections and Triality

Division algebras (and their split versions) have a cubic form—a real, cyclic, trilinear triality
function, T'(v,1, x), of three elements, or, equivalently, of vectors and chiral spinors,

XUV e = X0 = T(0,0,X) = (%, 08) = 3 (x(@0) + x(08)) = X0 M,

The triality function is cyclic, T'(v,%,x) = T'(¢¥, x,v), by virtue of the cyclic nature of division
algebra multiplication, (2.4). Although one usually considers the triality function as built from the
division algebra product, it is possible, alternatively, to use the existence of a triality function, as
a cyclic cubic form on a vector space, to define the division algebra product. The triality function
is invariant under the triality group, Tri(D), with elements r € Tri(D) satisfying:

reo(v,x) = (X)) 3 TEL YL X)) =T(v, v, x)

The triality group acts linearly on (v,, x) as its representation space.
Consider reflections, R;;, through a unit-length Clifford vector or division algebra element,

—u-u=uubng = sy = tu = +1

in which the signature, s,, is space-like, +1, for division algebra elements or CI(0,n) Clifford
vectors, or can be time-like, —1, for some split-composition algebra elements or the corresponding
time-like Cl(%, 5) Clifford vectors. Note that we have chosen the “—” sign in (2.2, 2.3), to later
match Lie algebra elements. Reflections can then be expressed as

v = Rlv = —uvu~ v = Rlv = —syudu v = RY X = /SuXU v = Ry = /Sutith
U = R = \[5,un® ¢ = R% = /spux ¢ = R\t =—s,udu 1)) = Ryv = /5,07
X' = R = /sobii X = RYv = /5,00 X' = Ryx = —syuxu

and, since triality is cyclic, we also have generalized reflections, RY and R", acting as reflections

p )
through negative and positive chiral spinors. These generalized reflections, through a space-like or
time-like unit element, u, can be equivalently expressed as operations on Clifford basis vector and

spinor elements,

R RY, Ry,

V= (52 — 28,uuc) e Ve =/suu(Ta)’Qy 7%= Ve ()" eQq (3.1)
Qu' = Ve T aQ) Q=0 —2suuua)Qy  Qu' = VEuut(Te)am

Q' = st (T)%Q; Q' = suut(Te) va Q' = () — 2suuw)Qf

The triality function is anti-invariant under these generalized reflections, such as
T, ', X') = T(Ryv, Ritx, Riwp) = T(—syuiu, /5,0X, v/5u00) = (uth, (—udn)ix) = —T (v, x, )

Generalized reflections through non-unit-length u give duality functions, such as v/ = Ry¢ = 1%(
These duality functions come from dualizing the triality function: if we demand that T'(v, v, x) = 1,



then we can obtain an expression for the vector, negative spinor, or positive spinor from the two

others,
|
by = —35X0V X =
|w 2 [xvl]? [vep|?

These “incidence relations” are at the heart of the twistor program.[21]

v

Combining two generalized reflections of the same type gives a generalized rotation—an el-
ement of the triality group. Combining two generalized reflections of different types gives an
element of the triality group that isn’t a rotation. Combining four generalized reflections through
two unit-length elements, v and w, gives a triality automorphism,

= RYRYR% R!

an element of the triality group that takes vectors to negative spinors, negative spinors to positive
spinors, and positive spinors to vectors,

Yo (’U, sz)v X) = (vlu w/a X/) = ( Suswﬂ)(uw), Vi 5u5w(XU)QI}, SuSww(’fL’Uﬂ)w)

with T(v',¢', %) = T(v,v,x). Via Clifford algebra confusion, pairs of unit elements, u and
w, produce general triality automorphisms of sets of three division algebra elements or of the
corresponding Clifford vector and spinors,

V= \/SuSu(u)) = \/SySyw ucwaMdbeca ef
~ v = /sasgwtuyp®(T ) (T c)baQ} = /SuSpwur)
VSuSw(xu)w = \/mXbucdebch&jfef
~ P = BuswX uw(Ta)l o(Ce)QF = (X uw)” = \/suspwulx

X' = suSpw(tvi)w = susww“ubvcudweMangi)C“MaJ Mg6 en

1/)/

(3.2)

~ X = vb(ég — 28, W W) (85 — 284U UG ) Ye = Sy SuWUVUW

Choosing u =1 (~ u =) and w =1 (~ w = ) gives the canonical triality automorphism,
t: (Uv ¢7 X) = ('Ula wla X/) = (¢7 X U)

consistent with the invariance of triality under cyclic permutation of its arguments.
The triality algebra of a division algebra, tri(D), is the Lie algebra of its triality group, and its
elements, R € tri(D), satisfy:

R (v,,x) = (v, 9,X) T4\ x') =0

For the complex numbers, quaternions, and octonions, and their split versions, the triality algebras

are:

tri(C) = u(1) + u(1) tri(C") = gl(1) + gl(1)
tri(H) = su(2) + su(2) + su(2) tri(H') = sl(2) + sl(2) + sl(2)
tri(0) = so(8) tri(0) = so(4,4)



4 Triality Lie Algebras

The best way to understand how triality algebras act on the corresponding triplets, (v,1,x), is
via their embedding in the corresponding triality Lie algebras,
su3) = tri(C)+C+C+C =ul)+ul)+Q+1)y+(1+1)p+ (1+1),
sp(3) = tri(H) + H+H+H = su(2) + su(2) + su(2) +(2,2,1), + (2,1,2)m + (1,2,2),
f4(,52) = trl(@) + @ + @ + @ = 80(8) + 81; + 85_ + 83+

sl(3) = tri(C)+C' +C'+C =gl(1) +gl(1) + (14 1)y + 1+ 1)y + (1 4+ 1),
sp(6,R) = tri(H') + H' + H' + H' = sl(2) + sl(2) + sl(2) + (2,2,1), + (2,1,2),, + (1,2,2),
fay = tri(Q0) + 0" + O + Q' = s50(4,4) + 8 + 85— + 851
Generalized reflections, and triality automorphisms, are real automorphisms of triality Lie algebras.

The structures of these Lie algebras fully elucidate these symmetries, and are worth examining in
each case.

4.1 su(3)

The eight Lie algebra basis generators for the special unitary group, SU(3), may be represented by
3 x 3 traceless, anti-Hermitian matrices of complex numbers, related to the Gell-Mann matrices,

iB'+ =B ' tivt 04yl VoM —vt %
A= | +ivt —z‘BlJr%B2 X +ix'| = v P—V —y*

(4.1)

= BTy + BTy + vy + 9°Q, +X"Q4f

=VH,+MH, +PH,+(wE; —v*Ef)+ WE,, —¢*E})+ (xE, — X*E;r)

€ su(3)
with {v,1,x} complex numbers, v = v + ivl = vl + vle;, and {V, M, P} pure imaginary
numbers. Note that since su(3) elements are traceless, V', M, and P correspond to only two
degrees of freedom, B! and B?—the same su(3) element is specified if V, M, and P are all shifted
by a constant. These V', M, and P generators are motivated by the existence of three overlapping
su(2) subalgebras, spanned by {Hy,Va}, {Hm,Qy }, and {H,, Q} }. As a triality Lie algebra, su(3)
relates to the complex division algebra representation of C1(0,2), with basis vectors vy = {? Bl]

and y1 = {? g] This C division algebra representation of C1(0,2) is not the representation from

the complex multiplication table, (2.1), which is instead, from (T.)?, = Mcal;,
q i i q 1 -1 0 -TI
Mo® =1 Mo' = Myo' = -1 M°=-1 TIg= Iy = = ¢
00 01 10 11 0 . 1 1 Ve r. o

In general, a triality Lie algebra can either be described directly as ~ su(3,D), or equivalently
by constructing the corresponding Clifford algebra and its bivector and vector matrix represen-
tatives (identified with the upper-left 2 x 2 block in su(3,D)) which act on negative and positive



chiral spinors, then closing the algebra via the Lie brackets between spinors. The representation of
the Clifford algebra may be by division algebra elements, by their matrix representatives, or from
the equivalent division algebra multiplication table coefficients.

We can compute the su(3) Lie brackets directly from the commutator of its representative
matrices, (4.1),

[(Bllanlel?d}LXl) 3 (32173;02,7#27)(2)} — (B?}ng,USﬂ/)&XS)

2i By = —2(viva — v3v1) — (Y1905 — Yat}) — (xaxs — xaxi)
%B?? = (x1X5 — X2X1) + (VT2 — Y3e1)
v3 = —2i(Bjva — Byvi) + (Xj93 — x397)
Y3 = i(Bf +V3B)y2 —i(B + V3B3)y + (vix; — vixi)
x3 = i(B} = V3B{)xa — i(By — V3B3)x1 + (¢jv5 — ¢507)
Alternatively, using our basis elements, {77, 7%, 74, Q, , QL }, the non-vanishing su(3) brackets
between them are, explicitly,

[T1,7%] = —2m T1,Q,] = +Q7 [T1, Q7] = +QF
[T1,m] = +27% T1,Q7] = —Qp T1,Q7] = —Qf
[12,Q5] = +V3@Q1 [12,Q¢] = —V3QT )
[T5,Q7] = —V3Qqy [T%,Q7] = +\f@0
o, ] = —2Th Qo Q7] =T+ V3T Q7. Q] =T1 — V3T,
[Va, @y ] = =Mz QF [7a: @] = My;° Qc [Q, Q)] = =M

and their anti-symmeterized partners.
With orthogonal Cartan subalgebra basis generators, {11, 7>}, or non-orthogonal Cartan basis
generators, {H,, Hy,, Hp}, the root vectors and their Lie brackets are:

Ef = 3(—0 —im) [TV, EY] = +igh Ex [Ef, Ef) = FEF

Ey =3+ —im) [Ty, EX] = +ig? EX [E:,Ef] = ¥EF

E} = 3(—Qy —iQy) [Ef,Ef] = TE]

E, =3+Qy —iQy) [H,, EX] = +iv, EX [Ef,Ey] = —iTy = —iH,

Ef = 3(-Qf —iQf)  [Hm, EX] = +im, EX (B} By = —i(—3T — *Ty) = —i Hyy
E; = 3(+Qf —iQf) [Hy, EX] = +ipa EX [Ef Ey] = —i (3T + 52T) = —i H,

with the {gl, 92, Vo, Ma, Pa} ToOts in Table 1. This structure of su(3) is consistent with its trial-
ity decomposition, in which each of the three triples, {H,/, p, Ej/m/p, E;/m/p} ~{H,E* E™},
corresponds to a different su(2), related to each other by triality, with disjoint root vectors but
overlapping Cartan generators. The relevant triality function is,

T(v,10, x) = v X" Mgpe = v09°x° — 009 x ! — vlplx0 — vl !



and the canonical inner triality automorphism of su(3) is:
1
t:A— A =g Ag; gtzllll € SU(3)

in which ¢; is an element of the 3 x 3 representation of the SU(3) Lie group, and ¢ transforms the
generators, root vectors, and Cartan subalgebra elements as:

t Y Q> Qf v Efe EL—EF—EF  H,— Hy— H,— H,

This triality automorphism corresponds to a rotation on root space coordinates, (gl,g2), by t~,
and a transformation of the Cartan subalgebra basis elements, {77, 75}, by the triality matriz, t,

17 _1 V3 1 _1 V3 _1 V3
9o | _ 2 2 9 _ 2 2 _ 2 2
7 I [REVE R 7+ B 1 R

V3
2 2 2

Within the triality algebra of su(3), which is also its Cartan subalgebra, the two basis genera-

tors, {11, T>}, are each rotated between three directions by the canonical triality automorphism.

Specifically, T{ = H, = T1, T{' = H, = =Ty + LTy, and T{" = H,, = 1Ty — 2T,

Ty
Ty

11
Ty

A

VivT | -2 0 | -2 41 +1

Almt|l -1 =3 | -1 42 -1 <©>A
Vo m” +v3

A

vp

Table 1. Roots of su(3) with respect to the orthogonal Cartan subalgebra basis generators, {T7,T>}, or
non-orthogonal Cartan basis generators, {H,, Hy,, H,}, and their automorphism under triality.

The split-complex numbers, a composition algebra, are represented by {e{, = 1,€} = I}, with
Mj,° = I? = 1. Repeating our Lie algebra construction, using real Gell-Mann matrices, we get
the Lie algebra si(3), with non-vanishing brackets:

71, 70) = =27 (11, Q5] = +QF [T1, Q5] = +Q
[T1,m] = =27 [77.Q7] = +Qy [T1,Q1"] = +Q
R N R B
[T2,Q1 | =+v3aQy (T3, Q] = —V3Qy
[767,}/“ ) T/l [ ] T/l + \/§T,2 [ 6+7 H—] T/l o \/gTIQ
[76: @y ] = —M QL [%Qb | =M, Q- Q4 Q"] = =M

The triality automorphism structure for sl/(3) is the same as for su(3).



4.2 sp(3)

The structure of the 21-dimensional symplectic Lie algebra, sp(3)—the triality Lie algebra of the
quaternions—is similar to that of su(3). Instead of 3 x 3 traceless matrices of complex numbers,
elements of sp(3) can be represented by matrices of quaternions,

M —v ¢
A=l v P —x| € sp(3) = su(3,H) (4.4)
- x V

with {v, 9, x} quaternions and {M, P, V'} purely imaginary quaternions. The Lie brackets are thus:

[(Mlypla VYla U1, wal) ’ (M27 P27 ‘/27U27¢27X2)] = (M37 P37 Véa U3, ¢37X3)

Mz = MMy — MyMy — (9102 — Dv1) — (P13hy — thathy)
Py = PPy — PoPr — (Xax2 — XoX1) — (v102 — v201)
Vs = ViVa — VoW1 — (€192 — dgth1) — (X1Xa — X2X1)
v3 = (Prog — Povr) + (v1Ma — v2M1) + (X102 — Xat)
VY3 = (Mipe — Mapr) + (P1Va — ¥2Vi) + (D1X2 — D2X1)
xs = (Vixz — Vax1) + (x1Po — x2P1) + (P12 — 1y1)
Each of the three diagonal matrix elements is a su(2) subalgebra, which act on two out of the three
off-diagonal elements. The Cartan subalgebra basis consists of one element from each diagonal
element, {TM, TF T)}.
The sp(3) Lie algebra, and its brackets, relate to the Clifford algebra matrix representation of
C1(0,4) from the quaternion multiplication table, as in (2.2), in which case (4.4) gives a 12 x 12
real representation. Or, using the usual Pauli matrix representation of quaternions,

€y — 00 61:—’i01 62:—i02 63:—103

(4.4) results in a 6 x 6 complex representation. Using the quaternion mulitplication table, (2.1),
the C1(0,4) chiral representative matrices (2.2) are (I'¢)’q = Mc,” and —(T'c)% = —Mz", so

O ol w2 3 00 ol 2 B
. ol 0 3 2 i - ol 0 3 o2

v~ vl = 2 .3 .0 1 —0~ —vTe = 2 .3 0
—v —U —U v —U v
—U3 —’U2 Ul ’UO —’U3 —U2 ’Ul —’UO

The negative and positive C1(0,4) chiral bivector matrices separate into independent degrees of
freedom, corresponding to so(4) = su(2) + su(2)p,

M ~ By = —3B™T,I', = BfyTa P~ Bp=-3iBT,I, = BpTa

in which B3, p = FBY + 2eBCABBC and the capital indices, {A, B, C}, range over {1,2,3}.

,10,



The sp(3) Lie algebra elements can be written in an orthoganal, Killing-normalized basis as

MAe, —v“%éa WI%%
A= MATY + PATY + VATY + 0%, + 4°Q, +x"QF = | v"J5ea  Plea —x"T5éa
—Qﬂa%éa Xa%ea VAey

with the sp(3) Lie brackets between these basis elements computed explicitly:

(TA T = TH (2Map©) (74, Qy ] = QZF%(—M{,@C) [TH %] = ve (—Mpa©)
[T, Tg] = TE(@Map) e, Q] = Qo 5 (M) [TA, Q] = Qr (M)
0T = T 0Mun) (@0 = M) (TR a0
asw) = TMI(M;,© — Map©) + TE 3 (Mya© — M ;©) [TV, Q] = QF (—Mya©)
(@ Qp] = T&5(M3,© = May®) + T 5(Mpa® = M) [TX, Q] = Qc (=Mpa?)
[Qd, Q)] = TEF(M;,© = May©) + Te 5 (Mia© — M) (T4, Q] = QF (May?)
sp(3) M ‘ P ‘ Vv

O | M*T|£2 0 0
O | PE] 0 £2 0
@) VE 0 0 +2 A\
AV | wF [£1 0 =+l N/
AV | o [£1 0 =F1 A A
AV | xE | 0 £1 #1 N2

AV I xz | 0 F1 +1
AV | vE |21 £1 0
AV | v |F1 £1 0

Table 2. Roots of sp(3) with respect to the orthogonal Cartan subalgebra basis generators, {T, T Ty},
and their automorphism under canonical triality.

Generalized quaternionic reflections give automorphisms of sp(3). For example, the generalized
reflection along a unit positive spinor, Rg, gives

Rg : (M7 P? V? U?¢7X) '_> (M/7P,’ V/? /U,’ ,(Z),’ X,) = (M’ V’ P’ 1/;7 /177 _5&) (4'6)
which is an inner automorphism,
-1
Rg : A= Al=grAgyg gR:[ 11] € SP(3) =SU(3,H)

This corresponds to a reflection of roots in root space coordinates, (o, ap, oy ), by the R matrix,
and a transformation of the Cartan subalgebra basis elements, {M, P,V'}, by R,

oy 1 an an M’ 1 M M 1
ap | = 1 ap | = | ay P | = 1 P|l=|V R= 1
ay, 1 ay ap V! 1 1% P 1

— 11 —



This reflection visually reflects the sp(3) root diagram horizontally.

The collection of all possible generalized quaternion reflections, including their compositions,
is the automorphism group, SP(3), of the sp(3) Lie algebra. The canonical triality automorphism
of sp(3) is:

tr Q= Q= Ty = TY =Ty — T4

which, as a composition of reflections, ¢t = RgRBR,%Rg, is an inner automorphism,

t : A A=gAg gr =

1 11] € SP(3) = SU(3,H)

This corresponds to a rotation of roots in root space coordinates, (aps, ap,ay), by t—, and a
transformation of the Cartan subalgebra basis elements, { M, P, V'}, by the triality matrix, ¢,

oy 1 an ap M’ 1 M % 1
ap | = 1 ap | = | ay Pl=11 Pl =M t=11
oy 1 ay ap Vv’ 1 v P 1

Although one can describe these sorts of Lie algebra automorphisms as reflections or rotations of
roots in root space, which correspond to reflections and rotations within the Cartan subalgebra
and maps between root vectors, these root maps do not specify the signs of the maps between
root vectors. To obtain a consistent set of signs for such maps, it is usually easiest to describe the
automorphisms directly, as transformations of the Lie algebra generators, and then transform to
the Cartan-Weyl basis to get a complete description of the maps between root vectors, including
signs.

To describe the split real form, sp(6,R), of the sp(3) Lie algebra, we can use split-quaternions
in (4.4) instead of quaternions, representing the basis elements as 2 x 2 real matrices,

€y = 00 €1 =01 6/2=—i02 6%203

Automorphisms of this split real Lie algebra are similar to those of compact sp(3); however, an
interesting difference can occur. For example, a reflection, R3, around the u = s unit split-
quaternion vector has s, = —1, and the corresponding reflection element,

- !

—1e
gR = [ieg s ] € SP(6,R) = SU(3,H')
—1

produces a real sp(6,R) inner automorphism,
M' =ésPey, P =eiMey, V' =V o =éivey o =—iesyt  x = —iel

which doesn’t look like a real automorphism, but is. This will be further discussed in the next

section.
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4.3 f

The triality Lie algebra of the octonions, f4, has a similar structure to that of sp(3):

By —0 o
A= 3B+ +0°Q +X°Q7 = | v_ Br —X | & su(3,0) ~ fi (4.7)
—¢ x Bv

but cannot be directly identified with su(3, Q) because of octonion non-associativity. To make the
identification of elements of f; with matrices, (4.7), we need to define multiplication compositionally—
with octonions multiplying to their right before they are then multiplied by octonions from their
left. The f4 representative matrix is then made of octonions and octonion bi-products. The ma-
trix representation of C(0, 8) vectors, bivectors, and chiral spinors, from compositional octonionic
multiplication, is

B=3B%y,,= —3 BTl —vTe U=

) b= 0 = QL
— 3BT, I v°T, Qi

using the octonion multiplication table, (2.1), and (T.)’, = M.’ The su(3,0)-inspired Lie
brackets for the f; basis generators are:

[Yabs Yed] = 2 {NacVbd — NadYoe — MbeVad + nbd'Yac}

| =
[’Yaba 70] = 2{ NbeYa + nac”)/b} [707 QE] = ( ) a [’Yaa '}’b] = 2%ab (4 8)
['Yaban] Qd (_Farb) c [’YcaQ;—] = Q ( r ) [Q(;va_] = ’ch(:':fcrd)llb '
[7ab7 ] d (_Fafb)dc [an er] = 'YC(ZFFC)ab [ (—;7 Q;r] = ')/cd(?r‘cfd)ab

in which ng = &4 is used to raise or lower indices, and we have 28 bivector generators, vup,
identified with —v, for a < b. The choice of — signs above corresponds to the compact real
form, f4(_s52), while the choice of + signs gives fy_g0). For the split real form, fy4), we use the
split-octonionic representation of C1(4,4), with the split metric, n/, = diag(++++————). The
positive and negative spinor metrics come from multiplying the positive signature Clifford vectors,
Yoy1Y27Y3, giving nfl_b = n:;g = n/,. Using this Clifford representation and these metrics, the Jaa)
brackets are the same as for fy_s2), above, except for some signs,

[Q;a Q;_] - fyc(_fc)ab [Q;; Qb_] = ’ch("i_fcrd)ab [ ;rv QZ—] = ’ch(""_rcfd)ab

For a canonical triality automorphism to exist, he metrics of the vectors, negative spinors, and
positive spinors in fy(_s2) or fy4) must be equal and match the Killing form.
The canonical triality automorphism between vectors and spinors,

tr Q= Qo

is an automorphism of fj(_s9), with corresponding automorphisms of its so(8) subalgebra,

t o Yab = Yap = Ve tar = 5 [V ] = 3 [Qu > Qp ] = Ve (%fcfd)

ab
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and
25 Y= V= et = 5 [V W] = 5 [QF Q5] = Yea (FTTY)

in which a < b and the sum is over the 28 basis bivectors, ¢ < d.

ab

The description of f; can be made more explicitly octonionic by remembering that T',I'; comes
from multiplying to the right by e, then multiplying to the right by é,, so each so(8) chiral bivector
element corresponds to a sum of compositional octonion multiplications, B_ ~ —%Babéaeb. The
canonical triality automorphism of so(8) thus corresponds to a transformation of compositional
multiplications of octonions,

t(éqep) = tap Eveq = eqéyp

We can then describe the diagonal entries of the ~ su(3,0) matrix explicitly as:

By = —1B%¢,e,
Bp = t(Buy) = =3Bty éceq = —3B%e,8,
By = t(Bp) = t*(Bu) = — 5Bt ecéqg = —1 B2, E ey

This allows us to write the Lie brackets between fy_52) elements,

[(B1,v1,%1, x1) 5 (B2, v2, %2, x2)] = (B3, v3, 13, X3)

using compositional octonionic multiplication and triality,
By = BiBy — BaB1 — (D1vg — Bavn) — £2(4hytba — hathn) — (X1 x2 — Xox1)
v3 = t2(B1)vy — t3(Ba)vr + X105 — Xaty
Y3 = Big — Bath1 + 01X9 — U2X3
X3 = t(B1)x2 — t(Ba)x1 + U102 — a1
in which the bivectors here are pairs of octonions multiplying to the right in order, such as By =

—1BYS éq(epec).

Generalized reflection symmetries of fy_s52), fa—20), Or fa) through a space-like or time-

(4.9)

like unit vector, u, are real Lie algebra automorphisms, and their combinations comprise the
corresponding Fy Lie group. As Fj group elements acting via their adjoint action on Lie algebra
elements represented as elements of su(3,0), (4.7), the three types of generalize reflections are

Now /St -1
Ry Syl Ry, - —-1 Ry - V/Sull

-1 Syl V/Sull

Explicitly, in addition to the action of Rj, R"

m» and Ry, on fy vector and chiral spinor basis

generators, (3.1), these each extend to corresponding actions on the so(8) or so(4,4) subalgebra
basis generators,

RY : Yap = Yoy = 3 [RiYa, Rive] = wyapu = 5(65 — 2suuua) (5 — 28,uup) Ve
[R%m'ymRum’Yb] = %Suue(Fe)cauf(Ff)db(:f:r‘gf‘h)cd'}/gh

1
2
Ry o Yab — 7;(;:%
1 [R%Ya, R = Ssuuc(Te) aud (D)% (FTITM) caygn

R; Y Yab 7 ’Yéb:

— 14 —



producing automorphisms of the f; Lie algebra via these maps of basis generators. For triality
automorphisms, t“% : (WC,Q;,QZF,%I)) — (VQ,Q;/,Q;I,%’II)), using unit vectors u and w, from
(3.2), we have

e = vSusww(Ta) pu®(Ta)’cQy
Qr' = VSusww(Le)l qul ()% Q7
Q:/ = (0 — 25w wp) (65 — 25,uUq) Ve
Voo = 5 Vo 1] = 35usww(La)¥iu (Te) qw? (T )™ juf(Te ) o (FLIT™) km ygh
As an Fj Lie group element acting via the adjoint, this typical generalized triality element is

o 1
t"' = RJR Ry Ry SuSwwi

v/ SuSwWu

with it again understood that this compositional multiplication operation is ordered to act right-
first—for example, way = w(uw).

Note that real automorphisms of f4(—20) or the split real Lie algebra, fy4), such as reflections,
Ry, through a unit time-like vector, s,, = —1, or triality from a unit time-like v and space-like
w, have explicit /s, = 4’s in them. This appears to contradict the fact that these are real
automorphisms, but this is not the case. For example, if we consider complex f4 as fy4) with
complex coefficients, then the usual anti-linear complex conjugation operator, ¢ = K, acting on
complex fy produces fy(4) as the invariant real subspace—the fy4) real form. Reflections through
a unit time-like vector, ¢ = R}, which have ¢’s in them, are complex and not real automorphisms
with respect to o because RUK # K R“. However, if we consider the reflection, RO, through the
unit octonion or space-like Clifford vector, 79, which is a real involutive automorphism of fy4),
then an alternative anti-linear complex conjugation operator on complex f; exists, o/ = RVK,
which gives the same real form, fy(4), and determines that ¢ = R} with a time-like v and s, = —1

is a real automorphism of fy(4), because
¢o' = RYR)K = R)KR} =o' ¢

The i’s in RY are precisely matched with the swapping of the conjugate Q™ and Q~ generators by
RY in just such a way that this works. This same argument goes through for RY,, Ry, and triality
automorphisms—which can all have explicit ¢’s in them while being real automorphisms.

The canonical triality automorphism matrix, ¢, for so(8) or so(4,4) is a 28 x 28 rotation matrix,
satisfying tt7 = 1, of real coefficients,

thab = (¥%f61—‘d> b - :F%MéeaMdbe
a

derived from the octonionic multiplication table, with the sign “—” for compact f_s2) and oth-
erwise “+”, and the 28 basis bivectors, 7o, = 7Ya, indexed by 1 < o = %(13@ —a?®) +b < 28,

with 0 < a < b < 7. (The larger, 64 x 64 triality automorphism matrix elements are also defined
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for b > a, and can be deduced from anti-symmetry.) The 28 basis bivectors can be separated
into 7 disjoint sets of 4 intra-commuting basis bivectors, each set spanning a Cartan subalgebra
intra-rotated by triality. The triality automorphism matrix, t,”, can thus be re-ordered to be
block diagonal, consisting of seven 4 x 4 Hadamard matrices. Typical blocks looks like:

+l2 —1/2 +1/2 41/ —1/2 41/2 +1/2 +1/9
b= +1/2 —1/2 —1/2 —1/2 4 — —1/p 41/ —1/5 —1/2
! +1/2 41/2 41/2 —1/2 2 —1fp —1/3 41/ —1/2
+1/2 41/2 —1/2 41/2 —1fp —1/3 —1/5 41/2

but signs may vary, based on the octonionic multiplication table or if we use a non-canonical triality
automorphism. For so(4,4) triality automorphisms, the four bivectors, 7,5, spanning each Cartan
subalgebra rotated by triality can be constructed from Clifford basis vectors with space-space, time-
time, or space-time signature. The allowed signature sets are {ss, ss, tt,tt} or {st, st, st, st}. If we
choose one of these triality-adapted Cartan subalgebras for our f; Cartan-Weyl decomposition,
then t is the triality matrix that rotates these Cartan basis generators, and ¢t~ = 2 = tT rotates
the root coordinates.

There are two especially interesting f4 Cartan subalgebra transformations we can do that
emphasize the sp(3) and su(3) subalgebras of f;, matching their previously described triality

automorphisms:
vz —1/v2 1 0 0 0
vz 1/va 0 —Y/v3 ~1fv3 =1/v3
c] = co = B
vz 1Yva 0-1Yvz Yva 0
-1/vz Yv3 0 -Yv6 —1/v6 V2/v3
1 —1/2 —V3/s
— - V3/y -1
tllzcltlclz 1 1 t/QZCQtQCQZ /2 /2 1
1 1

From ¢] we see that triality cycles three su(2)'s in f4, while leaving a complimentary su(2) in-
variant, matching sp(3) triality; while from ¢, we see that triality rotates in a single plane in
4-dimensional root space, matching su(3) triality, while leaving a complimentary su(3) invariant.
The corresponding decompositions of fy_s2) are:
f4(,52) = 80(8) + 8 + 85_ + 85+

= su(2)r + su(2)r7 + su(2) 7 + su(2)w + (2,2,2,2)

+((2,2,1,1) +(1,1,2,2)), + ((2,1,2,1) + (1,2,1,2)) . _
+((1,2,2,1)+(2,1,1,2)

(4.10)

and
f4(_52) = 80(8) + 81; + 83_ + 83+

= u(l)p + u(l)B + SU(3)g +37+37+317+ 31+ 3511 + 3111 (4.11)
+(14+1+3+3), +(1+1+3+3),_+(1+1+3+3),
The f4 roots matching these decompositions, (4.10) and (4.11), are:
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f1 wr | w, | U [V
@ wp F + 0 0
o wiy” F F 0 0
) w?, Iv 0 0 F F
Q Wy 0 0 F +
OO | Vel | + o T 0
0o e | o £ 0
0o eV |0 T 0+
oo e 0 £ £ 0
ool Vel | oo T+ 0
oo eV |+ 0 0 F
ool Ve |+ 0+ 0
DO | eVou + 0 0+
AA vl Fl2 £l —1/2 41)2
N A B e e )

AA e Fl2 £z +1/2 —1)2
A M e +l/2 £lf2 =1/ —1/2

LA v Fl2 FlY2 12 41
AN I/QRV +1l2 =12 £l/a +£1f2
A | gl | F FY2 42
A A [LIA% v —l/2 412 12 £1/2
Aa | vy Ty 0 o T 0
AN | v T 0 0 0 +
AL | vhy T + 0 0 0
sA | VWi |0 £ 0 0

Table 3. The 48 roots of fy4, labeled as fermions of three generations, showing both the triality-invariant
su(2)w and the triality mixing of three su(2)’s, as per (4.10).

Ja p \ T \ y \ z
) g (+1 -1 0)
000 | XX o (1 41 0)
o0 | XX +1 (F1 0 0)
000 XXl ¥ (F1 0 0)
A I —1l/2 —12 -1/ —1/3
v I +1l/2 412 12 12
AAA| ¢ |2 (a4 41a)
vYVY| @ |4 (112 -2 —1a)
A lir —1/2 +1l/2 +1l/2  +1/2

v Urr +l/2 =12 —lp  —1/5
AAA| Y hs (cp 11 41
vYv| P |- (e - —1p)
A lirr +1 0 0 0

v T -1 0 0 0
AAaa| ¢ 0 (=1 0 0)
vvv| &P 0 (+1 0 0)

Table 4. The 48 roots of f4, showing the triality-invariant su(3), plane, as per (4.11). Coordinates in
parenthesis are permuted over specified columns.
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5 Exceptional Magic

To obtain larger Lie algebras we can consider the tensor product of division algebras or their split
versions, such as the 32-dimensional vector space H ® Q. From any two division algebras, D' and
D, of dimension n’ and n and signature (p’,¢’) and (p, q), we can construct chiral representations
of Clifford algebras, Cl(p'+p,q' +q) or Cl(¢'+p,p' +q), in a similar manner to the construction of
Clifford division algebra representations. In a Clifford compound division algebra representation,
(n' + n)-dimensional Clifford basis vectors are expressed as:

0 v_
pr— a pr— =
v = 0%, [v+ 0] v

which may be understood as matrices of inter-commuting division algebra elements, € I and

1oz £yl
y®l —107%

193 +§f ol
y®l -1z

Vy =

y' €DV, or as R(4(n’ xn)) matrices via their multiplication coefficients. The result of multiplying
two vectors is

[u_v+ 0 ]
uv = U_vy =
0 wuyv_

l@ur + ZyY®l +jow FZex
o —yow £XYR14+ 10wE

w +7
2 —w

x x7

/

Yy -

from which we see that the result of squaring a Clifford vector is

l@ir+jy @1 0

VU = o -
0 Ty ®91+1®az

and so the represented Clifford algebra has signature (p’ + p, ¢’ + q) or (¢’ + p,p’ + q), depending
on the choice of +. The chiral bivector part of uv is a representative element of a spin Lie algebra,

so(p' +p, ¢ + q) or so(q' + p,p’ + q), which is

By 1) ® (10By) D@D

U_U+ S , ,
oD (Br®1) ® (1oBp)

with the direct sum of bi-products on the diagonal, and the tensor product of the division algebras
on the off diagonal. Expanding upon the previous description of Lie algebras using su(3,D), we
have a family of Lie algebras described heuristically as:

By @By D@Dy DYy @Dy
D,®D, Bp®Bp D;@D; | ~ su(3,D' @D)
D;®D; Dy @Dy By @By

This family is the exceptional magic square of Lie algebras,[23] shown in Table 5. Each member
of the magic square has a canonical triality automorphism, ¢, constructed from the triality auto-
morphisms of its constituent parts. Every member also has three so(p’ +p, ¢ + q) ~ su(2,D' @ D)
subalgebras, related by the canonical triality automorphism.
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gn'eD R C H () (C/ H @/
R su(2) | su(3) | sp(3) fa sl(3) | sp(6,R) | faq)
C su(3) | 2su(3) | su(6) €6 sl(3,C) | su(3,3) €6(2)
H sp(3) su(6) | so(12) er sl(3,H) | sp(6,H) | eq(—s)
@) Ja €6 er es €6(—26) | €r(—25) | €8(—24)
c’ sl(3) | sl(3,C) | sl(3,H) | eg—26) | 251(3) | sl(6,R) | eg)
H Sp(67 R) S’LL(S, 3) Sp(67 H) €7(-25) Sl(67 ]R) 80(67 6) e7(7)
o faa) e62) | er—s) | es(—24) | €6(6) er(7) €s(8)

Table 5. The exceptional magic square Lie algebras, constructed from pairs of division algebras or their

split versions.

The easiest way to construct the Lie brackets of any member, gpgp, of the exceptional magic
square is by suitably joining the Lie brackets of its constituent pairing of su(2), su(3), sp(3), fi,
sl(3), sp(6,R), or fy(4) subalgebras, corresponding to its compound triality decomposition,

gpiep = Tri(D’') + Tri(D) + Dy, @ D, + D), @ Dy, + D, @ D,

The root system of any magic square Lie algebra may also be easily constructed by suitably joining
the roots of the constituent pairing. The triality matrix for its root system is a block diagonal
matrix, ¢, constructed from the triality matrices of its constituents, such as

[ +1/2 —1/2 412 +1/2 0 0 0 0
+12 —1/2 —1/2 —1/2 0 0 0 0
+1/2 +1/2 +1/2 —1/2 0 0 0 0
f_ | F2 Y2 Y242 00 00 00 0 (5.1
0 0 0 0 =12 +1/2 +1/2 41/2
—1/a +1/2 —1f3 —1/

—1fy —1f3 41/
—1/y —1/y —1f3

for a real form of es. Although the root components of sl(3), sp(6,R), and fy4) may be a mixture
of imaginary and real, the canonical triality automorphism only rotates between all compact or
between all noncompact Cartan generators, and the triality matrices for these Lie algebras can
only inter-mix all real or all imaginary root components.

The main advantage of having explicit expressions for the structure of a Lie algebra and its
triality automorphisms, over the description via roots and a triality matrix, is that the triality
matrix alone doesn’t determine the signs of the triality maps between root vectors or generators.
We could employ tricks to find these signs, but it’s usually easier to find them from a direct division

algebra description and the corresponding explicit triality automorphism.

_1/2

0 0 0 0
0 0 0 0
0 0 0 0 +1/2 |
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6 The Explicit Structure of ¢5 and its Canonical Triality Automorphism
The eg Lie algebra has a compound triality decomposition from combining su(3) and fy,
ee = u(l) +u(l) +s08)+ (14 1), @8, + (1 + 1), ®8s— + (1 +1), ® 8+ ~ su(3,C®H)

and a triality automorphism that maps between the triplet of complex octonions, C ® 0. The
corresponding set of eg basis elements is

{Tlla T2,7 Yabs Ya'as Q;/aa Q:/a}

with primed index, a/, ranging over complex indices, {0,1}, un-primed index, a, ranging over
octonion indices, {0, ..., 7}, and the bivector index, ab, ranging over the 28 so(8) basis generator
permutations with a < b. The non-vanishing Lie algebra brackets between these basis elements
come from combining the Lie brackets of su(3) and fy_s2), (4.2) and (4.8):

h/ab; "ch] =2 {nac"ybd — NadVYbe — NbeYad + nbdﬂ}/ac}

[T1,70a] = =271/ [T7,Qq.] = +Q1, T1,Q4.] = +Q7,
[T1:m17a] = +270a 11, Q74] = —Qua [T7,Q7.] = —Qg.
[T2>Q0' } = +V3Qr, [TQOo' } = _‘/§Q1+'a
[73,Q1a] = =V3Qq, (T3, Q1] = +V3Q4,
Yabs Yare) = 2{—McVara + NacYarv}  [Yabs Qo] = Qurg(—Tal's)% [Yab, Q] = QL 4(—=Talp)%
Yora, 116] = 2T nap [Qorar Q1 —(Th +V3To)n,, [Qg..Qf] = —(Th —V3Ta)n,

['Va’m'yb/b] = _2n1’b’7ab [ aanb/
o Quy) = =M. Ta)Qbe [V Qi

]

b} =
b} = "/7b/70d(fcrd)ab [Q;ranb’b} = ”/Tb/%d(rcfd)ab
] ]

= Mf/b /( a)CbQ;c [Qa a’Qb’ = Mﬁ’l;/ (fc)ab’yc/c

in which M’ /5/0/ and (T C)ba = cai’ are the complex and octonion multiplication tables with
a

"+ n, ni} are the complex and octonion metrics, also used to raise or lower

conjugations, and {n’,n
indices. Different real forms of eg come from combining different real forms of su(3) and fy, using
correspondingly different multiplication tables and metrics. The canonical triality automorphism

of 66(778) is
b T T = =31 = BTy T T = BT = 3T = Yoy = Yeat“ap = Yea (—37T9)
Ya'a 7 fytll’a = Q;’a Q;’a = Q;Ta = Q:’a Q(—;’a = Q:ja = TYa'a

from combining the triality automorphisms of the constituent su(3) and fy(_s2). For non-compact
real forms of eg, real triality automorphisms may contain explicit ’s in them. It is illustrative
to show the eg roots and canonical triality automorphism, with a triality matrix from combining
triality matrices of su(3) and fi:
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° e °®
> v
[ ]
o [
A A A A
o { ] @] @ { ] ()
v v
o e O ® O
A A
° e o o e [
v v ¥ v
o [
[ ]
AN A
[ J @ o
° [
€ H U v [« [y | =
[ J 9 0 0 0 (+1 -1 0)
oo [ XU o 0 0 (1 +1  0)
oo | X! 0 0 +1 (F1 0 0)
e [ X o 0 £l (&1 0 0)
(0] W+ 0 *1 +1 0 0 0
O W' 0 +1 F1 0 0 0
oo | X7 o +1 0 (1 0 0)
eoe | XJ | o +1 0 (F1 0 0)
A VL +V3/2 =l | 4l 1)y 1)y 1)
A VR —VBj2 12 | 412 =12 =12 1
v vy, +V3/a  —1fa | =12 412 Hl/a 41/
AV VR —V3Jo  4lfa | —1/3 41/ 4lfs 41/

AAA[ o [ V32 Vo [ 412 (S 412 +f2)
MMMl GV s | b (S 4 A1)
VYV 0 [+ Ve | e (2 -2 )
YWY i | V3 4l | —la (2 —la  —l)2)
A er +V3/a  4l/a | =12 =1/ 1/ 1/
A er —V3Jo 1/ | —1fy  _1/3  _1fs 1/
v er +V3/2 412 | 412 1/ 41/ 41/
AV er —VB/a  —1/s | 41/a 41/5 41/ 1)y

AAA[ U | 432 412 | -1/
S I SR VP VA RV
vow| al |+ 41 | e
VOV a5 | B i | 4p

iy =1 1/
iy 1 1/

Table 6. The 72 roots of eg, labeled as elementary particles.
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7 The Explicit Structure of e¢; and its Canonical Triality Automorphism

The e7 Lie algebra has a compound triality decomposition from combining sp(3) and fy,
er = su(2)p + su(2)p + su(2)y + so(8) + (2,2,1), ® 8, + (2,1,2),, ® 8- + (1,2,2), ® 854
~ su(3,H® O)

and a triality automorphism that maps between the triplet of quaterni-octonions, H ® . The
corresponding set of e; basis elements is

M P \%4 —
{TA’a TA’a TA’a Yabs Va'as Qa/aa Q:/a}

with primed index, o', ranging over quaternion indices, {0, ...,3}, primed capitals, A’, ranging
over imaginary quaternion indices, {1,...,3}, un-primed index, a, ranging over octonion indices,
{0, ..., 7}, and the bivector index, ab, ranging over the 28 so(8) basis generator permutations with
a < b. The non-vanishing Lie algebra brackets between these basis elements come from combining
the Lie brackets of sp(3) and fy(_s2), (4.5) and (4.8):

['Yaba Vcd] =2 {nac’ybd — NadVbe — MbeVad + nbdrYac}

c’

T TH] = THOM ) [TRTE] = TECMp)  [T6.TH] = ch 2MA/B,] )
[T%,Wa} = Vca (*Mé'A/c/) [Tf/v’Yb’a] = Yc'a (M,/A’b’a) [TA”Qb’a} = Mb’A’ )
[T, Qpal = Qoo (Mly) [T5. Q) = Qia (—Mjp) (T4, Q) = Qia My )
[Yabs Yare] = 2{—MbcVara + NacYars} [Vabs Qure] = Qurg(—Tals)% [Yar, Q] = QF,(=TaTh)%
e ] = — (TH 3O — My @)+ TE Y0 =) )) e — 2130
[ a’ a?Qb’b} = - (Tg'%(Mé/a,C/ - Mé’b’C/) + TJV[l(Mé/ a )nab +n /b/%d(r Fd)ab
[Qa: Qi) = — (Tpfl(Mz/a,C/ — M}y )+ TE 5 (M5 ) gy + 1y Yea(TT)ap
aras Qp] = =25 ML (Ta)sQ, [Naras Q) = S5MLp C’( a) vQue [Quas Qi) = J5ML (T arvere
in which M (fl /l;,c/ and (T'.)%, = cai’ are the quaternion and octonion multiplication tables with

"+ n,n*} are the quaternion and octonion metrics, also used to raise

conjugations, and {n’,n
or lower indices. Different real forms of e7 come from combining different real forms of sp(3)
and f4, using correspondingly different multiplication tables and metrics. The canonical triality

automorphism of e7(_133) is

L Yap = '7(/11; = Vcdthab = Yed (_%f‘crd) ab

Ty — T =Ty, TY, T =T% T8 = 1 =TY
Ya'a F7 /yt/z’a = Q;’a Q;’a = Q:;a = Q;’a Q(er’a = Q;J/ra = Ya'a
from combining the triality automorphisms of the constituent sp(3) and J4(—52)- For non-compact

real forms of e7, real triality automorphisms may contain explicit ¢’s in them. It is illustrative to
show the e7 roots and canonical triality automorphism, with a triality matrix from combining the
triality matrices of sp(3) and f4:
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A N A A A A A a
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() ®
v v ° % v
Yy v Yo¥Y¥o" v g ¥
v ] vy @ Qv @ v
A AN A
()
A @ o le O o AN @ A
RN SN A ® i
A () A @ e A @ A
A By A %2204 A A,
A L A
v °y v @ v
\ 4 A 4 Y v v Y Vv v v
v v
AN A A A
@] N A (@)
ha 'S
ha
e7 w ‘ w ‘ w’ h ‘ z y z
WY +v2 0 0 0 0 0 0
W 0 +V2 0 0 0 0 0
Wi 0 0 +/2 0 0 0 0
g 0 0 0 0 (+1 —1 0)
X7 X 0 0 0 0 (+1 +1 0)
XX 0 0 0 £l (F1 0 0)
X 0 0 0 F1 (F1 0 0)
+/vz  41Yva 0 +i/2 =1l -l —1)2
+1/vz 0 +vz | =1 —1/2 —1/2 —1/2
+/va  —1/v2 0 +1/2 —lfy =1y 1)y
AL ex +1/v2 0 “va | 1 —12  —1)2 —1/2

WMV 2ys 4y 0 | 4 (B2 412 41)a)
ww | a7 |2 0 Yva | e (+2 Y2 )
A | dTY s s 0 | 4l (Y2 e 4l
swoww | &7 | 2yvs 0 e | Y2 (+12 =12 —1f)

AaA ot 0 +/va  4+Yva | -1 0 0 0
A L VQRV +1/vz +1/va 0 —1/2 +1/2 +1/2 +1/2

AA Y 0 +ve  —lYva | -1 0 0 0
AN iy -z 413 0 —lfs  glfs 4l 41
A | Y 0 +1v3 4+Yva | 0 (-1 0 0)
ww | Y —yys 1ywye 0 —ls (412 -1z —1)3)
m o | IOV 0 +1v3 vz | 0 (—1 0 0)
ww | S pys +ivs 0 s (42 —lp  —1)2)
vy +1/v3 0 vz | 2 2 2 4l

AN v 0 +1/vz  EYvz | +1 0 0 0
AdA /v -1z 0 +v2 | 412 +l2 412 412

AL "V 0 —1/vi  4Yv3 | +1 0 0 0
ma | (T Ly 0 vz | -2 (=2 +1l2  +1)2)
ww | £ 0 —vz £Yvz| 0 (+1 0 0)
A s l)(,‘r"’b)A V| —yve 0 v | 12 (=Y2  4lY2 +1f2)
ww | O 0 +1/v3 413 0 (+1 0 0)

Table 7. The 126 roots of e7, labeled as elementary particles, with generations related by triality.
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8 The Explicit Structure of eg and its Canonical Triality Automorphism

The eg Lie algebra has a compound triality decomposition from combining two f;’s,

eg = 50(8) +50(8) + 8, @8, + 8, ®8;_ + 8, @8,y
~ su(3,0® 0)

and a triality automorphism that maps between the triplet of octo-octonions, @ ® @. The corre-
sponding set of eg basis elements is

{/V(/llﬁ 7!157 ’YGL’LM Qc:’a’ Q;—’a}

with primed and unprimed indices, ¢’ and a, ranging over octonion indices, {0,...,7}, and the
bivector indices, a’b’ and ab, ranging over the 28 so(8) basis generator permutations with a < b.
The non-vanishing Lie algebra brackets between these basis elements come from combining the Lie
brackets of two fy_s2)’s, (4.8):

s ea] = 2ty — g e — Wy aras + Wy e
[’Yaba "ch] =2 {nac"ybd — NadVYbe — NMbeVad + nbd"}/ac}
[Wa’b’ ’ ’}/Cla] =2 {_ngﬂc”ya/a + n:z’c”yb’a} [’yalb’ ’ Q;a} = Q;’a(_fa/rb/)dl ¢’ I:’ya’b'a Q:Ca] = Q(—;’a(_ra'fb')d/cl
Davs vare] = 2{=nmvevara + nacvant  [Yan Que] = Qual=Tal®)e  [Yar, Quic] = Qura(=Tal's).
[711'(17 'Yb’b] = -2 NabYa't! — 2 n:l’b’ Yab
[Q;’a7 Ql;b] = Mgy Ye'd: (fclrd/)a’b’ + 1 Yea(TT%) 0
[Q:’a’ Q;:b] = ”:b%/d’ (Fclfd,)a’b’ + n;Jfb/’ch(Fcfd)ab
[Va'av Ql;b] = (Fa’)d b’ (Fa)chjC [’Ya'aa Q;b} = (f‘a’)()l b’ (fa)ch;C [Q;/av Ql—;b] = (fc,)a'b' (fc)ab’}/c’c

in which (Fcl>b/al =M ,a,b and (Fc)ba = Mcai’ are the octonion multiplication tables with conjuga-

"+ n, ni} are the octonion metrics, also used to raise or lower indices. Different real

tions, and {n/, n
forms of eg come from using one or two copies of f4(4), incorporating split-octonion multiplication
tables and metrics, or using two f4_52)’s and flipping the signs to get split real eg(g.

The canonical triality automorphism of compact real eg(_o4g) is
ot Yab = ’Y;b = ’chthab = Ved (_%f\crd)ab

! ! — ,
Vs = Yy = Yoty = qar (~30T)

a't!

Ya'a 7 71/1’0, = Q;’a Q;’a = Q;Ta = Qct’a Q;r’a = Q;J’ra = Yd'a
from combining the triality automorphisms of the constituent fy_52)’s. For quaternionic eg_o4) or
split real egg), real triality automorphisms-—obtained by mixing triality automorphisms of f4’s—

may contain explicit ¢’s. It is illustrative to show the eg roots and canonical triality automorphism,
with a triality matrix (5.1) from combining the triality matrices of two fy’s:
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wr ‘ Wy ‘ U ‘ 14 P ‘ T ‘ Y ‘ z
F1 +1 0 0 0 0 0 0
Fl F1 0 0 0 0 0 0
0 0 ¥l Fl 0 0 0 0
0 0 Fl +1 0 0 0 0
+1 0 Fl 0 0 0 0 0
0 +1 0 +1 0 0 0 0
0 ¥l 0 +1 0 0 0 0
0 +1 +1 0 0 0 0 0
0 F1 +1 0 0 0 0 0
+1 0 0 Fl 0 0 0 0
+1 0 +1 0 0 0 0 0
+1 0 0 +1 0 0 0 0
0 0 0 0 0 (+1 -1 0)
0 0 0 0 0 (+1 +1 0)
0 0 0 0 +1 (¥l 0 0)
0 0 0 0 Fl (F1 0 0)

Fl2 £Y2 1 412 | =12 1 1 1)
+l/2 £l 4l 412 | =L 1/ 1/ 1)
+1/2 £l —1fp 12| 12 412 41/a 1)y
Fl2  £lY2 4l 12 | 412 41l 41 41
Fle £l +l 12| =12 =l -l —1/s
+1/2 £lfa —lfp 1o | =1z 1z —1l/z 1)y
+1l/2 £l2 4l 412 | 412 412 41 41
Fl2 £l —l2 412 | 4l 412 1)z 41/s
Fl2 2 Y2 12 | Y2 ( )
+1l/2 £l 412 41 | =12 ( )
+1/a Al —1p —1)2 | 1)z ( )
Fl2 £l 412 —1/2 | 412 ( )
Fl2 £l A2 M| e (2 A2 4Y2)

( )

( )

( )

+1/2 £l —1f2 —1)2 | —1/2
£z £l 412 12 | 412
Fle £l -l 412 | +1/2
Fl2  FlY2 =l 4l | =l 412+l 1)
+l2 =12 £lfe £1/2 | =12 12 412 41/2
—V2 4l L2 i | Y2 1 —lp —1f
Fle  Fl2 e =12 | 412 =l -l —1/3
Fl2  FlY2 4lo Vo | —la 4l 41z 41)3
—12 4l £l £l2 | =12 1 1 +1)2
+l2 =12 £l F12 | 412 =l -l —1/3
Fl2  FlY2 2 412 | 412 1z —1/a 1)
T T a4 )
T By )y [ i ( )
e e w2 | Ao ( )
Th B At A | i )
B 1 o [T (ot 44a)

( )

( )

( )

—1l/2 4l £1/2 12 | 412
+l2 12 1z £lfa | —lf
Fl2 F Y2 +l2 | -V
0

0 310 | #1_ 0 0 0
0 0 0 =+ #1__ 0 0 0
0 0 0 | #1__ 0 0 0
0 0 0 | #& 0 0 0
0 0 0 F1| #&1 0 0 0
0 0 #1_ 0 | 10 0 0
0 1 0 0 | &1 0 0 0
av T Th L0 0 0 [ F 0 0 0
aw [ fN vy 0 F1L_ 0 0 (FL 0 0)
aaw | VAT 0 1] 0 (¥ 0 0)
aw | GOV 4 0 0 0 (¥l 0 0)
o | OV RN 100 0 (FL 0 0)
mow |V 0 0 FL| 0o (F1 0 0)
aw | YRR 0 +1 0 0 (1 0 0)
mw | R FL0 0 0 (FL 0 0)
mow [V RN F1 0 00 0 (1 0 0)

Table 8. The 240 roots of eg, from combining two f4’s, labeled as elementary particles.
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Figure 1. The 240 roots of eg, labeled as elementary particles, with generations related by triality.
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9 Exceptional Unification

The assignment of elementary particle labels to roots of eg, e7, and eg corresponds to deeper
underlying theories of Exceptional Unification.[18] Each deserves a long description, but we will
discuss them briefly here.

The particle assignment within eg, shown in Table 6, largely ignores triality and instead
corresponds to the SO(10) Grand Unified Theory. The five dimensional Cartan subalgebra of
s0(10) produces the charges (U, V, x,y, z), with U and V combining to produce su(2) weak charge,
W = 3(-=U+V), and su(2) weaker charge, W’ = 3(U+V), while (z,y, z) combines to give strong
su(3) color charges and (1) baryon minus lepton number charge,

98 = 5(-7 +) 98 = 55—~y +22) B=3+y+2)

Adding the sixth Cartan subalgebra element within eg, for scaled helicity, H, allows the full SO(10)
GUT to be embedded in eg, including one generation of fermions (without spin) as a complex 16
spinor of spin(10). The canonical triality automorphism within eg transforms between up and

down type leptons and weak, weaker, and X1 bosons, which is pretty but not known to signify
3
anything interesting.

The particle assignment within ez, shown in Table 7, relates closely to the work of Dixon, Furey,
and Hughes, with C ® H ® O fermions.[1-3] However, it includes three generations of fermions,
with spin, related by triality. Here, the (w, W, W') charges each correspond to a different su(2)
for spin, the weak force, and the weaker force, while the (h,z,y,2) so(8) charges correspond to
helicity, strong color, and B charge. The first generation fermion states necessarily split into half
of two different Dixon algebra (C ® H @ @) blocks, with triality then relating the three blocks
without overlapping states. While this works, this fitting of three fermion generations into ey is a
bit cramped. For one thing, we need to use complex e7 for the fit. This is somewhat fortuitous, as
it means the complex spin algebra corresponding to w becomes su(2,C) = si(2,C), which is nice
for gravity, but it does not act correctly as si(2,C)y, should on the fermions, and using complex Lie
algebras for the weak and weaker forces is problematic, as is so(8,C). Secondly, the Higgs fields
(scalar fields) would need to overlap with the fermion fields, which is allowable but a bit strange.
Also, relating the three generations of fermions by triality within e; requires that the leptons be
included in a different way than the quarks, which is quirky.

The particle assignment within eg, shown in Table 8, matches the particle assignment in “An
Exceptionally Simple Theory of Everything”.[16] Each generation of particles matches to an Q@O
or to an @’ ® O, depending on whether the (wr,ws, U, V) corresponds to an so(8) or so(4,4), and
each generation is related to the others by triality. The (p, z,y, z) so(8) charges include a particle
or anti-particle charge, p, which mixes with B under triality. This so(8) can act on 8’s of the same
signature as those of the first so(8) for the compact real form, or 8’s of opposite signature for the
split real form. The downside of this embedding is that it can only be the Euclidean part of a
larger theory, or the physical spinors are matched spin(4,2) spinors or twistors, which introduces
other complications. Several variations of the embedding of three generations of fermions within
different real forms of eg are possible, and addressed elsewhere.[18]
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10 Division algebra automorphisms

The division algebras, and their split algebras, are each invariant under transformation by ele-
ments of their automorphism group, ® € Gp. These group transformations leave multiplication
invariant, ®(a)®(b) = ®(ab). The complex numbers are invariant under complex conjugation. The
quaternions are invariant under SO(3) rotations of their imaginary elements. The octonions are
not invariant under SO(7) rotations of their imaginary elements, but under a subgroup, Gs, that
preserves octonionic non-associativity. The automorphism groups of the split algebras are similar,

Ge = Zo Ger = Zo
G = SO(3) G = SO(1,2)
Go = Go(_14) Go = Gy

Since automorphism group elements leave division algebra multiplication invariant, these groups
are subgroups of the corresponding triality group.

For the quaternions, there is an inner triality automorphism, Ads, corresponding to a 120-
degree rotation around the axis formed by averaging the three unit imaginary quaternions. This
rotation cycles the three imaginary unit quaternions,

t:—%(60+€1+62+€3) t3:€0 teirt = e9 tegt_:eg t€3t_:€1

If we instead interpret ¢ as an octonion, we see that Ad; also preserves octonionic multiplication. If
we represent an octonion as an 8-dimensional vector, and use the standard octonionic multiplication
table, Ad; acts on the octonions as a matrix,

1

Ady ~ —1/3 +1/2 41/2 41/
1o —1fy —1fs 41/
1o 41y —1fy 1/
ST

If we use the same ¢ in the split-octonions, we get the automorphism:

1

Ad, ~ —1fy —1fy —1/5 —1/
+1/2 —1/2 —1/2 4+1/2
+1/2 +1/2 —1/2 —1/3
F1f2 =12 +1f2 —1f2]

This same ¢ does not give an automorphism in the split-quaternions. However, if we have ehel, =

—e(, we can have an inner triality automorphism from ¢’ = —%(66 —v/3eh), which rotates 120° in

the ef, — ef plane.
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11 Discussion

In this work we have explored the deep relationship between division algebras, Clifford algebras,
generalized reflections, triality automorphisms, triality Lie algebras, the magic square of Lie al-
gebras, exceptional Lie algebras, root systems, and the connection with particle physics. From
any of these specific subjects, the others can be understood, so a reader may make their choice of
whichever mathematical starting point is more familiar. Although it is expected that current re-
searchers will merely pull useful computational tools from this paper, it is hoped that they will also
use this paper to better understand and appreciate the other ways of working with this material.

The true heart of this subject is triality—a real, cyclic, trilinear function of three elements of a
vector space—which can be used to define the division algebras and their related split composition
algebras. These division algebras lend themselves to the explicit matrix representation of certain
Clifford algebras, which have a direct geometric interpretation. With this geometric point of view,
we can describe reflections through vectors and, using triality, generalized reflections through
spinors. These generalized reflections can be combined to define triality automorphisms that cycle
vectors and spinors or three division algebra elements. These vectors and spinors combine with the
triality algebras of division algebras to produce the triality Lie algebras, which can be understood
as generalizations of su(3). Within these triality Lie algebras, the relationship between vectors,
chiral spinors, generalized reflections, and triality automorphisms can be described by division
algebra products or more explicitly using representative Clifford algebra matrices. We encounter
the surprising fact that real Lie algebra automorphisms can contain explicit ¢’s in them, provided
the automorphisms commute with the complex conjugation used to define the real form of the Lie
algebra. The Cartan-Weyl description of these Lie algebras, and their root systems, can be used
to visually appreciate their structure and automorphisms. Although useful, and often visually
appealing, the root system description of Lie algebras and their automorphisms elides the signs of
structure constants and maps between root vectors. These signs can often be guessed or obtained
algorithmically, but are easily obtained by the direct methods presented here. The triality Lie
algebras combine in pairs to produce the magic square Lie algebras, which are also invariant under
generalized reflections and triality automorphisms. Ultimately, building from division algebras,
all exceptional Lie algebras and their automorphisms can be understood and described explicitly
using these methods. The relationship to particle physics has been briefly addressed, and largely
motivates this work, with triality at its center.

If triality is an interesting area of exploration for physics, which it almost certainly is, then
the explicit tools and descriptions provided in this paper are the keys to the castle. It is hoped
that other researchers will use this work to further their own explorations within this rich area of
mathematical physics.
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