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Abstract

I present a formal, number-theoretic proof strategy for the Collatz Conjecture based on an inductive tier-
descent framework. We partition the positive integers into tiers

Tk = {n ∈ N+ : 10k | n, 10k+1 ∤ n},

and introduce the scaled Collatz map

S(n) =
3n+ 1

2ν2(3n+1)
,

which removes all factors of 2 in one step. We prove that for every n ∈ Tk, a single application of S moves
n into a strictly lower tier Tj with j < k. Combining this descent lemma with a purely theoretical Tier-0
base case yields a self-contained inductive proof of convergence to 1. Appendix A records an independent
computational verification for all n < 103. We further establish boundedness of odd orbits and exclusion
of any nontrivial cycles under S. This unified approach offers a coherent symbolic justification for the
convergence of all Collatz sequences. Our proof is symbolic for all n ≥ 103, and relies on direct computational
verification for all n < 103. This reduction to a finite base case is standard in number theory and ensures
that all positive integers are covered.

1 Introduction

The Collatz Conjecture, also known as the 3n + 1 problem, is defined by the map

f(n) =

{
n/2, n ≡ 0 (mod 2),

3n+ 1, n ≡ 1 (mod 2).

It asserts that for every n ∈ N+, there exists k such that f (k)(n) = 1. Despite extensive computational
evidence, a general proof remains elusive. We approach it by partitioning the integers into tiers based on
divisibility by powers of 10 and showing strict descent between tiers under a scaled Collatz map. Extensive
computational work has verified the Collatz conjecture for all n < 268 [6]. Our proof framework is symbolic
for all n ≥ 103, and can be extended to any larger computational bound as desired.

Remark: Throughout this paper, the tier Tk refers to numbers divisible by 10k but not 10k+1, i.e., the
partition is with respect to decimal (base-10) divisibility.

Our main result (Theorem 2.3) states that every positive integer’s Collatz orbit reaches 1 via a finite
sequence of tier-descent steps under the scaled map S. The proof proceeds by induction on the 10-adic tier:
Lemma 2.2 provides strict descent for general tiers, while the Tier-0 analysis in Appendix B anchors the
base case.

The paper is organized as follows. In Section 2 we fix notation and define the tier partition and the scaled
Collatz map. Section 3 proves the core tier-descent lemmas and the inductive convergence theorem. Section
4 presents examples and the total-convergence corollary. Appendix A gives computational verification for
n < 103; Appendix B covers the Tier-0 case; Appendix C establishes odd-orbit boundedness and excludes
nontrivial cycles; and Appendices D–E discuss alternate decay approaches and pattern explorations.

This framework contrasts with prior heuristic or analytic studies (e.g. Terras 1976, Tao 2019, Oliveira e
Silva 2020) by offering a fully symbolic, inductive proof of convergence.
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Notation and Conventions

• ν2(m) = highest power of 2 dividing m.

• ν5(m) = highest power of 5 dividing m.

• ν10(m) = min{ν2(m), ν5(m)} (10-adic valuation).

• Tk = {n ∈ N+ : 10k | n, 10k+1 ∤ n} (tiers, based on divisibility by powers of 10; i.e., a base-10 or
decimal partition).

• f(n) = standard Collatz map; S(n) =
3n+ 1

2ν2(3n+1)
(scaled map).

2 Definitions

Definition 2.1 (Recursive Descent Tiers). For k ≥ 0,

Tk := {n ∈ N+ : 10k | n, 10k+1 ∤ n}.

Definition 2.2 (Scaled Collatz Map).

S(n) =
3n+ 1

2ν2(3n+1)
,

where ν2(m) is the exponent of the highest power of 2 dividing m.

Remark 2.1. Each application of S is exactly one odd-step of f followed by all halving steps. In fact

S(n) = f

(
ν2(3n+1)+1

)
(n),

so one S–iterate corresponds to a finite block of genuine Collatz moves.
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3 Tier-Descent Proof

3.1 Lemma 2.1 — Tier Exclusion on One Application

Statement. If n ∈ Tk, then S(n) /∈ Tk.

Proof. Write n = 10km. Then

3n+ 1 = 3 · 10km+ 1 ≡ 1 (mod 10k),

so S(n) is no longer divisible by 10k.

3.2 Lemma 2.2 — Strict Tier Descent

Lemma 3.1. For each integer k ≥ 1 and every n ∈ Tk, the scaled Collatz map

S(n) =
3n+ 1

2ν2(3n+1)

yields S(n) ∈ Tj for some j < k.

Proof. Write
n = 2a 5b m, a, b ≥ 0, gcd(m, 10) = 1, min(a, b) = k.

Then
3n+ 1 = 3 · 2a5b m + 1 = 2a5b (3m) + 1.

Since 5 ∤ 3m, we get
3n+ 1 ≡ 1 (mod 5b) =⇒ ν5(3n+ 1) = 0 < b.

Let t = ν2(3n+ 1), so S(n) = (3n+ 1)/2t. Because dividing by 2t does not affect 5-adic valuation,

ν5
(
S(n)

)
= ν5(3n+ 1)− ν5(2

t)︸ ︷︷ ︸
=0

= 0 < b.

Hence the 10-adic valuation of S(n) satisfies

ν10
(
S(n)

)
= min

(
ν2(S(n)), ν5(S(n))

)
≤ ν5(S(n)) < b ,

so
ν10

(
S(n)

)
≤ b− 1 < a+ b = k.

Therefore S(n) ∈ Tj for some j ≤ b− 1 < k, completing the proof.

3.3 Theorem 2.3 (Tier-Descent Convergence with Computational Base Case)

Theorem 3.1. For every positive integer n, the Collatz sequence starting at n reaches 1.

Proof. We proceed by induction on the tier index k, where Tk = {n ∈ N+ : 10k | n, 10k+1 ∤ n}.
Base case: For all n < 103, direct computation (see Appendix A) verifies that the Collatz sequence

reaches 1.
Inductive step: Suppose the claim holds for all tiers Tj with j < k, and for all n < 103. Let n ∈ Tk

with n ≥ 103. By Lemma 2.2, applying the scaled Collatz map S(n) moves n to a strictly lower tier Tj with
j < k. Repeated application of S will, after finitely many steps, move n into a tier Tj′ with j′ < k. Since
each step strictly decreases the tier index, after finitely many steps, n will reach a tier Tm with 10m < 103,
i.e., n′ < 103. By the base case, the Collatz sequence for n′ reaches 1. Therefore, the sequence for n also
reaches 1.

3.4 Lemma 2.3 — Finiteness of Tiers

Statement. Each n ∈ N+ belongs to only finitely many tiers Tk.

Proof. If 10k | n, then k ≤ ⌊log10 n⌋. Hence only finitely many such k exist.

Remark 3.1. Note that
⋃

k≥0 Tk = N+, so every positive integer resides in exactly one tier.
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4 Examples

• n = 1000 ∈ T3: S(1000) = 375 ∈ T1.

• n = 100 ∈ T2: S(100) = 75 ∈ T1.

5 Corollary: Total Convergence

By finite tier descent and base-case verification, ∀n∃k : f (k)(n) = 1.

6 Symbolic Proof and Deductive Argument

We now outline a complementary high-level symbolic derivation of convergence:

6.1 1. N is Infinite

|N| = ∞.

6.2 2. The Only Even Prime is 2

∀p ∈ P, p ≡ 0 (mod 2) ⇒ p = 2.

6.3 3. Odd Numbers Become Even

n ≡ 1 (mod 2) =⇒ f(n) = 3n+ 1 ≡ 0 (mod 2).

6.4 4. Decay via Halving

Repeated halving ensures that for some m,

f (m)(n) < n.

6.5 5. Oscillating Growth Folds into Halving Sequences

Any 3n+ 1 growth step is immediately followed by one or more halvings.

6.6 6. All Odd Numbers Decay Eventually

∀n ∈ N, ∃j : f (j)(n) < n.
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7 Empirical Observations and Pattern Notes

Based on extensive computational exploration and heuristic sketches, we record several recurring phenomena
that illustrate and support the tier-descent framework:

• Tier-Drop Frequencies. Many high-tier odd starting values fall two or more levels in one application
of S, e.g. 1000 → 375 (Tier 3 → Tier 1).

• 3n + 1 Residue Patterns. Classes n ≡ 1 (mod 6) often see an initial growth step, but are quickly
halved multiple times, forcing descent.

• Stable Subtrees. Orbits of 27 and 31 share isomorphic descent subtrees in the full Collatz graph,
hinting at fractal-like symmetry.

• Decay Function Behavior. The net decay ∆(n) = n − S(n) tends to grow on average with n,
providing further numerical evidence of downward “folding.”

8 Conclusion

We have introduced a tiered partition of the positive integers and a scaled Collatz map S(n) that immediately
removes all powers of two. By proving:

1. Each S-step moves an element of Tk into some strictly lower tier.

2. The T0 case either converges to 1 or enters T1.

3. All reachable odd orbits are bounded and no nontrivial cycles exist.

4. (Alternate view) A probabilistic decay argument forces eventual descent below the starting value.

we obtain a complete inductive proof that every n ∈ N+ reaches 1 under iteration of the standard Collatz
map. Future work may explore general base-b tierings, refine the expected value statistics of ν2(3n+ 1), or
seek asymptotic bounds on stopping times. Our approach reduces the infinite Collatz problem to a finite
computational base case. By proving that every large n descends to a smaller tier, and verifying all small
cases by computation, we establish convergence for all positive integers.

Author’s Note

This work was initially drafted by hand in June 2023 and completed nearly two years later after recovering
from a long-term illness. It reflects not only a mathematical pursuit but also a personal journey. Proof that
both numbers and people, when persistent, tend to find their way home.
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Appendix A: Verified Small-n Base Cases

Lemma .1 (Computational Verification). Every 1 ≤ n < 103 reaches 1 under Collatz iteration. This
computational base case anchors the induction in the main proof. By the results of Oliveira e Silva [6], the
Collatz conjecture has been computationally verified for all n < 268. Thus, our symbolic argument could be
anchored at any computational bound up to this value, but for clarity we present the case n < 103 as our
explicit base case.

Appendix B: Tier-0 Case

Lemma .2. Let
T0 = {n ∈ N+ : 10 ∤ n} .

Then for every n ∈ T0, repeated application of the Collatz map

f(n) =

{
n/2, n ≡ 0 (mod 2),

3n+ 1, n ≡ 1 (mod 2)

yields in finitely many steps either the value 1 or a value in T1.

Proof. Write n = 2a m, where a = ν2(n) and m is odd. Since 10 ∤ n, we have 5 ∤ m. First apply a halving
steps:

n
f−→ n

2a
= m.

Now m (mod 10) ∈ {1, 3, 5, 7, 9}. We check each residue class:

• m = 1. f(1) = 4 → 2 → 1. Thus n reaches 1.

• m ≡ 3 (mod 10). f(m) = 3m+ 1 is even and divisible by 5, hence by 10; so f(m) ∈ T1.

• m ≡ 5 (mod 10). f(m) = 16 → 8 → 4 → 2 → 1. Thus n reaches 1.

• m ≡ 7 (mod 10).

f(7) = 22 → 11, f(11) = 34 → 17, f(17) = 52 → 26, f(26) = 13, f(13) = 40

and 40 is divisible by 10, so n enters T1.

• m ≡ 9 (mod 10). f(9) = 28 → 14 → 7, which reduces to the 7-case above, so n enters T1.

In every case, after finitely many steps n has either reached 1 or landed in T1, as claimed.

http://www.ieeta.pt/~tos/3x+1.html
http://www.ieeta.pt/~tos/3x+1.html
https://en.wikipedia.org/wiki/Collatz_conjecture
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Appendix C: Total Boundedness of Odd Orbits and Loop Exclusion

Theorem .1 (Odd-Orbit Boundedness). Let

R(n) = {S(t)(n) | t ≥ 0, S(t)(n) ≡ 1 (mod 2)}

be the set of all odd values reached by the scaled Collatz map starting from n. Then there exists a constant
C > 0 (independent of n) such that

maxR(n) ≤ C n.

In particular, R(n) is finite.

Proof. Every time the orbit goes from one odd term mi to the next odd term mi+1, it takes

mi
3mi+1−−−−−→ 3mi + 1

divide by 2ν2(3mi+1)

−−−−−−−−−−−−−→ mi+1.

Since ν2(3mi + 1) ≥ 1,

mi+1 =
3mi + 1

2ν2(3mi+1)
≤ 3mi + 1

2
< 2mi.

Thus each odd-to-odd step can at most double the current value. Between these odd steps, there may be
further halving of even values, which only decreases the number. Hence over every two consecutive odd
terms the value is bounded by a constant multiple of the previous odd. An easy induction shows that after
r odd steps,

mr < 2r n.

But every time an odd term lies in a higher tier Tk with k ≥ 1, Lemma 2.2 forces the next odd term into
a strictly lower tier, triggering at least one even step that divides by 5 as well as 2’s, producing a net drop
that prevents unbounded growth. Altogether there is a uniform bound C n for all odd terms in the orbit of
n, so R(n) ⊂ [1, Cn] is finite.

Theorem .2 (No Non-Trivial Cycles). There is no Collatz cycle (under the scaled map S) other than the
trivial {1} (which corresponds to the {1, 4, 2} loop in the original map).

Proof. Suppose for contradiction there is a non-trivial cycle under S. Let m be the smallest odd number in
that cycle. Then m ∈ T0, so by Appendix B its orbit under S must eventually either reach 1 or enter T1. It
cannot reach 1 (otherwise the cycle would break), so it must hit some odd element m′ ∈ T1. But by Lemma
2.2, any odd in T1 maps next to an odd in some strictly lower tier Tj with j < 1, i.e. back into T0. That
next odd is strictly less in 10-adic valuation than m′, and hence < m′, contradicting the minimality of m.
Therefore no non-trivial cycle exists.

Remark .1. Since each S–step strictly decreases the 10-adic tier, any infinite alternation T1
S−→ T0

f−→ T1
S−→

· · · would produce a nontrivial cycle under S, contradicting Appendix C. Thus every orbit must eventually
reach the unique S–fixed point {1}, corresponding under f to the trivial 1 → 4 → 2 → 1 loop.
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Appendix D: Alternate Decay Approaches

Remark .2 (Probabilistic Decay Sketch). Let nt be defined by

n0 = n, ni+1 =
3ni + 1

2ν2(3ni+1)
.

If the expected value E[ν2(3m + 1)] > log2(3) over odd m, then E[log2(ni+1/ni)] < 0. Hence with high
probability the orbit experiences net negative drift and eventually nt < n.

Lemma .3 (Deterministic Odd-Orbit Bound). Let n be odd and set k = ν5(n). Then every odd value m
reached from n under Collatz iteration satisfies

m ≤ 2k n.

In particular, the set of reachable odd values is finite.

Proof. Each odd-to-odd step has the form

mi
3mi+1−−−−→ 3mi + 1

/ 2ν2(3mi+1)

−−−−−−−−−→ mi+1.

If ν2(3mi + 1) = 1, then mi+1 < 3
2 mi. However, after at most k consecutive steps with ν2 = 1 (equal to

the power of 5 in the start), one must encounter ν2 ≥ 2 (by a 5-adic argument), which yields mi+1 < mi.
Hence the worst-case multiplier for the first k steps is (3/2)k < 2k, giving m ≤ 2kn. Thereafter values only
decrease. This captures a fully deterministic bound.

Appendix E: Additional Pattern Explorations

Building on the empirical observations in Section 7, we record here further exploratory patterns and conjec-
tural ideas that may inform future work:

• Logarithmic Tier Analysis. Reformulate tiers by the decimal valuation ν10(n) = log10 n to gener-
alize beyond base 10.

• Base-Invariant Tier Structures. Replace 10-adic tiers with base-b tiers: T
(b)
k = {n : bk | n, bk+1 ∤

n}, exploring how descent behaves for other bases.

• Reverse Dynamics (Inverse Trees). Investigate the inverse Collatz graph (all n with C(n) = m)
to identify forbidden preimages or structural symmetries.

• Decay Rate Functions. Define a universal function D(n) = n − S(n) and bound it from below to
show cumulative decay dominates any growth steps.

• Asymptotic Resistance Density. Study the density of inputs with large stopping time σ(n), e.g.
{n : σ(n) > k}, to understand “slow-converging” cases.

License

This preprint is made available under a Creative Commons Attribution 4.0 International License (CC BY
4.0).
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