A Proof of the Collatz Conjecture Using Sequence Mapping

Immense Raj Subedi

Department of Mathematics, Gaindakot Namuna

Corresponding Author: immerserajsubedi@gmail.com

2025-03-31

Abstract

The Collatz Conjecture states that for any positive integer n, the sequence defined by the transformation

 $T(n) = \begin{cases} \frac{n}{2} & \text{if } n \text{ is even} \\ 3n+1 & \text{if } n \text{ is odd} \end{cases}$

eventually reaches 1. This paper presents a novel approach to proving the conjecture by categorizing natural numbers and establishing a key mapping between odd numbers and numbers of the form 12k - 4. This structural approach simplifies the problem and leads to a comprehensive proof.

Keywords: Collatz conjecture, sequence mapping, number theory, convergence proof.

1. Introduction

The Collatz Conjecture, also known as the 3x+1 problem, has remained an open question in mathematics for decades. The problem's simple formulation belies its deep complexity. Numerous computational checks have verified the conjecture for large values of n, yet a general proof has remained elusive. This paper introduces a novel structural approach to proving the conjecture by mapping odd numbers to a specific class of even numbers, ultimately showing that all numbers reduce to 1.

2. Methods

To establish a structured proof, we categorize numbers into classes and analyze their behavior under the Collatz transformation. We focus on:

- The transformation properties of odd numbers.
- The reduction of numbers of form 12k 4.
- The induction-based proof for convergence.

We utilize mathematical induction and structural number mapping to confirm that all numbers eventually reach 1.

3. Results

3.1 Preliminaries

We define the Collatz function T(n) as:

$$T(n) = \begin{cases} n/2 & \text{if } n \text{ is even} \\ 3n+1 & \text{if } n \text{ is odd} \end{cases}$$

A crucial aspect of the conjecture is understanding how odd numbers transition into even numbers under T. This leads us to a key mapping that simplifies our analysis.

3.2 Odd Number Mapping to 12k - 4 Form

For any odd number 2n - 1, we define the corresponding even number 12n - 4 such that:

$$T(2n-1) = T(12n-4) = 6n - 2.$$

To illustrate this mapping, consider the following examples:

Mapping of odd numbers to 12n - 4 form

Odd Number	Collatz Step	Corresponding
(2n - 1)	T(2n-1) = 3n+1	12n - 4
1	3(1) + 1 = 4	8
3	3(3) + 1 = 10	20
5	3(5) + 1 = 16	32
7	3(7) + 1 = 22	44
9	3(9) + 1 = 28	56
11	3(11) + 1 = 34	68

3.3 General Proof of the Mapping

For arbitrary odd 2n - 1:

$$T(2n-1) = 3(2n-1) + 1 = 6n - 2,$$

$$T(12n-4) = \frac{12n-4}{2} = 6n - 2.$$

This demonstrates that all odd numbers share the same sequence path as their mapped 12n - 4 counterparts.

4. Discussion

4.1 Proof for 12k - 4 Numbers

All numbers of form 12k - 4 converge to 1 under *T*.

Proof. Let $n_k = 12k - 4$. We show $\exists m < k$ such that $T^{(3)}(n_k) \le n_m$:

$$T(n_k) = 6k - 2 \quad \text{(even),}$$

$$T^{(2)}(n_k) = 3k - 1 \quad \text{(parity split).}$$

Case Analysis:

1. k odd (k = 2m + 1):

$$3k - 1 = 6m + 2$$
 (even),
 $T^{(3)}(n_k) = 3m + 1.$
Since $3m + 1 < 12m - 4 = n_{m+1}$ $\forall m \ge 1.$

2. k even (k = 2m):

$$\begin{array}{l} 3k-1=6m-1 \quad ({\rm odd}),\\ T^{(3)}(n_k)=18m-2 \quad ({\rm even}),\\ T^{(4)}(n_k)=9m-1.\\ \\ {\rm Then}\; 9m-1<12m-4 \quad {\rm when}\; m>1. \end{array}$$

Base Case: For k = 1 $(n_1 = 8)$: $8 \rightarrow 4 \rightarrow 2 \rightarrow 1$.

By complete induction, all n_k descend to smaller n_m until reaching $n_1 = 8$'s trajectory.

5. Conclusion

This paper established a structured proof of the Collatz Conjecture by categorizing natural numbers into predictable forms and showing their inevitable convergence to 1.

6. References

- Lagarias, J. C. (1985). *The 3x+1 problem and its generalizations*. American Mathematical Monthly, 92(1), 3-23.
- 2. Terras, R. (1976). *A stopping time problem on the positive integers*. Acta Arithmetica, 30, 241-252.
- Everett, C. J. (1977). *Iteration of the number-theoretic function*. Advances in Mathematics, 25, 42-50.