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Abstract

This work proposes a deeper development of chronovibrational theory by introducing the quan-
tization of the temporal field ψ(t), which is promoted to a quantum operator ψ̂(t) defined over a
Hilbert space. Time is thus interpreted as a dynamic and quantizable physical variable, subject
to observable residual fluctuations. This approach allows us to model the residual quantum
imperfections of chronovibration — a decaying “cosmic beat” originating from the Big Bang —
and provides a coherent framework for the emergence of time within a harmonic and dissipative
cosmology.

The aim is to predict measurable effects, including post-merger gravitational echoes, metro-
logical instabilities, and interference phenomena induced by coupling with external fields. A
chronovibrational transfer matrix is introduced, along with a set of experimental protocols —
both passive (e.g., LIGO, atomic clocks) and active (e.g., ITER, modulated RF fields) — capa-
ble of falsifying or confirming the model. Energy dynamics are rendered conservative through
a second scalar field Ψ(t), acting as a vibrational memory and regulator of phase transitions.

Overall, this model represents a first testable theoretical proposal for a quantum reformula-
tion of time, unifying aspects of canonical quantum gravity, scalar–tensor theories, and emergent
cosmology into a single observable harmonic structure. It does not claim to be exhaustive in
any way.

Keywords: quantum time, chronovibration, time operator, scalar field quantization,
gravitational wave echoes, Hilbert space, canonical quantization, Wheeler–DeWitt
equation, electromagnetic coupling, time metrology, emergent time, RF modula-
tion, experimental quantum gravity, ITER

Foreword

This work aims to represent a significant step
forward with respect to the previous formu-
lation of chronovibrational theory1, by intro-
ducing a hypothesis of quantum structure for
the chronovibrational field ψ̂(t) and outlining a
clearer path toward its potential experimental

1P. Giordana, “Chronovibrational Field Dynam-
ics and Warp Propulsion: A Time-Modulated Scalar
Framework for Matter, Dark Energy, and Metric En-
gineering”, Zenodo, 2025, DOI: https://doi.org/10.
5281/zenodo.15240876

realization. The goal is not only to formalize a
new temporal dynamics, but to propose a the-
oretical framework susceptible to falsification
or confirmation through observational proto-
cols and concrete physical measurements. This
work does not aim to provide definitive answers
but seeks to serve as a starting point and an
open proposal, with the hope of fostering con-
structive scientific discussion.

Conceptual Motivation The underlying
idea of the chronovibrational theory is that
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time — although locally relative as predicted
by general relativity — may emerge from a
universal absolute origin: a primordial cosmic
vibration initiated at the Big Bang, defining
an underlying “universal beat.” This beat,
referred to as chronovibration, is not directly
observable as a coordinate parameter but can
be modeled as a global scalar field whose
dynamics represent the evolution of time itself.
In this view, time is not a passive entity or
mere label of causal ordering, but a physical
manifestation, subject to decay, propagation,
and interaction, and thus observable in its
“errors.” The aim of this work is to build a
theoretical model that translates this intuition
into physically quantifiable and, in principle,
verifiable terms.

The field ψ(t), initially conceived as a global
classical scalar field describing cosmic temporal
evolution, is here promoted to a quantum op-
erator ψ̂(t), defined over a Hilbert space. This
quantization is neither arbitrary nor decorative
but responds to a precise physical and con-
ceptual necessity: to rigorously and measur-
ably model the local deviations from the ideal
chronovibration. Since the perfect harmonic
beat of time — postulated as a universal cos-
mic structure — is not directly observable, only
its residual imperfections, i.e., local deviations
from the ideal configuration, are experimen-
tally accessible. These deviations, being nei-
ther deterministic nor systematic, require a
sound probabilistic treatment. This is where
the structure of quantum mechanics emerges
as the only coherent formalization: promoting
ψ(t) to a quantum operator ψ̂(t) allows us to
describe these fluctuations as observable quan-
tities, endowed with well-defined statistical dis-
tributions in Hilbert space.

Furthermore, two additional physical moti-
vations reinforce this choice: (i) similar to ho-
mogeneous scalar fields used in inflation and
quintessence models, ψ(t) represents a dynamic
degree of freedom associated with vacuum ge-
ometry and the evolution of the cosmologi-
cal background; (ii) its operator interpretation
naturally fits within canonical quantum grav-
ity, where time is not an external parameter but
an emergent internal variable — for instance
in the generalization of the Wheeler–DeWitt

equation.
From this perspective, dark matter is not in-

terpreted as an ontologically distinct compo-
nent of the universe, but as one of the harmonic
modes of the field ψ(t), which in turn represents
a coherent fluctuation of the dynamic vacuum.
The distinction between visible matter, dark
matter, and dark energy thus does not derive
from a substantial difference between physical
entities, but from a difference in modal param-
eters — frequency Ωi, phase Φi, and damping
rate Λi — of the same fundamental degree of
freedom associated with chronovibration. As
such, dark matter and dark energy are seen as
specific manifestations of the harmonic struc-
ture of time, fully compatible with the quantum
interpretation of the field ψ̂(t) and the formal-
ism of canonical gravity.

Time is therefore no longer a passive or or-
dering variable, but becomes an observable da-
tum, derived from a primitive quantum field,
subject to fluctuations and interactions. This
allows us to overcome the historical dichotomy
between absolute and emergent time, provid-
ing a theoretical framework consistent with the
symmetries of general relativity and capable of
generating testable predictions.

Starting from a classical model of a damped
harmonic oscillator, a canonical quantization of
the system is developed, defining operators and
commutators, and deriving the quantum equa-
tion of motion. The associated Hilbert space,
the temporal evolution of quantum states, and
the residual field fluctuations — expressed as
the expectation value ⟨δψ2(t)⟩ — are analyzed,
representing one of the key predictions of the
model.

The resulting formalism also allows for the
description of couplings between ψ̂(t) and
known physical fields, such as electromag-
netism and gravity, via a dedicated interac-
tion Lagrangian. From this, scattering cross
sections, amplitudes, and observable parame-
ters are derived, with particular attention to
harmonic modulation effects on the propaga-
tion of gravitational waves — including post-
merger echoes and metric interference — de-
scribed through a chronovibrational transfer
matrix.

The model is also accompanied by a detailed
experimental framework, which includes both
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passive tests — such as with LIGO–Virgo in-
terferometers or ultrastable atomic clocks —
and active experiments, such as the interac-
tion with modulated RF fields in high-intensity
magnetic environments (e.g., ITER). Each pro-
tocol is accompanied by concrete quantitative
predictions, useful for validating or falsifying
the model.

In summary, this work proposes a qualitative
leap in chronovibrational theory, grounding its
structure on solid theoretical bases and a neces-
sary quantum formalization to treat temporal
fluctuations in a physical, measurable, and ex-
perimentally accessible manner. The result is
a unified vision that connects quantum grav-
ity, harmonic cosmology, and time metrology,
opening new conceptual and technological per-
spectives.

Introduction

The core idea of this work is that time can be
described not merely as an external parame-
ter or coordinate, but as a physical degree of
freedom endowed with its own dynamics. In
this perspective, time takes the form of a global
scalar field ψ(t), whose harmonic evolution on
cosmological scales is at the heart of what we
call chronovibration.

The aim is not to propose a metaphysical en-
tity, but to construct a physical formalism that
allows time to be treated as a quantizable field,
subject to interactions and fluctuations, on par
with the other fundamental sectors of physics.
The promotion of ψ(t) to a quantum operator
ψ̂(t) represents, in this context, the necessary
step to describe such fluctuations and to for-
mulate predictions compatible with quantum
mechanics and canonical gravity.

Throughout the text, it will be shown how
this construction fits coherently within various
known theoretical frameworks — including the
Wheeler–DeWitt equation, scalar–tensor mod-
els, and dynamically conformal geometries —
and how it allows us to derive observable effects
such as harmonic metric modulations, gravita-
tional echoes, and drifts in temporal measure-
ment systems.

This work is not merely speculative: it aims
to provide a formal basis for computing quan-
tum observables of the temporal field, introduc-

ing operators, equations of motion, numerical
methods, and experimental protocols capable
of guiding future research toward possible val-
idation (or falsification) of the theory.

On the Philosophical Reasons
for Retaining the Non-Spiral

Chronovibrational Model

A reflection is currently underway regarding
the fundamental mathematical structure of the
Chronovibration model. This reflection is pri-
marily motivated by a philosophical reconsid-
eration of the nature of time. In this per-
spective, time would be better represented not
as a simple oscillation—an alternating move-
ment around a fixed point—but rather as a
continuous circular evolution, a rotational phe-
nomenon with a decaying amplitude.

Following this philosophical view, the scalar
field ψ(t), originally described as a damped
harmonic oscillator:

ψ(t) = Ae−Λt cos(Ωt+ Φ) (1)

could be extended to a damped spiral motion:

ψ(t) = Ae−Λtei(Ωt+Φ) (2)

where A is the initial amplitude, Λ is the damp-
ing coefficient, Ω is the angular frequency, and
Φ is the initial phase.

In this formulation, ψ(t) becomes a complex-
valued function whose modulus |ψ(t)| = Ae−Λt

decays exponentially, while the phase Ωt + Φ
rotates continuously. This structure would re-
flect a more "dynamic" and "evolving" concept
of time, embedding a continuous transforma-
tion rather than a mere to-and-fro oscillation.

However, from a practical physical stand-
point, this philosophical refinement does not
alter the main predictions of the theory. In
both formulations, the key dynamical feature—
the exponential damping of the field—remains
unchanged. Observable consequences, such as
the modulation of spacetime metrics and the
emergence of energetic sectors, are governed by
the decay rate and amplitude evolution, which
are unaffected by whether ψ(t) oscillates or spi-
rals.
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Importantly, however, to preserve the
foundational principle of chronovibra-
tional theory—the existence of a univer-
sal, synchronized cosmic time—it is nec-
essary that the field ψ(t) remains strictly
homogeneous in space. Although a spiral
evolution in time is conceptually admissible,
any nontrivial spatial dependence of the phase
or amplitude would introduce variations across
different regions of the universe, thereby break-
ing the fundamental postulate of global uni-
formity. A spatially varying spiral field would
necessitate a model in which the decay rate
or phase evolution depends on position, un-
dermining the universality of the chronovibra-
tional background and leading to a relativiza-
tion of temporal flow—an outcome fundamen-
tally incompatible with the intended structure
of the theory.

Mathematically, the field is assumed to be of
the form:

Ψ(x, y, z, t) = ψ(t) + ϵ δψ(x, y, z, t), ϵ ≪ 1,
(3)

where δψ(x, y, z, t) represents small localized
deviations (imperfections) and ϵ is a small per-
turbative parameter. The dominant behavior
is governed by ψ(t), ensuring the maintenance
of a global cosmic time, while δψ captures the
small spatial fluctuations we seek to detect ex-
perimentally.

Therefore, at the current stage, we
prioritize the original damped harmonic os-
cillator model, where ψ depends solely on
cosmic time t, ensuring the preservation of
a universal, homogeneous temporal evolu-
tion. The search for small spatial varia-
tions δψ(x, y, z, t)—manifested as experimental
imperfections—does not invalidate the theory;
on the contrary, it provides a potential avenue
to confirm its deeper structure and the exis-
tence of quantized residual chronovibrational
phenomena.

PART I: Theoretical
Structure

1 Quantum Formalism of the
Field ψ(t)

1.1 Quantization and Dominance of
the Temporal Mode

In our approach, the chronovibrational field
ψ(t) is initially conceived as a homoge-
neous scalar field, depending solely on cosmic
time, similar to the models of inflation and
quintessence. However, chronovibration, as a
primordial manifestation of the universe’s tem-
poral dynamics, is not directly observable in
its ideal harmonic modes, but only through
the residual fluctuations caused by cosmic dis-
sipation. This motivates the promotion of the
field from a classical object to a quantum op-
erator ψ̂(t), defined over a Hilbert space. The
chronovibrational field ψ̂(t) thus emerges as a
fundamental degree of freedom through three
physical principles:

1. Temporal Uncertainty.
Analogous to ∆E∆t ≥ ℏ/2, the field ψ̂(t)
satisfies:

∆ψ∆π ≥ ℏ
2e

−Λt

where Λ measures the cosmological damp-
ing.

2. Inflationary Analogy.
Just as the inflaton ϕ generates fluctua-
tions in the CMB, ψ̂(t) would also induce
potentially observable instabilities on cos-
mological scales.

3. Quantum Backreaction.
Interaction with the gravitational vacuum
imposes:

ψ̂(xµ) = ψ̂(t) + δψ̂(x⃗, t)
where δψ̂ represents residual spatiotempo-
ral fluctuations.

To maintain compatibility with quantum
field theory in curved spacetime, the field is
thus generalized into this form, where ψ̂(t)
represents the dominant global mode (zero-
mode), and δψ̂(x⃗, t) introduces spatial fluctua-
tions that can be treated perturbatively. In the
limit of a sufficiently homogeneous cosmologi-
cal background, δψ̂ may be neglected, reducing
the dynamics to the sole quantized temporal
component.
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1.2 Operators and Commutators

We thus promote ψ(t) to a canonical quantum
operator:

ψ(t) → ψ̂(t) (4)

The corresponding conjugate momentum is
defined as:

π̂(t) = ∂L
∂

˙̂
ψ(t)

(5)

with the canonical commutation relations (in
natural units ℏ = 1):

[ψ̂(t), π̂(t′)] = iδ(t− t′) (6)

Here, π̂(t) represents the conjugate momen-
tum of the quantum degree of freedom ψ̂(t),
not of time itself. This distinction is crucial to
avoid conceptual misunderstandings regarding
the role of time in covariant quantum theories.

Canonical quantization then follows from the
effective Lagrangian:

L = 1
2(∂tψ̂)2 − V (ψ̂) + Lint(ψ̂, gµν) (7)

with conjugate momentum:

π̂(t) = ∂L
∂

˙̂
ψ

= ˙̂
ψ + λ

3! ψ̂
3 (8)

The non-canonical commutation relations
(due to cosmological damping) are:

[ψ̂(t), π̂(t′)] = iℏe−Λ|t−t′|δ(t− t′) (9)

1.3 Quantized Field Equation

The classical equation of motion for the field in
a dissipative background is:

d2ψ

dt2
+ 2Λdψ

dt
+ Ω2ψ = 0 (10)

which, under canonical quantization, be-
comes:

d2ψ̂

dt2
+ 2Λdψ̂

dt
+ Ω2ψ̂ = 0 (11)

This equation is formally analogous to that
of a damped harmonic oscillator interacting
with an environment (Caldeira–Leggett-type
models).

The complete equation includes nonlinear ef-
fects and quantum noise:

d2ψ̂

dt2
+ 2Λdψ̂

dt

+Ω2ψ̂ + λ

4! ψ̂
3︸ ︷︷ ︸

Self-interaction

+ ξ̂(t)︸︷︷︸
Vacuum noise

= 0
(12)

where ⟨ξ̂(t)ξ̂(t′)⟩ = ℏΛδ(t − t′) describes the
coupling with the cosmological thermal bath.

The dissipation term Λ accounts for the cou-
pling of the quantized field to the expanding
background. The resulting evolution is non-
unitary, reflecting the effective openness of the
system and justifying the use of mixed states
and density operators in advanced treatments.

1.4 Quantum states and damped
Hamiltonian

We still define the coherent classical back-
ground as

ψ0(t) = Ae−Λt cos(Ωt), ψ̂(t) |0⟩ = ψ0(t) |0⟩ .

For a damped harmonic oscillator the correct
Hermitian generator is the Caldirola–Kanai
Hamiltonian2:

ĤCK(t) = 1
2 e

−2Λt π̂2 + 1
2 Ω2 e2Λt ψ̂2 + λ

4! ψ̂
4

(13)
with canonical momentum π̂ = eΛt ˙̂

ψ, so that
[ψ̂(t), π̂(t)] = iℏ.

The Heisenberg equations derived from (13)
give ¨̂

ψ + 2Λ ˙̂
ψ + Ω2ψ̂ = 0, i.e. the required

damped dynamics.

Perturbative ground state. At each instant
t we can regard ĤCK(t) as an instantaneous
Hamiltonian. To first order in the self-coupling
λ the field operator reads

ψ̂(t) |0⟩ =
[
Ae−Λt cos(Ωt) + O(λ)

]
|0⟩ . (14)

Mode expansion with damping. Us-
ing the damped eigenfunctions uω(t) =

2See G. Caldirola, Il Nuovo Cimento 18, 393 (1941);
H. Kanai, Prog. Theor. Phys. 3, 440 (1948).
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e−Λt
√

2ω̃
e−iω̃t, ω̃ =

√
ω2 − Λ2, the quantum fluc-

tuations decompose as

ψ̂(t) = ψ0(t) +
∫ ∞

0
dω
[
uω(t) b̂ω + u∗

ω(t) b̂†
ω

]
,

(15)
with standard commutators [b̂ω, b̂†

ω′ ] = δ(ω −
ω′).

The explicit time dependence of ĤCK(t) en-
codes the loss of mechanical energy due to cos-
mological damping, while the quantization re-
mains internally consistent.

This state does not coincide with the Fock
vacuum built from the simple harmonic modes
e±iωt, but rather with a displaced vacuum cen-
tered on a damped coherent trajectory. Ex-
citations with respect to this vacuum are de-
scribed by the following mode decomposition,
where the field is expanded in terms of damped
harmonic eigenmodes:

ψ̂(t) = ψ0(t) +
∫ ∞

0
dω
[
uω(t) b̂ω + u∗

ω(t) b̂†
ω

]
(16)

Here, the mode functions uω(t) are given by

uω(t) = e−Λt
√

2ω̃
e−iω̃t, with ω̃ =

√
ω2 − Λ2.

(17)
The operators b̂ω and b̂†

ω satisfy the canonical
commutation relations

[b̂ω, b̂†
ω′ ] = δ(ω − ω′), [b̂ω, b̂ω′ ] = 0, (18)

thus ensuring a consistent quantization scheme
even in the presence of cosmological damping.

The operators âω and â†
ω satisfy the standard

bosonic commutation relations:

[âω, â†
ω′ ] = δ(ω − ω′)

This structure ensures formal consistency
with QFT, while maintaining the 0+1D ap-
proximation.

1.5 Notes on Covariance and the 4D
Extension

The restriction to cosmic time alone should be
understood as a homogeneous limit valid on
cosmological scales. In a fully covariant ver-
sion, the field equation would be:

(
□ + V ′′(ψ)

)
ψ̂(xµ) = 0 (19)

but by neglecting δψ̂, one recovers the purely
temporal dynamics described above. This re-
duction is compatible with current cosmologi-
cal observations and serves as a foundation for
a future extension to 3 + 1 dimensions.

The full 4D extension indeed requires the fol-
lowing form:

(
□ +m2 + λ

2 ψ̂
2
)
ψ̂(xµ) = Ĵ(xµ) (20)

where Ĵ(xµ) represents quantum sources. In
the homogeneous limit:

m2 = Ω2 − Λ2 + O(ℏλ) (21)
This parameter m2 coincides, in the classical

limit, with the effective mass of the field in the
regime of damped harmonic oscillation. When
ψ(t) exactly satisfies the harmonic equation ψ̈+
Ω2ψ = 0, the system is in a state of maximal
coherence: in this case, the harmonic coherence
function defined as

F [ψ(t)] = exp
(
−
∣∣∣ψ̈ + Ω2ψ

∣∣∣) (22)

reaches its maximum value F [ψ(t)] → 1,
which represents the chronovibrational ana-
logue of the unit coefficient in Lorentz trans-
formations. In this limit, the geometric factor
— already discussed in Chapter 2 of the previ-
ous work and revisited later — is given by:

Γharm(t) = 1√
1 − F [ψ(t)]

(23)

As extensively explained, this does not indi-
cate a physical pathology but rather connects
to what was described in Section 1.4 and in
equations 11, 12, and 13.
Conceptual Note. This limiting state, in
which ψ(t) exactly satisfies the harmonic equa-
tion ψ̈+Ω2ψ = 0, represents a state of absolute
dynamical coherence. In this regime:

• The quantized field ψ̂(t) coincides with its
damped classical trajectory ψ0(t), and the
fluctuation ⟨δψ̂2(t)⟩ → 0;

• The expectation value ψ(t) constitutes a
perfectly coherent non-Fockian chronovi-
brational vacuum;
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• Simultaneously, the harmonic coherence
function F [ψ(t)] → 1, and the metric fac-
tor Γharm(t) → ∞, formally diverging and
recovering the unit coefficient of Lorentz
transformations.

In this sense, the “0” initial state of chronovi-
bration and the “1” value of the relativistic
function represent two aspects of the same fun-
damental state of the model, which serves both
as a metric origin and a universal harmonic ref-
erence. Time thus emerges as a quantized field
in perfect coherence with the spacetime met-
ric, and only subsequent misalignments (fluctu-
ations, damping) introduce observable dynam-
ics.

Table 1: Comparison with cosmological observ-
ables
Observable Prediction
CMB fluctuations ∆T/T ∼ 10−5 · δψ/ψ0
Clock drifts ∆ν/ν ∼ 10−18e−Λt

Gravitational waves δh ∼ 10−23√
ℏΩ

2 Coupling with Quantum
Gravity

2.1 Modified Wheeler–DeWitt
Equation

In the framework of canonical quantum grav-
ity, the field ψ̂(t) is treated as an additional
degree of freedom whose dynamics modulate
the internal “flow” of time. We therefore pro-
pose a generalization of the Wheeler–DeWitt
equation: (

Ĥgrav + Ĥψ

)
|Ψ⟩ = 0 (24)

where Ĥgrav is the geometric Hamiltonian
(e.g., FLRW) and Ĥψ is the Hamiltonian as-
sociated with ψ̂(t). In this formalism, time is
not external to the universe but emerges as an
internal quantized degree of freedom.

Unlike the standard interpretation, where
time is absent from the Wheeler–DeWitt equa-
tion, in this model the presence of ψ̂(t) reintro-
duces a notion of internal absolute time that
modulates the global quantum state |Ψ⟩. This

field acts as a “cosmic harmonic basis” onto
which all dynamics are projected, allowing the
equation to be interpreted not as “timeless” but
as constrained by an emergent temporal
dynamics.

In other words, the equation ĤΨ = 0 is
here reinterpreted as compatible with a phys-
ical absolute time, provided that such time is
described by a quantizable scalar field ψ̂(t), in-
ternal to the system and not an external coor-
dinate.

2.2 Derivation of the Quantized
Metric

The field ψ̂(t) acts as a harmonic modulator
of the metric. In analogy with semiclassical
gravity, we introduce the quantized metric:

ĝµν(t) = ηµν
(
1 + ϵψ̂(t)

)
(25)

where ϵ is a small dimensionful parameter.
In the semiclassical average, setting ψ(t) =
⟨ψ̂(t)⟩, we recover the metric deformation con-
sistent with the equivalence principle:

S =
∫
d4x

√
−g

[ 1
16πGR+ 1

2∂µψ∂
µψ − V (ψ)

]

(26)

In the FRW regime, ∂µψ∂µψ = (ψ̇)2, and
the deformation is effectively temporal. The
presence of the term ϵψ̂(t) in the metric in-
troduces harmonic instabilities, gravitational
echoes, and observable shifts in metric phe-
nomena, consistent with the predictions of the
model.

This structure shows how time, if inter-
preted as a quantum field, can directly affect
the spacetime metric, reconciling quantized ge-
ometry with observable temporal dynamics.

2.3 Consistency with Existing Mod-
els

This proposal naturally aligns with:

• inflationary theories that treat quantized
scalar fields on curved backgrounds;

• models of quantum backreaction in semi-
classical gravity (e.g., Sakharov gravity);
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• mini-superspace formulations of the
Wheeler–DeWitt equation;

• dynamical metric theories (e.g., f(R), bi-
metric, Brans–Dicke models).

What distinguishes the present approach is
the interpretation of the field ψ̂(t) not as a
new form of matter, but as the quantization
of time itself. Its fluctuations define a struc-
tural “imprecision” of time, manifesting met-
rically as gravitational echoes, shifts in clock
systems, or modulations in the propagation of
gravitational waves.

The model does not strictly preserve classi-
cal Lorentz symmetry, but reformulates it as a
temporally harmonic symmetry modulated by
the field ψ(t). As already discussed in Chap-
ter 2 of the previously published work, the
traditional unit coefficient in Lorentz trans-
formations is replaced by a dynamic function
Γharm(t), defined as:

Γharm(t) = 1√
1 − F [ψ(t)]

, (27)

which reflects the degree of chronovibrational
coherence of the vacuum. This deformation,
although it modifies the metric in a non-trivial
way, respects causality and preserves the weak
equivalence principle. It therefore represents
a consistent generalization of special relativity,
in which the constancy of the speed of light
emerges as a static limit for ψ(t) → 1.

It is specified that the function F [ψ(t)] in
the definition of Γharm(t) is to be understood
as depending on the expectation value of the
quantum field, that is:

ψ(t) ≡ ⟨ψ̂(t)⟩, (28)

in line with the semiclassical approximation
adopted for the metric deformation. This ap-
proach allows the residual quantum effects of
time to be directly embedded into the geo-
metric structure of spacetime, while remaining
compatible with the effective action and per-
turbative analysis on cosmological scales.

3 Quantum Formalism and
Hilbert Space Structure of

the Field ψ̂(t)
Before examining in detail the possible experi-
mental manifestations of the chronovibrational
field ψ̂(t) — either in passive conditions (in-
variant harmony) or under active disturbance
(as in the proposed ITER experiments) — it
is essential to clarify the theoretical formalism
that makes such quantum behaviors possible.

In particular, all predictions — from the
presence of residual quantum fluctuations to
phase transitions, and harmonic interference
phenomena — derive from the fact that the
field ψ(t) is not treated as a classical func-
tion, but as a quantum operator acting on a
Hilbert space, analogous to operators in stan-
dard quantum mechanics.

This section therefore provides the formal
foundation necessary to correctly interpret the
proposed observables: it introduces the math-
ematical structure of the state space, the con-
struction of the density matrix, and the rep-
resentation of operators in a harmonic basis.
These tools are essential for modeling any co-
herent, measurable, or stochastic evolution of
the field ψ̂(t), and for computing quantities
such as correlations, fluctuation spectra, and
transition probabilities.

3.1 Basis of Temporal States

The Hilbert space Hψ associated with the
chronovibrational field is generated by the tem-
poral eigenstates:

ψ̂(t) |n⟩ = ψn(t) |n⟩ , n ∈ N (29)
The states {|n⟩} form an orthonormal basis:

⟨m|n|m|n⟩ = δmn,
∞∑
n=0

|n⟩ ⟨n| = I (30)

These states represent the discrete harmonic
modes of the field ψ̂(t), each of which may con-
tribute, in quantum superposition, to the ob-
servable behavior of the field.

3.2 Temporal Density Matrix

To describe mixed or non-purely coherent
states of the field, we use the density matrix:
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ρ(t) =
∑
n,m

pnm(t) |n⟩ ⟨m| (31)

Its matrix elements in the temporal basis are:

ρnm(t) = ⟨n| ψ̂(t) |m⟩ = ψn(t)ψ∗
m(t) (32)

The density matrix enables the calculation
of observables such as the temporal mean of
the field, vibrational entropy, and correlations
between modes.

3.3 Operators in the Basis

Finally, we introduce the creation and annihi-
lation operators in the frequency modes of the
field, which satisfy the canonical commutation
relations:

[âω, â†
ω′ ] = δ(ω − ω′) (33)

Their matrix representation in the harmonic
basis is:

âω =


0

√
1 0 · · ·

0 0
√

2 · · ·
0 0 0 · · ·
...

...
... . . .

 , â†
ω = (âω)† (34)

These operators are used to model the quan-
tized temporal evolution of the field, the gener-
ation of excited states, and transitions induced
by external interactions (such as RF fields in
the experimental contexts considered).

4 Fractal–Wavelet Bases and
Quantisation of Deviations
in the Chronovibrational

Field

4.1 Physical motivation

The “chronovibrational deviations” that arise
when the scalar field ψ̂(t) drifts away from
its ideal harmonic motion are governed by
high–frequency fluctuations and strongly lo-
calised structures. To capture temporal lo-
calisation and self–similar structure at once
we adopt an orthonormal wavelet basis whose
mother function has a fractal support. The

construction follows the multiresolution– anal-
ysis (MRA) scheme of Strichartz [1] and Jor-
gensen–Pedersen [2].

4.2 Fractal multiresolution analysis

Let µF be the self–similar measure associated,
e.g., with the Cantor dust3. There exist dis-
crete filters h[ℓ], g[ℓ] ∈ R that generate an
MRA {VJ}J∈Z with the properties [3]:

VJ ⊂ VJ+1,
⋂
J∈Z

VJ = {0},
⋃
J∈Z

VJ = L2(R, µF ).

The scaling function φ(t) and the mother
wavelet ψ(t) are defined as solutions of the re-
finement equations φ(t) =

√
2∑ℓ h[ℓ]φ(2t− ℓ)

(and similarly for ψ).
From the MRA we obtain the orthonormal

family

ψJ,k(t) = 2
J
2 ψ
(
2J t− k

)
, J, k ∈ Z,

which forms a Hilbert basis of L2(R, µF ) and,
via periodic extension, of L2([0, 1]).

4.3 Expansion of ψ̂(t)
Let B = {ψJ,k}J,k be the fractal wavelet ba-
sis. At a fixed time the field ψ̂(t) admits the
expansion

ψ̂(t) =
∑
J ∈Z

∑
k∈Z

cJ,k ψJ,k(t), cJ,k = ⟨ψJ,k | ψ̂⟩.

(35)
Because the basis is orthonormal, ∑J,k |cJ,k|2 =
∥ψ̂∥2.

4.4 Normalisation errors

The global normalisation error is defined as

εnorm(t) =
∣∣∣∑
J,k

|cJ,k(t)|2 − 1
∣∣∣. (36)

To quantify the energy that hides beyond a
given scale we introduce

P>J(t) =
∑
n>J

∑
k

|cn,k(t)|2, (37)

which measures the share of the norm as-
sociated with structures finer than 2−J . If
P>J(t) ≪ 1 the dynamics is “almost harmonic”
down to the scale 2−J .

3We use the Cantor dust only as a pedagogical exam-
ple; the procedure is identical for the Sierpiński gasket,
the Menger carpet, and other classic fractals.
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4.5 Chronovibrational deviation op-
erators

Let L̂ideal denote the unperturbed Lorentz
operator and L̂mod(t) its chronovibrationally
modified counterpart. We set

∆L̂(t) = L̂mod(t) − L̂ideal. (38)

The mean deviation is〈
∆L

〉
t

= Tr
[
ρ(t) ∆L̂(t)

]
, (39)

with ρ(t) = |ψ̂(t)⟩⟨ψ̂(t)| (or the mixed–state
density matrix, if required).

4.6 Illustrative example

Assume an external pulse shifts part of the
norm from the band |J | ≤ J0 to coefficients
with J > J0. If after the evolution P>J0(tf) =
0.07 then 7 % of the chronovibrational energy
resides in structures finer than 2−J0 . To first
order, ⟨∆L⟩ increases proportionally to P>J0 .

4.7 Experimental implications

• Observational experiments — the sta-
tistical distribution of {cJ,k(t)} for undis-
turbed states provides direct informa-
tion on the multifractal structure of the
chronovibrational vacuum.

• Perturbative experiments — RF/laser
sequences can induce controlled scale
jumps (J → J ± 1); by measuring
εnorm, P>J one obtains quantitative tests
of the theory.
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5 Computation of Quantum
Fluctuations

After defining the structure of the Hilbert
space and the operatorial representation of the
chronovibrational field, we can now proceed
with the analysis of one of the model’s most sig-
nificant quantities: the quantum fluctuations of
the field relative to its ground state.

Such fluctuations are the source of all ob-
servable anomalies in the model, from the gen-
eration of stochastic noise in gravitational wave
detectors to temporal variations in metrological
signals. In other words, the quantity ⟨δψ2(t)⟩
describes how much the quantized field ψ̂(t) de-
viates from its average harmonic configuration
ψ0(t) due to intrinsically quantum effects.

5.1 Vacuum Expectation Value

As a first step, we compute the mean value of
the field in the ground state |0⟩, which repre-
sents the minimum energy configuration com-
patible with the quantum conditions imposed
by the model:

⟨0| ψ̂(t) |0⟩ = ψ0(t) (40)

This value, already defined in the formalism
as ψ0(t) = Ae−Λt cos(Ωt), represents the clas-
sical time evolution of the field in the absence
of excitations.

5.2 Quadratic Fluctuations

From the ground state, we can now calculate
the variance of the field, i.e., the mean squared
deviation of the quantized field from the classi-
cal value. This quantity describes the presence
of residual quantum noise even in the vacuum
state:

⟨δψ2(t)⟩ = ⟨0| [ψ̂(t) − ψ0(t)]2 |0⟩ (41)

=
∞∑
n=1

| ⟨n| ψ̂(t) |0⟩ |2 (42)

= ℏ
2Ωe

−2Λt (43)

This result shows that, even in the quantum
vacuum, the field oscillates with a non-zero am-
plitude that decreases over time. This behavior
is a direct consequence of the damped harmonic
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formalism used to quantize ψ(t), and it is re-
sponsible for all residual fluctuations observ-
able in experiments, such as those described in
Sections 4 and 5.

5.3 Temporal Correlation Matrix

To fully model the evolution of the field, it
is useful to calculate the two-time correlation
function, which describes the coherence of fluc-
tuations at two distinct instants t and t′. The
complete correlation matrix includes both sym-
metric and conjugate operator combinations:

G(t, t′) =
(

⟨0| ψ̂(t)ψ̂(t′) |0⟩ ⟨0| ψ̂(t)ψ̂†(t′) |0⟩
⟨0| ψ̂†(t)ψ̂(t′) |0⟩ ⟨0| ψ̂†(t)ψ̂†(t′) |0⟩

)
(44)

In particular, the element G11(t, t′), which
represents the direct temporal correlation of
the field in the vacuum, takes the form:

G11(t, t′) = ℏ
2Ωe

−Λ(t+t′) cos[Ω(t− t′)] (45)

This result is essential to predict harmonic
interference, decoherence, and resonant cou-
pling phenomena in real experimental systems.
The presence of the cosine term indicates that
the field maintains temporal coherence over
short time intervals relative to Λ−1, suggesting
a finite and potentially observable correlation
scale.

6 Coupling with the
Electromagnetic Field

One of the most significant aspects of chronovi-
brational theory is the possibility that the
quantum field of time ψ̂(t), homogeneous and
scalar, may interact directly with known fun-
damental fields, in particular with the elec-
tromagnetic field. This interaction is central
both for the experimental falsifiability of
the model, and for its possible astrophysi-
cal and metrological implications.

In the context of the experiment proposed
in the second part of this work, such as at the
ITER reactor, the coupling between ψ̂(t) and
radiofrequency (RF) waves plays a crucial role.
The coherent modulation of the RF field in a
vacuum and high static magnetic field environ-
ment could act as an external harmonic stim-
ulus to activate chronovibrational fluctuations,

generating measurable signals via precision in-
struments.

6.1 Interaction Lagrangian – Ex-
tended Derivation and Con-
straint Analysis

The interaction between the quantized
chronovibrational field ψ̂(t) and the classical
electromagnetic field can be modeled through
a modification of the variational action,
introducing a time-dependent coupling that
reflects the global influence of the quantum
background field on the vacuum response.

We assume that the field ψ̂(t) is a homoge-
neous scalar operator quantized on cosmologi-
cal scales, and that in the semiclassical regime
its effects result in an effective modulation:

f(t) = 1 + λ⟨ψ̂(t)⟩ (46)

where λ is a coupling parameter with inverse
dimensions relative to ψ̂(t), and ⟨ψ̂(t)⟩ is its
expectation value in the physical vacuum. This
modulation can be interpreted as a variation in
the effective permittivity of the vacuum.

The modified action is therefore:

S = −1
4

∫
d4x f(t)FµνFµν (47)

where:

• Fµν = ∂µAν−∂νAµ is the classical electro-
magnetic tensor;

• f(t) ∈ C1(R) is a time-dependent function
reflecting the dynamics of ψ̂(t).

Equations of motion. Varying the action
with respect to Aµ, we obtain:

∂µ [f(t)Fµν ] = 0 (48)

which generalizes Maxwell’s equations to a
dynamic vacuum. The homogeneous equations
∂[λFµν] = 0 remain unchanged.

Physical interpretation. The function f(t)
can be seen as a time-modulated effective
vacuum permittivity. Even in the absence
of sources, the electromagnetic field evolves in a
dynamic background, giving rise to quantum
harmonic modulations of the vacuum. In
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metrological contexts (e.g., optical clocks, su-
perconducting resonators), a variation in f(t)
implies an observable frequency shift:

∆ν
ν

∼ λ
d

dt
⟨ψ̂(t)⟩ (49)

For λ ∼ 10−15 and harmonic oscillations of
ψ̂(t) of order unity, we estimate ∆ν/ν ∼ 10−12,
a value at the current limit of metrological sen-
sitivity.

Rapid variation regimes. If f(t) exhibits
rapid variations (as in active experiments with
RF sources), it is possible to trigger reso-
nance phenomena, quantum interference, or
nonlinear absorption, potentially observable as
anomalies in spectral peaks or quality factors
of resonators.

6.2 Analysis of Gauge Symmetry –
Soft Breaking and Hamiltonian
Formalism

The introduction of f(t) formally breaks gauge
invariance Aµ → Aµ + ∂µΛ(x), but since the
dependence is purely temporal, the breaking is
soft and can be treated in a controlled way.

The Lagrangian density becomes:

L = 1
2f(t)(E2 − B2)

The conjugate momentum is:

Πi = ∂L
∂Ȧi

= f(t)Ei, Π0 = 0

The primary constraint Π0 = 0 is preserved,
and the Hamiltonian density is:

H = 1
2f(t)ΠiΠi + 1

2f(t)B2 +A0(∂iΠi)

From this, we obtain the modified Gauss
constraint ∂iΠi = 0. As long as f(t) ∈ C1, its
conservation is guaranteed, and the evolution
of the system is constrained and coherent. No
ghosts or dynamical instabilities arise.

6.3 Charge Conservation and Dy-
namical Coherence

Despite the gauge breaking, the global tempo-
ral symmetry of the action is preserved. The
associated Noether current is:

Jν = ∂µ [f(t)Fµν ] (50)

Integrating over space:

d

dt

∫
d3xJ0 = 0

we obtain total charge conservation, a
necessary condition for quantum consistency.

6.4 Classical Limit and Possible Ex-
tensions

In the limit ψ̂(t) → 0, we have f(t) → 1, and
the classical equations are recovered:

∂µF
µν = 0

This approach is compatible with low-energy
limits and the symmetries of standard QED.
In future extensions, local couplings (e.g.,
ψ̂(t)JµAµ) may be considered, which could
arise from loop effects or spontaneous symme-
try breaking, or be relevant in astrophysical
contexts (e.g., FRBs, anisotropic CMB).

6.5 Conclusion

This formulation describes in a dynamically
consistent way the interaction between the
chronovibrational field ψ̂(t) and the electro-
magnetic field, ensuring:

• charge conservation;

• absence of instabilities and ghosts;

• compatibility with high-precision metrol-
ogy;

• experimental testability in controlled en-
vironments (ITER, resonators, atomic
clocks);

• consistency with a harmonic extension of
gauge symmetry.

Science does not require every symmetry to be
sacred; it requires that every violation be moti-
vated, controlled, and verifiable.
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7 Quantum Scattering
Amplitudes and Temporal

Superposition

One of the most relevant consequences of the
coupling between the quantum field of time
ψ̂(t) and electromagnetic radiation is the possi-
bility of observing a process of quantum vibra-
tional scattering, in which a photon interacts
with the field ψ̂(t), inducing a harmonic fluc-
tuation observable in the energy or temporal
domain.

Formally, we consider the process:

γ → γ + ψ

where ψ represents a component of the
chronovibrational field, which may be real
(emission of a fluctuation) or virtual (effective
modulation of propagation). This mechanism
opens the door to transitions between photonic
states capable of probing the existence and
quantum dynamics of time.

7.1 Transition Matrix and Interac-
tion Mechanism

The process is described, within perturbative
formalism, by an effective matrix connecting
the initial photonic state with the final pho-
ton–field coupled state:

M =
(

⟨γ| Lint |γ⟩ ⟨γψ| Lint |0⟩
⟨0| Lint |γψ⟩ 0

)

This structure encodes the transition from
purely photonic states to hybrid states that in-
corporate the dynamical activation of the field
ψ̂(t), which acts as a harmonic modulator of
propagation.

7.2 Cross Section and Temporal De-
pendence

The differential cross section of the process is
given by:

σ(Eγ , t) = λ2

16π ·
E2
γ

Ω2 · e−2Λt

where:

• λ is the harmonic coupling coefficient,

• Eγ is the energy of the incoming photon,

• Ω is the characteristic frequency of the ex-
cited vibrational component,

• Λ represents the decay rate of the field.

The expression shows that the process is fa-
vored at high energies (gamma rays) and at
early cosmological times (small t), due to the
exponential effect of vibrational decay.

7.3 Comparison with the Quantum
Time Flip

A relevant experimental analogy is represented
by the quantum time flip, recently realized by
Strömberg et al.4. In this experiment, a single
photon passes through an optical configuration
in which its temporal evolution is placed in co-
herent superposition between the forward and
backward directions using waveplates and bal-
anced interferometers.

Physically, the photon’s state evolves as:

|ψ⟩T |+⟩C → 1√
2

(
(UV T ) |ψ⟩T |+⟩C

+ (UTV ) |ψ⟩T |−⟩C
)

(51)

where the temporal direction of evolution is
encoded in a coherent control state.

In our formalism, the interaction γ → γ + ψ
can be interpreted as a dynamical generaliza-
tion of this effect: the quantized field ψ̂(t), sub-
ject to harmonic decay, modulates the tempo-
ral evolution probability of the photon, intro-
ducing a vibrational misalignment analogous to
the directional superposition experienced in the
time flip.

This reinterpretation provides a conceptual
bridge between:

• controlled superposed evolution (experi-
ment);

• and the dynamic harmonic modu-
lation (chronovibrational model), which
acts as a “quantum vibrational environ-
ment” responsible for the photon’s phase
transition in time.

4T. Strömberg et al., Experimental superposi-
tion of a quantum evolution with its time reverse,
arXiv:2211.01283v3 (2024).
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Observable and Astrophysical Impli-
cations

The phenomenological implications are mani-
fold:

1. Controlled scattering in RF cavities,
e.g., at ITER, where harmonic modulation
can be tested via excitation of the field
ψ̂(t) with electromagnetic waves at reso-
nant frequency;

2. Selective attenuation of cosmic
gamma photons, potentially observable
as anomalies in the high-energy spectra of
blazars or GRBs, detectable by FERMI
or INTEGRAL;

3. Optical experimentation, where super-
position between temporal directions may
be reinterpreted as interference between
vibrational modes induced by ψ̂(t), offer-
ing a potential testbed in quantum pho-
tonics.

In conclusion, the connection between the
process γ → γ + ψ and the quantum time
flip suggests that the emergence of alterna-
tive or superposed temporal directions can ulti-
mately be described as an observable manifes-
tation of the harmonic time field. Our model
thus provides a quantifiable physical basis for
effects previously considered purely informa-
tional, embedding temporal vibration as a dy-
namic and testable element.

8 Chronovibrational Effects
on Gravitational Wave

Propagation
After analyzing the experimental behavior
of the field ψ̂(t) in electromagnetic contexts
(ITER) and temporal systems (atomic clocks),
a fundamental question arises: how does the
chronovibrational field interact with gravity,
and in particular with gravitational waves?

In the proposed model, the classical gravita-
tional wave, represented by a perturbation hµν
of the flat metric, no longer propagates on a
simple Minkowski background, but on a metric
modified by the harmonic presence of the field
ψ(t). This implies a deformed propagation dy-
namic and the emergence of new phenomena

such as echoes, interference, and spectral in-
stabilities.

8.1 Vibrationally Modified Metric

The spacetime metric, in the simultaneous
presence of a gravitational wave and the
chronovibrational field, takes the form:

gµν = ηµν + hµν + ϵψ(t) ηµν (52)
The term ϵψ(t) represents a global modula-

tion of the metric structure, with cumulative
effects over time.

8.2 Deformed Gravitational Wave
Equation

Substituting this metric into the perturbative
formalism yields a modified equation for the
evolution of the gravitational signal:

□hµν = −16πG
(
Tµν − 1

2ϵ ψ(t)T ηµν
)

(53)

This equation reveals a direct coupling be-
tween the energy–momentum density Tµν and
the chronovibrational field, mediated by ψ(t).
This term introduces harmonic instabilities and
dynamic metric distortions in the propagation
of the wave.

8.3 Chronovibrational Transfer Ma-
trix

When a gravitational wave passes through a
region of spacetime where ψ(t) ̸= 0, its evolu-
tion can be formally described by a harmonic
transfer matrix:

h+
h×
ψ


out

=

1 − α 0 β
0 1 − α β
γ γ 1 − δ


h+
h×
ψ


in

(54)
where the coefficients depend on the crossing

time:

α = ϵ2Ω2

4 t2, β = ϵΩt, (55)

γ = ϵΛ
2 t, δ = Λt (56)

This formalism implies that part of the
gravitational signal can be converted into a
chronovibrational component, and vice versa.
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Physical Interpretation: the Graviton
as a Messenger in a Harmonic Back-
ground

Although not generated by ψ(t), the graviton
— the quantized excitation of the gravitational
field — moves in a background deformed by
chronovibration. This implies:

• An effective temporal variation of the met-
ric;

• Harmonic-dependent propagation;

• A concrete possibility of detecting such
distortions through experiments like
LIGO/Virgo, especially in black hole
post-mergers.

Connection with Experiments (Sec-
ond Part)

This section closes the theoretical loop, con-
necting the two main experimental branches:

• Forced harmonic transitions (RF experi-
ments like ITER);

• Passive signal propagation (astrophysical
experiments on gravitational waves and
the CMB).

Both contexts can be explored using already
existing instruments. If the field ψ̂(t) actually
modulates the metric, even subtly, then global
temporal fluctuations will leave detectable im-
prints in the gravitational waveforms.

This is the core challenge of the theory: to
transform an abstract harmonic model into
measurable and thus falsifiable predictions.

8.4 Fractal Chronovibrational Basis
and Emergent Mass Effects

In this work, we have introduced the construc-
tion of a Hilbert space for the temporal field
ψ(t) based on a discrete fractal numerical basis,
generated through recursive decompositions of
prime numbers. This framework is proposed
as a foundational structure for the quantiza-
tion of the chronovibrational field. Within this
formalism, each quantum state of the field cor-
responds to a node on a fractal graph, with
transitions between these states governed by

structured probabilities rather than stochastic
randomness. This structured fractal approach
allows for precise quantification and prediction
of errors in the chronovibrational field, thereby
opening new avenues for experimental verifica-
tion.

Specifically, as detailed in the chronovibra-
tional quantization model, transitions among
states in the fractal Hilbert space are described
by predictive transition matrices , whose ele-
ments represent the probabilities of transition-
ing from state to state . These matrices are in-
formed by the density and recurrence of prime
decompositions and enable quantifiable predic-
tions of local deviations (errors) from ideal har-
monic evolution. The emergence of mass in this
context is interpreted naturally as arising from
these localized coherence deviations induced by
fractal transitions, a view that aligns coher-
ently with recent ideas proposed by Valamontes
concerning emergent graviton mass from coher-
ence geometry.5.

In fact, Valamontes introduces a broader
conceptual framework where mass and spin,
traditionally considered fundamental proper-
ties of elementary particles, are instead emer-
gent from underlying coherence-based vacuum
geometry. Within this coherence geometry,
termed the Superluminal Graviton Conden-
sate Vacuum (SGCV), mass is identified as
a curvature-induced projection resulting from
localized disruptions in the coherence tensor
. Explicitly, Valamontes defines the emergent
graviton mass as:

m2
g(x) ∼ δ2Cµν(x)

δRαβ, δxλ
, (57)

highlighting the deep interplay between co-
herence, curvature, and mass.

Analogously, in the fractal chronovibrational
model, we define an effective mass emerging
from deviations in local harmonic coherence as:

m2
eff(xµ) ∼ ∆C(xµ), (58)

where quantitatively represents the local co-
herence errors within the fractal Hilbert space.
These coherence errors are directly computable
via the predictive transition matrices and can
thus be empirically verified through precision

5A. Valamontes, "Emergent Graviton Mass from Co-
herence Geometry", 2025.
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metrology, gravitational wave observations, or
specifically designed RF modulation experi-
ments (e.g., ITER).

Crucially, this model naturally explains
why gravitational waves (and consequently
gravitons) remain massless despite coherence-
induced mass effects in other quantum fields.
As Valamontes emphasizes, the graviton is
identified as the minimal coherence-preserving
mode (spin-2) propagating through vacuum ge-
ometry without local coherence deviations [?].
In the fractal chronovibrational formulation,
the graviton remains strictly massless precisely
because its propagation through spacetime cor-
responds to pathways within the fractal Hilbert
space that preserve perfect global harmonic co-
herence, free from fractal-induced coherence er-
rors.

In summary, within this combined theoreti-
cal framework:

• Massive particles arise naturally as
localized coherence defects, quantifiable
as errors in transitions between fractal
Hilbert-space nodes;

• The graviton remains massless, repre-
senting the pure and error-free propaga-
tion of global harmonic coherence across
the fractal vacuum geometry.

This theoretical integration not only pro-
vides a coherent and predictive mechanism for
mass emergence but also remains fully compat-
ible with current observational data confirming
the massless nature of gravitational waves.

9 Numerical Methods for the
Chronovibrational Field

We now propose an approach to address the
computational problem associated with its dy-
namic evolution. In particular, we consider the
discrete evolution of the field as described by
an effective Hamiltonian matrix, truncated to
finite dimension, to obtain a quantized spec-
trum of vibrational frequencies and transitions
between states.

9.1 Foundations for Numerical Mod-
eling: Fractal Bases and Predic-
tive Error Structures

As a necessary preamble to the formal com-
putational methods presented below, it is use-
ful to briefly anticipate the logical foundation
that will guide the numerical modeling of the
chronovibrational field.

Specifically, we introduce the concept that
the discrete structure of the chronovibrational
field can be effectively represented through a
fractal numerical basis, inspired by recursive
prime decompositions as proposed in recent
theoretical developments. In this framework,
each temporal eigenstate of the field corre-
sponds to a node in a recursive prime graph,
and the dynamic transitions between states
are governed by structured probabilities, rather
than uniform randomness.

The predictive utility of this fractal structure
lies in its ability to encode, probabilistically,
the likelihood of deviations (errors) from ideal
harmonic evolution. This becomes particularly
relevant when analyzing the modified Lorentz
constant L̂mod(t) under both observational and
perturbative experimental conditions.

For each pair of discrete temporal states
(pi, pj), we can associate a transition probabil-
ity matrix Mij , constructed based on the local
density and the recurrence frequency of prime
decompositions. These matrices act as predic-
tive maps for possible spontaneous or induced
deviations in the chronovibrational evolution.

Thus, error quantization can be formalized
by evaluating the deviation operator:

∆L = ∥L̂mod(t) − L̂ideal(t)∥,

and computing its expectation value over the
evolving field state:

⟨∆L⟩t = Tr(ρ(t)∆L̂).

This formalism will allow, in future sections,
the construction of both theoretical forecasts
and experimental benchmarks to validate the
chronovibrational field behavior.

In conclusion, the numerical methods de-
scribed below (Hamiltonian diagonalization,
spectrum extraction, operator computation)
must be understood as the technical machin-
ery to realize these theoretical insights: provid-
ing concrete, computable quantities that will
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later be matched against fractal-based predic-
tions of error distributions, both in equilibrium
and perturbed conditions.

9.2 Hilbert Matrix Diagonalization

The quantum dynamics of the chronovibra-
tional field ψ̂(t) is formalized through a tridiag-
onal Hamiltonian matrix, which represents the
harmonic coupling between different quantized
states of the field. This matrix takes the form:

H =


Ω g 0 · · · 0
g 2Ω

√
2g · · · 0

0
√

2g 3Ω · · · 0
...

...
... . . . ...

0 0 0 · · · NΩ

 (59)

where:

• Ω is the fundamental frequency of the
chronovibrational system;

• g is the coupling constant between consec-
utive states;

• N is the finite dimension, chosen to ensure
both numerical convergence and physical
representativeness.

9.3 Explicit Computational Algo-
rithm

To determine the chronovibrational energy
spectrum and related physical observables, rig-
orous numerical steps are applied according to
the following detailed methodology:

1. Matrix Truncation The Hamiltonian
matrix H is truncated to dimension N × N .
The choice of N must strike the right bal-
ance between numerical precision and com-
putational feasibility. Typically, values N ∼
102∇·104 are sufficient to achieve spectral con-
vergence.

2. Lanczos Algorithm The diagonaliza-
tion is performed using the Lanczos algorithm,
which is particularly efficient for large sparse
symmetric matrices. The algorithm proceeds
as follows:

1. A normalized random initial vector q1 is
chosen;

2. Iteratively, new vectors qk+1 are gener-
ated and orthogonalized with respect to
the previous ones using the recurrence re-
lation:

βk+1qk+1 = Hqk − αkqk − βkqk−1 (60)

with coefficients defined by:

αk = qTkHqk, βk+1 = ∥Hqk−αkqk−βkqk−1∥
(61)

3. A reduced tridiagonal matrix is con-
structed, which is easily diagonalizable:

Tk =


α1 β2 0 · · ·
β2 α2 β3 · · ·
0 β3 α3 · · ·
...

...
... . . .

 (62)

Example: Construction of a Predic-
tive Transition Matrix Mij

To illustrate the application of the fractal ba-
sis to numerical modeling, we consider a sim-
ple case where the temporal Hilbert space is
spanned by three prime states |p1⟩ = |11⟩,
|p2⟩ = |17⟩, and |p3⟩ = |23⟩.

Based on the recursive prime structure, the
transition probabilities between these states
can be estimated by the local connectivity and
density of the prime graph. For instance, tran-
sitions between |11⟩ and |17⟩ are favored due
to frequent prime decompositions, while tran-
sitions involving |23⟩ are less probable.

Thus, the predictive transition matrix M can
be schematically written as:

M =


1 − ϵ ϵ 0

ϵ 1 − 2ϵ ϵ

0 ϵ 1 − ϵ

 (63)

where ϵ ≪ 1 represents the small probability
of a transition induced either by spontaneous
fluctuation or external perturbation.

The matrix M is stochastic (the sum of each
row equals one) and approximately symmetric
under the assumption of near-reversible transi-
tions.
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This construction exemplifies how the recur-
sive fractal architecture translates into concrete
numerical tools, usable in the Hamiltonian evo-
lution and in the quantization of chronovi-
brational deviations. In full-scale simulations,
larger matrices derived from deeper levels of
the fractal graph will be employed.

3. Extraction of Eigenvalues and Eigen-
vectors From the reduced matrix Tk, using
standard methods (e.g., QR decomposition),
the eigenvalues En and eigenvectors |n⟩ are ex-
tracted. These eigenvalues represent the energy
spectrum of the chronovibrational field, while
the eigenvectors provide the state basis used for
computing observables.

4. Computation of Operator Matrix Ele-
ments Using the eigenvectors |n⟩, the matrix
elements of relevant physical operators, such as
the field operator ψ̂(t) or its conjugate momen-
tum π̂(t), are computed as:

⟨m| Ô |n⟩ =
∑
i,j

cmiOijcnj (64)

where cmi and cnj are the components of the
eigenvectors in the chosen original basis, and
Oij is the matrix representation of the physical
operator.

9.4 Interpretation of Results

The final outcome of the numerical diagonal-
ization allows a quantitative interpretation of:

• The characteristic frequencies of the sys-
tem;

• The amplitude of quantum fluctuations
under vacuum conditions;

• The transition probabilities between dif-
ferent quantum states, which are crucial
for the design and interpretation of the
proposed experiments (such as ITER and
LIGO/Virgo data analyses).

This detailed analysis, supported by the nu-
merical approach just described, constitutes a
fundamental step toward the experimental val-
idation and understanding of the possible out-
comes of the experiments.

PART II: Observational
Proposals

10 Observable Predictions

10.1 Types of Experiments

This section proposes a number of experiments,
both observational and active, aimed at testing
or potentially falsifying the chronovibrational
theory as formulated in its quantum extension.

The proposed experiments are divided into
two conceptually distinct categories, depending
on the global vibrational state of the environ-
ment in which they are conducted:

10.1.1 Experiments in a State of Invari-
ant Harmony

This category includes passive or observational
measurements carried out under conditions of
apparent equilibrium. According to the the-
ory, even in a macroscopically stable harmonic
state, the chronovibrational field ψ(t) is subject
to residual quantum fluctuations. This is re-
flected in a function F [ψ(t)] that, while asymp-
totically approaching one, exhibits small local
deviations:

F [ψ(t)] ≈ 1 − η |δψ(t)|, (65)

where δψ(t) represents the harmonic stochas-
tic component, intrinsically predicted by the
Hilbert-space quantization model. Since no
physical system is ever in perfect equilibrium,
such fluctuations could manifest as anomalous
drifts or low-frequency oscillations in atomic
clocks, stochastic signals in gravitational wave
detectors, or periodic instabilities in precision
spectroscopy.

10.1.2 Experiments in a State of Dis-
turbed Harmony

This category includes active experiments in
which the environment is deliberately per-
turbed by coherent external sources, in order
to stress the field ψ(t) and induce measurable
variations. In such configurations, the dynam-
ics of ψ(t) may depart from the equilibrium
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harmonic regime and enter a state of forced re-
sponse, similar to a system in parametric reso-
nance.

This includes experiments at the ITER re-
actor, where the high intensity of the static
magnetic field and the possibility of coher-
ent radiofrequency (RF) modulation provide
an ideal testbed for harmonic coupling between
the electromagnetic field and the chronovibra-
tional field.

This theoretical distinction between states
of invariant harmony and disturbed harmony
provides a fundamental interpretative guide for
the design of experiments and subsequent data
analysis. In both cases, the central prediction
of the model is that the field ψ(t), while glob-
ally coherent, can undergo quantifiable local
and temporal variations, whose physical con-
sequences — if detectable — would form the
basis for experimental validation of the entire
theory.

10.2 Data Processing and Residual
Noise Analysis

In order to rigorously test the chronovibra-
tional model against experimental data, it is
crucial to implement a systematic methodology
for isolating genuine chronovibrational signals
from instrumental and environmental noise.

The recorded arrival times of photons, or
any time-sensitive observables, are inevitably
affected by a combination of thermal noise,
electronic readout noise, and systematic ma-
chine errors. To discriminate between ordinary
statistical fluctuations and potential chronovi-
brational effects, we adopt the following noise
modeling and residual analysis protocol:

• Noise Characterization: Prior to active
measurements, a calibration phase is con-
ducted where no signal is deliberately in-
jected. This provides a reference dataset
of pure instrumental noise, assumed to fol-
low a Gaussian distribution with measur-
able mean µnoise and variance σ2

noise.

• Experimental Data Acquisition: Ex-
perimental data are collected under the de-
sired operational conditions, resulting in a

measured distribution Pmeasured(∆t) of ar-
rival time deviations or equivalent observ-
ables.

• Statistical Noise Subtraction: Assum-
ing linear superposition, the measured dis-
tribution is modeled as the sum of noise
and potential signal:

Pmeasured(∆t) = Pnoise(∆t) + Psignal(∆t).
(66)

The noise contribution Pnoise(∆t) is sub-
tracted statistically, either by deconvo-
lution techniques or by baseline removal
using the previously characterized noise
model.

• Residual Analysis: The residual dis-
tribution Psignal(∆t) is analyzed through
normality tests (such as Shapiro-Wilk,
Anderson-Darling, or Kolmogorov-
Smirnov) to verify if it significantly
deviates from Gaussianity.

• Spectral and Temporal Analysis: In
case of non-Gaussian residuals, spectral
analysis (e.g., Fourier Transform) and
temporal correlation studies are performed
to identify potential harmonic patterns
or periodic structures compatible with
chronovibrational dynamics.

This methodology ensures that any claimed
deviations from standard noise statistics are
substantiated by a robust data-driven process,
minimizing false positives and enhancing the
credibility of potential chronovibrational sig-
natures. By applying these residual analysis
techniques, the experimental results can be rig-
orously compared with the theoretical predic-
tions of the model, offering a solid basis for its
validation or falsification.

11 Experiments in a State of
Invariant Harmony

(Passive)

11.1 Experiment 1: Chronovibra-
tional Gravitational Noise
Analysis

Experimental Objective This pilot exper-
iment aims to identify anomalous stochastic
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signals in gravitational waves attributable to
fluctuations of the quantum chronovibrational
field ψ̂(t). The goal is to clearly distinguish
chronovibrational noise from standard back-
ground noise in gravitational detector data.

Suggested Experimental Apparatus The
use of publicly available data from the LIGO
and Virgo gravitational interferometers is pro-
posed. These data can be accessed through
the LIGO-Virgo-KAGRA (LVK) collaboration
upon registration and approval of a scientific
project. The current sensitivity of the inter-
ferometers (on the order of 10−23 Hz−1/2 for
strain) is theoretically compatible with the pre-
dicted fluctuation scale of the model.

Theoretical Assumptions and Interpo-
lation Models According to the quantum
chronovibrational model, fluctuations of the
field ψ̂(t) induce quantum metric variations
via:

ĝµν(t) = ηµν(1 + ϵψ̂(t)),
from which an effective gravitational strain

perturbation arises:

δh(t) = ϵ · δψ(t).
Assuming ⟨δψ2(t)⟩ = ℏ

2Ωe
−2Λt, the predicted

spectral amplitude of the signal is:

Sh(f) ≈ ϵ2ℏ
2Ω e−2Λt · δ(f − fψ),

where fψ = Ω/2π represents the dominant
frequency of the field. It is assumed that
Ω ∼ 1013 Hz, with ϵ ∼ 10−4 as a weak coupling
factor.

Methodology and Measurement Dura-
tion

• Acquisition of O3/O4 datasets for at least
6 months.

• Calculation of the power spectral density
Sh(f) via FFT on sliding windows.

• Cross-correlation analysis between multi-
ple interferometers.

• Gaussian or exponential fit on the resid-
ual relative to the theoretical background
Snoise(f).

Detection Threshold and Expected
Values The theoretical minimum detection
threshold is:

δh ≳ 3σnoise ∼ 3 · 10−23,

with a standard deviation σnoise estimated
from the instrumental band. A positive signal
would be indicated by an isolated component
with:

Sh(f)
Snoise(f) ≳ 5,

on a timescale t > 104 s.

Data Analysis and Experimental Uncer-
tainty The total uncertainty ∆h is given by
the quadrature sum:

∆h =
√

∆h2
instrument + ∆h2

model,

where ∆hinstrument can be estimated from
calibration signals and ∆hmodel from uncer-
tainty propagation on ϵ and Λ.

11.2 Experiment 2: Optical Drift in
Ultra-Stable Atomic Clocks

Experimental Objective This pilot experi-
ment aims to detect possible chronovibrational
anomalies through drifts or shifts in the fre-
quency of optical atomic clocks, caused by the
quantum dynamics of the field ψ̂(t).

Suggested Experimental Apparatus
Two ultra-stable optical clocks (e.g., Sr or Yb),
located in different facilities (e.g., INRIM and
PTB), connected via a stabilized optical link
or GNSS synchronization. The experiment
may leverage existing datasets collected in net-
works such as the ITOC project (International
Timescales with Optical Clocks).

Theoretical Assumptions and Interpola-
tion Models The field ψ̂(t) modifies the lo-
cal metric, altering the perceived passage of
time by the clocks. The observed frequency
is therefore:

ν(t) = ν0 ·
√

1 + ϵψ̂(t) ≈ ν0

(
1 + ϵ

2 ψ̂(t)
)
.

The relative fluctuations are thus:
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δν(t)
ν0

= ϵ

2δψ(t),

and the expected standard deviation is:

(
δν

ν

)
rms

= ϵ

2

√
⟨δψ2(t)⟩ ∼ ϵ

2 ·

√
ℏ

2Ωe
−2Λt.

Measurement Methodology and Dura-
tion

• Continuous monitoring over ∼ 1 year with
∆t < 1 s.

• Computation of the autocorrelation func-
tion to detect periodic patterns.

• Fit using exponential regression:

δν(t)
ν0

≈ A0e
−Λt cos(Ωt+ ϕ),

where A0 ∝ ϵ/
√

Ω.

Detection Threshold and Expected Val-
ues With optical clocks operating at 10−18

precision, the signal is detectable if:

(
δν

ν

)
obs

> 3σclock ∼ 3 · 10−18,

which implies that ϵ
√
ℏ/Ω ≳ 10−17.

Data Analysis and Experimental Un-
certainty The total uncertainty ∆(δν/ν) in-
cludes contributions from:

• Intrinsic clock stability (Allan deviation);

• Environmental noise (vibrations, EM in-
terference, temperature);

• Systematic uncertainty in the values of Ω
and Λ.

Data may be extracted from existing cam-
paigns under EURAMET, PTB, NIST, or via
direct access to differential GNSS datasets.

Connection with Recent Advances in
Optical Quantum Communication Re-
cent experimental breakthroughs have demon-
strated the ability to transmit quantum-
coherent optical signals over distances exceed-
ing 250 km using existing commercial fiber in-
frastructures6.

This achievement shows that quantum states
with extremely low decoherence rates can be
preserved over macroscopic distances without
requiring specialized cryogenic conditions.

In this context, the chronovibrational model
predicts that small deviations induced by the
field ψ̂(t) could manifest not only as direct
clock drifts but also as tiny, statistically co-
herent phase shifts or coherence losses along
stabilized optical links.

Such effects, though minute, could become
detectable through advanced autocorrelation
analysis or phase noise measurements, leverag-
ing the same techniques employed in modern
long-distance quantum communication proto-
cols.

Therefore, the growing maturity of quantum
optical infrastructures opens a realistic exper-
imental pathway for the future detection of
chronovibrational deviations via long-baseline
optical networks.

6M. Pittaluga et al., “Long-distance coherent quan-
tum communications in deployed telecom networks,”
Nature, vol. 640, pp. 911–917, 2025. DOI:
10.1038/s41586-025-08801-w.
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11.3 Further Proposed Experiments
for Theoretical Extension

Additional Hypothetical Experi-
ments to Develop

1. Photon–ψ(t) Field Scattering:
Quantum interaction between high-
energy photons and the chronovi-
brational field. Cross section:

σ(Eγ) =
λ2E2

γ

16πΩ2 e
−Λt

→ selective attenuation in the
gamma spectrum (FERMI, INTE-
GRAL).

2. Oscillations or Harmonic Vari-
ations of αEM : Local modula-
tion detectable via ultra-fine spec-
troscopy or clock comparisons.

3. Gravitational Echoes and Post-
Merger GW Instabilities: Tran-
sitions in ψ(t) during collapse pro-
duce secondary signals (“echoes”) in
gravitational wave post-processing.

4. Anomalies in GPS Signals and
Satellite Metrology: Harmonic
deviations in signal propagation
times detectable by IGS, Galileo,
BeiDou.

5. Chronovibrational Effects in
Astrophysical Neutrinos: Fla-
vor misalignments in transient high-
energy events (e.g., SN, GRBs).

All require formal modeling and devel-
opment of predictive thresholds, which
will be addressed in future updates of
this work.

12 Experiments in a State of
Altered Harmony (Active)

12.1 ITER Experiment

Modern facilities for controlled nuclear fusion,
such as the experimental ITER reactor, use su-
perconducting magnets capable of generating
extremely intense magnetic fields, on the or-
der of 13 Tesla. These conditions represent
some of the most extreme physical environ-
ments achievable on Earth and are ideal candi-
dates for experimentally testing unconventional
physical models.
The chronovibrational theory, which posits the
existence of a global harmonic field ψ(t) capa-
ble of locally modulating spacetime dynamics,
predicts that this field may be weakly but mea-
surably influenced by external configurations
characterized by high magnetic coherence. In
particular, it is hypothesized that static high-
intensity structures, such as those present in
ITER, may represent a possible passive cou-
pling with ψ(t), acting as local harmonic per-
turbators.
However, to detect an active response of the
field ψ(t), coherent temporal modulation is re-
quired, which is not achievable with static con-
figurations.
Within the framework of the theory, even min-
imal modulation of ψ(t) may result in observ-
able variations in the function F [ψ(t)], which
in the model locally replaces the Lorentz fac-
tor in relativistic transformations. Although
such variations are extremely small, it is pro-
posed that they may emerge as anomalies in
precision instrumentation signals — tradition-
ally attributed to experimental noise, environ-
mental fluctuations, or systematic effects.

12.2 Chronovibrational Predictions
and Observable Parameters

Chronovibrational theory postulates that the
global scalar field ψ(t), characterized by in-
trinsic harmonic dynamics, can be locally per-
turbed by intense magnetic fields through a
quantum-mediated coupling mechanism. In
particular, a strong magnetic field B could in-
directly interact with ψ(t) via its induced effect
on the local spacetime structure, manifesting as
minimal but measurable metric perturbations.
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To clarify the hypothesized physical mech-
anism, we assume that the interaction occurs
through a local curvature variation produced
by the energy–momentum tensor of the intense
electromagnetic field:

TEMµν = 1
µ0

(
FµαF

α
ν − 1

4gµνF
αβFαβ

)
, (67)

where Fµν is the electromagnetic field tensor
and µ0 the vacuum magnetic permeability.

This local electromagnetic energy and mo-
mentum density could, according to the
chronovibrational model, slightly deform the
local metric gµν , thereby modulating the field
ψ(t) via an effective connection of the form:

Γ(ψ)
µ ∝ ξ TEMµν ∇νψ(t), (68)

with ξ a phenomenological coefficient quan-
tifying the strength of the chronovibra-
tional–electromagnetic coupling.

The predicted variation in the function
F [ψ(t)], which in the model replaces the
Lorentz factor, is:

F [ψ(t)] ≈ 1 − η

∣∣∣∣∣d2ψ

dt2
+ ω2ψ(t)

∣∣∣∣∣ , (69)

with η proportional to ξ and to the magnetic
field intensity B.

Expected Observable Effects

• Micro-variations in ultra-stable atomic
clock frequencies: ∆f/f ∼ 10−18;

• Phase shifts in laser interferometers;

• Variations in apparent gravitational field
(quantum gravimetry);

• Anomalies in inertial mass (atomic inter-
ferometry);

• Variations in atomic transitions sensitive
to α.

All effects depend on the spatial gradient
and intensity of the magnetic field, suggesting
a concrete experimental strategy, but one that
requires stringent systematic controls.

12.3 Experiment at ITER

The proposed experiment exploits the magnetic
and geometric configuration of ITER to test the
sensitivity of the field ψ(t) to external harmonic
perturbations.

Experiment Phases

1. Use of intense static magnetic fields (B ≈
13 T);

2. Integration of dynamic modulation via RF
(ECRH: 170 GHz, ICRH: 40˘55 MHz);

3. Identification of three measurement zones:

• Zone A (Field Center) – maxi-
mum B intensity;

• Zone B (Field Gradient) – spatial
variation of the field;

• Zone C (Control) – shielded outer
zone for differential comparison.

Involved Instruments

• Ultra-stable atomic clocks;

• Optical interferometers (Michelson /
Fabry–Pérot);

• Cold atom quantum gravimeters;

• Atomic interferometers.

Measurements will be synchronized and sta-
tistically processed using advanced techniques
(matched filtering, multichannel coherence,
spectral analysis).

12.4 Vacuum Harmonic RF Experi-
ment

To amplify the interaction, we propose per-
forming the experiment in the absence of
plasma, keeping the ITER toroidal vessel in
vacuum conditions. The RF sources (ECRH
and ICRH) can generate a coherently modu-
lated harmonic field, stimulating a controlled
dynamic response of ψ(t).

12.5 Theoretical Basis of the
RF–ψ(t) Coupling

Equation of the Forced System

ψ̈(t) + 2Λψ̇(t) + ω2
0ψ(t) = ε cos(ωRFt) (70)
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Solution in the Steady-State Regime

ψ(t) = ε cos(ωRFt+ ϕ)√
(ω2

0 − ω2
RF)2 + 4Λ2ω2

RF

,

ϕ = arctan
(

2ΛωRF
ω2

0 − ω2
RF

)
(71)

12.6 Resonance Conditions and Ex-
pected Observables

When ωRF ≈ ω0, the amplitude of ψ(t) is max-
imal. Measurable effects include:

• Frequency shifts in atomic clocks: ∆f/f ∼
10−18;

• Optical phase shifts detectable with inter-
ferometers;

• Apparent metric fluctuations (gravime-
try);

• Inertial anomalies (atomic interferome-
try).

12.7 Detailed Experimental
Methodology

1. Systematic RF frequency scan around
ECRH/ICRH ranges;

2. Simultaneous measurements in zones A, B,
C;

3. Advanced statistical analysis of signals
(coherence, matched filtering);

4. Pre-calibration of instruments in con-
trolled environments.

12.8 Managing Experimental Limi-
tations

Given the complexity of the ITER environ-
ment, the experiment is considered exploratory.
Preliminary tests are proposed in shielded RF
cavities or isolated laboratory environments to:

• Validate measurement protocols;

• Optimize instrument sensitivity;

• Rule out environmental noise and false
positives.

13 Preliminary Laboratory
Experiments

As mentioned above, before proceeding with
large-scale tests in high-energy environments
like ITER, it is advisable and desirable to con-
duct controlled preliminary experiments
in the laboratory, aimed at verifying the sen-
sitivity of the chronovibrational field ψ(t) to
external harmonic stimuli under less extreme
yet scientifically meaningful conditions. While
these experiments cannot replicate the field in-
tensities of a fusion facility, they allow us to
test methodology, calibrate instruments,
reduce systematic uncertainties, and, if
successful, provide empirical justification
for the use of more complex facilities.

13.1 Objective

To verify whether, in the presence of harmon-
ically modulated magnetic fields generated by
RF sources in a shielded and vacuum environ-
ment, it is possible to observe micro-variations
in physical parameters sensitive to the field
ψ(t), analogous to those predicted for ITER,
but on a reduced scale.

13.2 Reduced Experimental Config-
uration

1. Static and Modulated Magnetic Field
A solenoid or Helmholtz pair is used to gener-
ate a static field between 0.5 T and 2 T, inte-
grated with an RF source to produce a coherent
harmonic modulation (e.g., 100 MHz to 1 GHz),
simulating the ECRH/ICRH effect on a smaller
scale.

2. Vacuum Environment The magnetic
cavity is placed in a controlled vacuum cham-
ber (pressure < 10−5 mbar) to eliminate non-
linear couplings due to ionized gases or thermal
effects.

3. Three-Dimensional Measurement
Zones Three zones are defined, analogous to
those proposed for ITER:

• Zone A: field center (maximum inten-
sity);
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• Zone B: field gradient;

• Zone C: control zone (outside the field,
shielded).

13.3 Involved Instrumentation

• Portable atomic clocks (chip-scale, rubid-
ium, cesium);

• Fiber optic interferometers (miniaturized
Michelson);

• Bench-top gravimeters (atomic or optome-
chanical);

• Tabletop atomic interferometers.

13.4 Forcing Equation in Reduced
Conditions

The response of the field ψ(t) under harmonic
stimulation is described by the same forced dif-
ferential equation:

ψ̈(t) + 2Λψ̇(t) + ω2
0ψ(t) = ε cos(ωRFt), (72)

with ωRF values in the MHz or GHz range,
depending on the available sources.

13.5 Expected Predictions and Ob-
servables

Under resonance conditions (ωRF ≈ ω0), the
maximum field response is hypothesized:

• Frequency shift in atomic clocks: ∆f/f ∼
10−17∇ · 10−18;

• Microvariations in interferometric phase:
∆ϕ ∼ 10−4 rad;

• Apparent gravitational fluctuations: ∆g ∼
10−10 m/s2.

These signals may be negligible in conven-
tional experiments, but are coherent in time
and spectrum, making them identifiable via
matched filtering, phase coherence, or statisti-
cal stacking over multiple cycles.

13.6 Measurement Methodology and
Control

1. Continuous scan of RF frequencies around
the value of ω0;

2. Simultaneous measurements in zones A, B,
and C;

3. Thermal, magnetic, and acoustic isolation
of the apparatus;

4. Signal analysis using correlation tech-
niques and adaptive filtering;

5. Validation of “false zero” via phase inver-
sion and modulation deactivation.

13.7 Strategic Value of a Positive
Outcome

A positive (even partial) laboratory result
would:

• Validate the hypothesis of weak harmonic
coupling between ψ(t) and TEMµν ;

• Strengthen the plausibility of measurable
effects in more energetic environments like
ITER;

• Provide preliminary data to calibrate
models and numerical simulations;

• Establish an experimental precedent to re-
quest beam time on large-scale infrastruc-
tures.

Conclusion

The proposal for this tabletop experiment rep-
resents a fundamental phase in the strategy of
active testing under harmony disturbance for
the chronovibrational theory. Even in the ab-
sence of conclusive confirmations, it would pro-
vide the opportunity to fine-tune the method-
ology, evaluate the signal-to-noise ratio, and es-
tablish a concrete experimental foundation for
more advanced studies. Should plausible con-
firmations of the theory already emerge from
this first experimental phase, it would provide a
scientifically stronger motivation for deploying
more complex and energetically costly struc-
tures such as ITER.
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Common-Sense Objection: Why Haven’t These Effects Been
Detected, Despite Valid Scientists Testing and Measuring Daily?

Although the chronovibrational model predicts potentially observable effects — such as
stochastic gravitational fluctuations or atomic clock drifts — these have not yet been
experimentally confirmed. This may be surprising but can be explained by several factors:

• Lack of a predictive model: Until now, no coherent theory indicated what to look
for, where, and in what form. In the absence of a structured theoretical framework,
the hypothesized signals are often ignored or classified as instrumental noise.

• Automatic filtering of weak signals: In gravitational detectors and metrological
networks, fluctuations of extremely small amplitude (∼ 10−18∇ · 10−23) are typically
considered environmental errors or systematic disturbances. As a result, they may
be eliminated by standard data analysis pipelines.

• Bandwidth or sensitivity limitations: For example, LIGO/Virgo interferometers
are sensitive up to tens of kHz, but the natural frequency of the ψ(t) field may lie well
above this range. In other cases, the signal may be present but buried in high-noise
regions.

• Lack of multiple correlations: Some signals, if present, may appear anoma-
lous until they emerge through cross-analysis across multiple observatories (e.g.,
LIGO+Virgo or INRIM+PTB). Lack of statistical replication hinders their consid-
eration.

Therefore, the absence of observations to date does not constitute a refutation of the
model, but reflects the fact that no one has yet looked specifically for these effects using the
proper interpretative and analytical tools. This work proposes precisely such a theoretical
structure to guide those searches in a falsifiable manner.
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Conclusions
This work represents a conceptual and formal extension of the chronovibrational theory originally
proposed in its theoretical form7, outlining a quantization pathway for the temporal field ψ̂(t)
consistent with the principles of quantum mechanics, general relativity, and canonical quantum
gravity.

Through the introduction of a Hilbert space structure, the rigorous definition of operators and
commutators, the construction of a damped quantum equation of motion, and the analysis of
residual fluctuations, a theoretical framework has been provided that yields physically falsifiable
predictions. The formalism also allows for modeling the coupling between ψ̂(t) and known
fundamental fields, such as the electromagnetic and gravitational fields, offering the possibility
of concrete experimental connections through measurements with atomic clocks, gravitational
detectors, and coherent RF fields.

Methodologically, the work proposed an explicit diagonalization of the chronovibrational
Hamiltonian using stable numerical algorithms, paving the way for large-scale computational
simulations and the identification of quantum spectral signatures.

However, this treatment does not claim to be a complete or definitive model. On the con-
trary, it aims to be a first structured attempt to define time as an observable, harmonic, and
dynamic quantum field. The model includes simplifying assumptions — such as global temporal
homogeneity, linear harmonic coupling, and the neglect of spatial fluctuations — that must be
overcome in more complete future studies.

Most importantly, the theory is formulated with a spirit of critical openness: it does not
claim to offer definitive answers, but rather to pose formally precise and experimentally testable
questions. The scientific community is therefore invited to consider this framework as a point
of theoretical and empirical dialogue, contributing with observations, critiques, extensions, or
refutations. In this spirit, quantum chronovibration is not to be seen as a new isolated ontology,
but as a coherent extension of the physical theories currently recognized as shared scientific
knowledge. It seeks to explore a new theoretical frontier, in which the observable reality is
one of the possible harmonic representations of the universe. This approach opens the door
to alternative hypotheses on the nature of time and spacetime, formulated in mathematically
rigorous terms and designed to be verifiable or falsifiable through experiment.

«Hypotheses non fingo, sed experientia demonstranda sunt.»

7Paolo Giordana, Chronovibration Theory and Warp Propulsion: Vibrational Unification of Cosmic Compo-
nents and Metric Implications, Zenodo (2025). https://zenodo.org/records/15240876
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Appendix A: Experimental Predictions and Numerical
Justifications

This appendix presents a structured summary of the observable predictions of the chronovibra-
tional model and an explicit discussion of the numerical parameters and algorithms used.

1. Fundamental Parameters Used for Predictions

Table 2: Reference values for quantitative estimates
Parameter Value Notes

Ω 1013 Hz Harmonic frequency of the ψ(t) field
Λ 10−3 s−1 Chronovibrational damping
ϵ 10−4 Metric–field coupling
λ 10−15 s Electromagnetic–chronovibrational coupling
ℏ 1.05 × 10−34 J · s Reduced Planck constant

2. Justification of Numerical Parameters and Algorithms

The main parameters involved in the model are:

• Ω: natural frequency of chronovibration. Chosen in the range 1012 − 1014 Hz for compati-
bility with Compton scales and quantum vacuum energy density.

• Λ: damping coefficient, related to the decoupling scale of the field. In some models, it is
parametrized as Λ ∼ H0

√
c/LPl.

• g: coupling parameter in the bilinear term of the Hamiltonian (Section 10), chosen in
analogy with weakly coupled oscillators. Calibrated to reproduce energies on the order of
∼ 10−12 − 10−6 eV.

Lanczos Algorithm. The Lanczos algorithm is used for the diagonalization of the harmonic
chronovibrational Hamiltonian (Section 10). The numerical data obtained represent:

• The eigenvalues of the residual vibrational energy after damping;

• The modal amplitudes of the field ψ̂(t) and its projection onto the ground state;

• The dominant frequencies emerging at ω ≈ Ω and ω ≈ 0, as predicted by the dissipative
formalism.

These data can be mapped to experimental observables according to the scheme:

Modal amplitude −→ ∆νclocks, (73)
Vibrational eigenvalue −→ Eresidual, (74)

Frequencies −→ δh(t) in LIGO spectrum (75)
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3. Distinction from Noise and Falsifiable Predictions

The theory predicts coherent harmonic signals, not stochastic, characterized by:

• Recurring peaks in the spectrum;

• Constant relative phase between independent detectors;

• Harmonic modulation in the presence of exponential damping.

These characteristics distinguish it from:

• Thermal noise (white or 1/f);

• Instrumental quantum noise (shot noise);

• Random walk drifts in clocks.

Falsifiability criterion. In the absence of signals compatible with predictions (e.g., δh ∼
10−23 at f ∼ 1013 Hz, or clock drifts ≳ 10−18), over an observation period of at least 1 year and
with inter-instrument coherence above 95
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Appendix B: Comparison with Alternative Theories
Here we summarize the main alternative models currently available and highlight the key dif-
ferences with the chronovibrational approach.

B.1 Main Competing Theories

• Classical Dark Matter and Dark Energy: postulate invisible components with gravita-
tional interaction but do not explain their origin or provide a unified description. Chronovi-
bration instead proposes a common vibrational origin for all sectors.

• Modifications of General Relativity (f(R), MOND, Brans–Dicke): act on the
geometric side of the field equations, often with phenomenological motivations. Our model
introduces a quantized scalar field that harmonically modulates the metric, derived from
an effective action while preserving a Lagrangian structure.

• Quantum theories of time (Page–Wootters, timeless decoherence): offer formal
treatments of time as an emergent entity, but do not predict direct observable effects. Our
approach, by contrast, links the time field to quantifiable laboratory predictions (e.g., clocks,
LIGO).

• Instrumental and thermal noise: described by stochastic statistical models, showing no
phase coherence or persistent harmonic dependence. Chronovibration predicts a harmonic
signal with constant phase detectable in multiple decoupled instruments.

B.2 Conceptual Advantages of the Chronovibrational Model

• Unifies gravity, visible matter, dark matter, and dark energy as vibrational modes of a
single scalar field;

• Formally integrates quantized time into a canonical structure compatible with the
Wheeler–DeWitt equation;

• Provides verifiable and falsifiable predictions, distinguishable from noise and other models;

• Allows for natural extension to gauge interactions, metric–field coupling, and non-stationary
dynamics.

B.3 Limitations and Complementarity

• The chronovibrational model does not exclude the existence of dark matter or dark energy,
but proposes a reinterpretation as different vibrational states of the field ψ(t);

• It can be seen as a harmonic extension of f(R) and Brans–Dicke theories, where the field
potential includes dissipative and quantum components absent in other models;

• It can coexist with standard theories such as the Standard Model or General Relativity,
acting as a background field in analogy with inflation.

In conclusion, the chronovibrational model does not present itself as an antithesis to existing
theories, but as a unifying extension with predictive content and a formally coherent theoretical
basis. Its validity, like any physical theory, depends on its ability to be tested and, if necessary,
falsified.
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Appendix C: Fractal Bases and Predictive Matrices in
Chronovibrational Quantization

Motivation for the Fractal Choice

In the present model, the use of a fractal numerical basis derived from recursive prime decom-
positions is not an arbitrary aesthetic choice but a motivated strategy to discretize the Hilbert
space Hψ associated with the quantized temporal field ψ̂(t).

The prime fractal structure introduced by Ruffini [1] offers a naturally non-Euclidean, re-
cursive, and scale-invariant topology. Such characteristics are particularly suited to model the
expected hierarchical and fluctuating nature of temporal deviations in the chronovibrational
framework.

Unlike uniform bases (e.g., standard Fock bases) that assume isotropy and homogeneity, a
fractal basis allows encoding non-trivial internal correlations and structured transition pathways
between temporal eigenstates.

Comparison with Ruffini’s Work

While Ruffini’s work introduced the concept of recursive prime decompositions to describe fun-
damental structures, our chronovibrational model extends and operationalizes this idea in a
quantum physical context.

Specifically, we:
• Interpret each prime triplet decomposition Φ(p) = (pn, b, c) as a basis element |p⟩ in Hψ.

• Construct a transition matrix Mij based on the connectivity of the fractal graph.

• Use these matrices to predict and quantify deviations (chronovibrational errors) in both
observational and perturbative experimental scenarios.

Thus, Ruffini’s fractal primes are not just a mathematical curiosity but become dynamic and
predictive structures within a full physical model.

.1 Predictive Transition Matrices: Extended Example

As a concrete illustration, consider a basis composed of five prime states:

|p1⟩ = |3⟩ , |p2⟩ = |5⟩ , |p3⟩ = |7⟩ , |p4⟩ = |11⟩ , |p5⟩ = |17⟩ .

Based on the recursive prime structure, the estimated transition probabilities might yield a
matrix:

M =


1 − 2ϵ ϵ ϵ 0 0
ϵ 1 − 3ϵ ϵ ϵ 0
ϵ ϵ 1 − 3ϵ ϵ ϵ
0 ϵ ϵ 1 − 2ϵ ϵ
0 0 ϵ ϵ 1 − 2ϵ

 (76)

where ϵ ≪ 1 represents a small transition probability.
Properties of this matrix:
• It is approximately symmetric.

• Each row sums to 1 (stochastic matrix).

• Neighboring primes are more strongly coupled (direct decompositions).
Such a structure reflects the fractal connectivity: transitions are easier along frequent decom-

positions and suppressed otherwise.
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Physical and Computational Relevance

These predictive matrices serve two complementary roles:

1. Physical role: Modeling the spontaneous or induced evolution of the field ψ̂(t) through
probabilistic pathways.

2. Computational role: Providing structured input for the numerical diagonalization of the
Hamiltonian, stability analysis, and simulation of experimental scenarios.

In large-scale simulations, extended matrices derived from deeper layers of the prime graph
will be constructed, enabling a more realistic modeling of quantum chronovibrational dynamics.

Suggested Numerical Parameters for Initial Simulations

For practical implementation of the initial computational models, the following reference pa-
rameters are suggested:

Parameter Value Notes
Fundamental Frequency Ω 1013 Hz Chronovibrational base frequency

Damping Coefficient Λ 10−3 s−1 Cosmological damping rate
Transition Probability ϵ 10−4 Inter-state transition weight

Matrix Dimension N 100 Truncated Hilbert space size
Coupling Constant g 10−6 eV Hamiltonian coupling between states

Table 3: Reference numerical parameters for chronovibrational field simulations.
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