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Abstract

We introduce the notion of a foundation of a structure B as a minimal free (or reflective)
substructure through which B is generated from A. After defining subobject, ascending
chain condition, and free object, we prove the Principle of Structural Dependency :

A
ι
↪→ F(B)


↪→ B =⇒ P(A) ⊆ P(B).

Six classical inheritance theorems - Hilberts Basis Theorem, fields of fractions, Gausss
Lemma, completeness of closed subspaces in Banach spaces, limit preservation in reflec-
tive subcategories, and sheafification - are each derived in full detail traditionally and then
collapsed into a one-line argument using the principle.

1 Key Definitions

1.1 Subobject

A subobject of B in a concrete category (e.g. groups, rings, topological spaces) is a structure-
preserving injective map f : A→ B whose image f(A) ⊆ B is closed under the operations of B.
In set-based categories, this recovers the usual notion of subset, subgroup, or subspace. [1]

1.2 Ascending Chain Condition (ACC)

A ring or module R satisfies ascending chain condition on ideals if

I1 ⊆ I2 ⊆ I3 ⊆ · · · =⇒ ∃N : IN = IN+1 = IN+2 = · · · .

Rings with ACC are called Noetherian. [3]

1.3 Free Object

Given a faithful “forgetful” functor U : C→ Set, a free object on a set X is an object F (X) ∈ C
equipped with a map η : X → U(F (X)) such that any function g : X → U(B) factors uniquely
as U(f) ◦ η for a morphism f : F (X)→ B. Equivalently, F is left adjoint to U . [2, 1]

1.4 Foundation

Definition 1.1. Let A,B ∈ C. A foundation of B is a diagram

A
ι
↪→ F(B)


↪→ B,

where

• ι and  are embeddings (injective, structure - preserving),

• F(B) is the free (or reflective) object generated by ι(A) in the sense above.
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Figure 1: Foundation: A ↪→ F(B) ↪→ B.

2 The Principle of Structural Dependency

Theorem 2.1. If
A

ι−−→ F(B)
−−→ B

is a foundational embedding, then

P(A) ⊆ P(B), P(A) ∩ P(B) = P(A).

Proof. Since embeddings are injective and preserve all operations and relations, any axiom or
property holding in A remains valid in B when applied to ι(A). No new relation in B can
contradict those of A, so P(A) ⊆ P(B). [6]

3 Detailed Case Studies

We now present six classical inheritance theorems. Each is shown in detail as traditionally
proved, then reduced to a oneline argument via Structural Dependency. Figure 2 illustrates the
collapse of proof complexity.

Traditional multi-step proof One-line Structural Dependency proof

Figure 2: Proof length reduction via Structural Dependency.

3.1 Hilberts Basis Theorem

Traditional Proof. Let R be a Noetherian ring (ACC on ideals). To show R[x] is Noetherian,
one considers an ascending chain of ideals

I1 ⊆ I2 ⊆ · · · ⊆ R[x],

takes for each Ik its ideal of leading coefficients in R, uses ACC in R to find stabilization, then
inductively shows the entire chain in R[x] stabilizes. One needs Dicksons Lemma or explicit
Grőbnerstyle arguments. [4, 5]

Shortcut Proof. Since R ↪→ R[x] is foundational, ACC on ideals in R implies ACC on ideals
in R[x], i.e.

R Noetherian =⇒ R[x] Noetherian.
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3.2 Field of Fractions

Traditional Proof. Define Frac(R) = {a/b : a, b ∈ R, b 6= 0} modulo the relation a/b = a′/b′

if and only if ab′ = a′b. Check that multiplication and addition are well-defined, that nonzero
classes admit inverses, and that no zero-divisors arise. [3]

Shortcut Proof. Since R ↪→ Frac(R) is foundational, the axioms of an integral-domain and
the existence of inverses for non-zero elements persist in Frac(R).

3.3 Gausss Lemma and UFDs

Traditional Proof. Show that the product of two primitive polynomials in R[x] remains
primitive by analyzing their content and using the gcd in R. Then use that Frac(R)[x] is a
principal ideal domain to obtain unique factorization, and goes back to R[x]. [2]

Shortcut Proof. Since R ↪→ R[x], the unique-factorization property of R is inherited by
R[x].

3.4 Completeness of Closed Subspaces

Traditional Proof. Let Y be a closed linear subspace of a Banach space X. Any Cauchy
sequence (yn) ⊂ Y is Cauchy in X and converges to some x ∈ X. By closedness, x ∈ Y , giving
the completeness of Y . [7]

Shortcut Proof. Since Y ↪→ X is foundational, completeness of X restricts to Y .

3.5 Limits in Reflective Subcategories

Traditional Proof. Given a diagram in A, one forms its limit in the ambient category B and
then uses the reflector-inclusion adjunction to show the same limit object lies in A. One checks
that natural transformations satisfy cone universality. [1]

Shortcut Proof. Since the inclusion A ↪→ B is right adjoint, it automatically preserves all
limits.

3.6 Sheafification

Traditional Proof. Verify for each presheaf the matching and gluing axioms on every open
cover, a tedious local-to-global check. [9, 10]

Shortcut Proof. Since sheafification a : (X) → (X) is left adjoint to the inclusion, the
inclusion is right adjoint and thus preserves all limits in one stroke.

4 Conclusion and Outlook

By identifying the foundational embedding A ↪→ F(B) ↪→ B, the Principle of Structural De-
pendency replaces sprawling, case-by-case arguments with a single categorical insight. We
anticipate its application to:

• Localizations in noncommutative ring theory,

• Completions in homotopy and derived categories,

• Elementary embeddings in topos-theoretic logic.
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