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Abstract

We present a novel reformulation of the Collatz conjecture by leveraging the binary structure of positive
integers, focusing on the sequence of odd terms. Through an analysis of leading and trailing bit-position
dynamics, we derive a substantial lower bound of at least 17,026,679,261 steps for any hypothetical non-trivial
cycle, offering new insights into its structural constraints.

1 Introduction

The Collatz conjecture, also known as the 3n+ 1 problem, asserts a universal property of sequences generated
by a simple iterative rule applied to positive integers. For any n ∈ N, define the sequence {ci} with c0 = n and

ci+1 =

{
ci
2 if ci ≡ 0 (mod 2),

3ci + 1 if ci ≡ 1 (mod 2).
(1)

The conjecture posits that for every n, there exists a finite k such that ck = 1, after which the sequence cycles as
1, 4, 2, 1. Despite its elementary formulation, the conjecture remains open, resisting resolution despite extensive
study via diverse approaches. There have been extensive work about the lower bound for the minimal cycle
length of an existing non-trivial cycle [Eliahou, 1993], [Simons and de Weger, 2010] and [Hercher, 2018].

This paper uses a reformulation that shifts focus to the binary structure of the sequence terms as introduced
in [Kiemes, 2025]. We define a sequence {ai} based on odd parts, where a0 is the odd part of n, and each
subsequent term is computed as ai+1 = 3ai + 2t(ai), with t(ai) being the position of the least significant 1-bit
in ai. This allows to write a closed formula for the elements ai. Based on this closed form, we derive a lower
bound for the cycle length of any non-trivial cycle in the Collatz sequence.

2 Preliminaries

To analyze the Collatz conjecture through its binary structure, we define a sequence based on odd parts and
their bit positions. This section introduces the essential notation and concepts used in our reformulation, with
additional definitions provided as needed in later sections.

2.1 Binary Representation and Odd Part

For a positive integer n ∈ N, let its binary form be n =
∑k

i=0 bi2
i, with bi ∈ {0, 1} and bk = 1. Define the

trailing bit position t(n) = min{i ≥ 0 : bi = 1}, the index of the least significant 1-bit. The odd part of n is:

m(n) =
n

2t(n)
, (2)

which is odd and satisfies m(n) = m(n · 2i) for i ∈ N0. For example, if n = 40 = 1010002, then t(n) = 3, and
m(n) = 40/23 = 5. This function captures the number of trailing zeros in the binary representation of n, a key
element in our sequence’s dynamics.
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2.2 Leading Bit Position

The leading bit position l(n) corresponds to the highest 1-bit in n’s binary form, defined as:

l(n) = ⌊log2 n⌋. (3)

This satisfies 2l(n) ≤ n < 2l(n)+1. For n = 40, l(n) = ⌊log2 40⌋ ≈ ⌊5.322⌋ = 5, since 25 = 32 ≤ 40 < 64 = 26.

3 Reformulation of the Collatz Conjecture

We propose a reformulation of the Collatz conjecture that highlights the odd terms and their binary structure,
focusing on transitions between odd numbers to simplify the sequence’s dynamics. Recall the Collatz sequence
{ci} with c0 = n and

ci+1 =

{ci
2

if ci ≡ 0 (mod 2),

3ci + 1 if ci ≡ 1 (mod 2).

Each ci even step divides by 2 until an odd number is reached, while ci odd steps apply 3ci+1, which is always
even. For our analysis, we introduce a refined sequence that omits trivial even steps and focuses solely on the
odd components:

Corollary 1. For any n ∈ N, let a0 = m(n) and

ai+1 = 3ai + 2t(ai), (4)

where ai is the odd part of ci. The sequence {ai} is defined for all i ∈ N0 and satisfies: where t(ai) is the trailing
bit position from Section 2. The sequence {ai} is defined for all i ∈ N0, and the Collatz conjecture holds if there
exists some i such that m(ai) = 1.

Proof. Given ai = m(ai) · 2t(ai), we express the Collatz sequence term as:

ci = ai = m(ai) · 2t(ai) (5)

The trivial Collatz steps (division by 2) eliminate the factor 2t(ai) in t(ai) iterations, yielding:

ci+t(ai) = m(ai) (6)

Applying the non-trivial Collatz step:

ci+t(ai)+1 = 3 ∗m(ai) + 1 (7)

To obtain the next term in the {ai} sequence, we reintroduce the trailing bit factor:

ai+1 = ci+t(ai)+1 · 2t(ai) (8)

= (3 ∗m(ai) + 1) · 2t(ai) (9)

= 3 ∗m(ai) · 2t(ai) + 2t(ai) (10)

= 3 ∗ ai + 2t(ai) (11)

which matches the recurrence in (4). If m(ai) = 1, then ai = 2t(ai), a power of 2. For subsequent terms,
m(ai+1) = 1. In the Collatz sequence, powers of 2 divide repeatedly to 1, entering the cycle 1, 4, 2, 1. Thus,
m(ai) = 1 ensures convergence to the trivial cycle.

Remark 1. If ak = 2n for some k, then ak+1 = 3 · 2n + 2n = 2n+2, which is again a power of 2. Conse-
quently, the trivial Collatz cycle 1, 4, 2, 1 in the sequence {ci} corresponds to a sequence of powers of 2 in {ai}:
2n, 2n+2, 2n+4, . . ., with m(ai) = 1 for all i ≥ k.

This reformulation bypasses even steps, enabling a focused study of the binary dynamics of ai through the
leading and trailing bit positions l(ai) and t(ai) in later sections.
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4 Closed Form of the Reformulation

Our reformulation enables a closed-form expression for ak:

Lemma 1. For k ∈ N0, the sequence {ak} satisfies:

ak = 3ka0 +

k−1∑
i=0

3k−1−i · 2t(ai), (12)

where 2t(ai) = ai/m(ai).

Proof. We verify the base case for k = 1:

a1 = 3a0 + 2t(a0),

and from (12):

a1 = 31a0 +

0∑
i=0

31−1−i · 2t(ai) = 3a0 + 302t(a0) = 3a0 + 2t(a0),

which matches. For the general step, assume (12) holds for k. Then:

ak+1 = 3ak + 2t(ak) = 3

(
3ka0 +

k−1∑
i=0

3k−1−i · 2t(ai)

)
+ 2t(ak).

Distribute and adjust indices:

ak+1 = 3k+1a0 + 3

k−1∑
i=0

3k−1−i · 2t(ai) + 2t(ak)

= 3k+1a0 +

k−1∑
i=0

3k+1−1−i · 2t(ai) + 3k+1−1−k · 2t(ak)

= 3k+1a0 +

(k+1)−1∑
i=0

3(k+1)−1−i · 2t(ai),

which is (12) for k + 1.

5 Basis for Lower Bounds

Assume there exists a sequence {ai} with a0 ∈ O (the set of positive odd integers) such that m(ai) ̸= 1 for all
i ∈ N0, where ai+1 = 3ai + 2t(ai). Denote the set of all elements in this sequence as V = {ai : i ∈ N0}. This
implies d(ai) = l(ai)− t(ai) > 0 for all ai ∈ V, since d(ai) = 0 would yield ai = 2t(ai) and m(ai) = 1.

If such a V exists, we select an element a0 ∈ V with the property:

d(a0) ≤ d(a) for all a ∈ V, (13)

defining d0 = d(a0) as the minimal bit distance in V.

In case a0 forms a non-trivial cycle, then the minimal distance allows to define a lower bound for the cycle.

6 Bounds on Leading Bit Position

Under the assumption of a non-converging sequence {ai} with d(ai) ≥ d0 > 0 for all i (Section 5, (13)), we
derive upper and lower bounds for ai and l(ai) as functions of i. Recall the recurrence:

ai+1 = 3ai + 2t(ai).
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Since d(ai) = l(ai)− t(ai) ≥ d0, we have 2t(ai) = 2l(ai)−d(ai) ≤ 2l(ai)/2d0 . For i = 0:

a1 = 3a0 + 2t(a0) ≤ 3a0 +
2l(a0)

2d0
≤ 3a0 +

a0
2d0

= a0

(
3 +

1

2d0

)
, (14)

using 2l(a0) ≤ a0 (since a0 < 2l(a0)+1). Generalizing:

ai+1 ≤ 3ai +
ai
2d0

= ai

(
3 +

1

2d0

)
, (15)

yielding the closed-form upper bound:

ai ≤ a0

(
3 +

1

2d0

)i

. (16)

A lower bound follows from the dominant term in the closed form (12) with its sum s =
∑

being s ∈ N0:

ai ≥ 3ia0. (17)

Applying l(ai) = ⌊log2 ai⌋, we bound:

⌊log2 a0 + i log2 3⌋ ≤ l(ai) ≤ ⌊log2 a0 + i log2

(
3 +

1

2d0

)
⌋. (18)

Rewriting the upper bound:

l(ai) ≤ ⌊log2 a0 + i log2 3 + i log2

(
1 +

1

3 · 2d0

)
⌋. (19)

The average growth rate of l(ai) per step lies between log2 3 ≈ 1.585 and log2(3 + 1/2d0), which approaches
log2 3 as d0 increases. For d0 ≥ 1, the difference is small; computational results up to 268 [Barina, 2020] imply
no such V exists with d0 ≤ 67, and therefore:

log2

(
3 +

1

267

)
− log2 3 < 3.26× 10−21.

7 Lower Bound for non-trivial Cycle Length

Consider a non-trivial cycle of length k. Then there exists a minimal m ∈ N such that

ak = a0 · 2m and in general ai·k = a0 · 2i·m for i ∈ N. (20)

The value of m is actually m = l(ak), but in the following we keep m.

Utilizing the closed-form expression 12, we can rewrite the cycle condition as follows:

a0 · 2m = ak = 3ka0 +

k−1∑
i=0

3k−1−i · 2t(ai) (21)

a0 ·
(
2m − 3k

)
=

k−1∑
i=0

3k−1−i · 2t(ai) (22)

To proceed, we establish an upper bound for 2t(ai). Recall that t(ai) = l(ai)− d(ai), where d(ai) ≥ d0. Thus,

2t(ai) = 2l(ai)−d(ai) (23)

≤ 2l(ai)−d0 (24)

≤ 2
⌊log2 a0+i log2 3+i log2

(
1+ 1

3·2d0

)
⌋−d0 (25)

Further, we can approximate by eliminating the terms inside the floor function:

2t(ai) ≈ 2⌊i log2 3⌋ ≈ 3i (26)
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Substituting this approximation in (21), we obtain

a0 ·
(
2m − 3k

)
=

k−1∑
i=0

3k−1−i · 2t(ai) (27)

≤
k−1∑
i=0

3k−1−i · 3i (28)

=

k−1∑
i=0

3k−1 (29)

= k · 3k−1 (30)

Dividing by 3k, we arrive at

a0 ·
(
2m

3k
− 1

)
≤ k

3
(31)

This yields the following lower bound for the cycle length:

k ≥ 3a0 ·
(
2m

3k
− 1

)
(32)

This relation is not straightforward, as the lower bound for k depends on k itself. Consequently, we need to
test all fractions depending on k until left and right side are in sync.

The relation of k and m with 2m > 3k > 2m−1 showing the pairs k,m where the ratio 2m/3k reaches a new
minimum towards 1 have been calculated and are listed in Table 1. The table shows the pairs k and m with
the corresponding ratio 2m/3k and the logarithm of the ratio. The last column shows the logarithm of k.

Due to the computational results [Barina, 2020] we can assume:

a0 > 268 and thus log2(3a0) > 69.585 (33)

To determine the minimal cycle length k, we solve for k such that log2 k ≥ log2(3a0) + log2
(
2m/3k − 1

)
, using

log2(3a0) > 69.585. From Table 1, consider k = 6291, with log2 k = 12.6191 and log2(2
m/3k − 1) = −10.6334.

This implies:

log2 k ≥ 69.585− 10.6334 = 58.9516,

but log2 6291 ≈ 12.6191 < 58.9516, so k = 6291 is insufficient. Testing larger k, we find k = 6586818670, with
log2 k ≈ 32.6169 and log2(2

m/3k − 1) ≈ −36.5235, yielding:

log2 k ≥ 69.585− 36.5235 = 33.0615,

since 32.6169 < 33.0615, this k is the smallest satisfying the bound. Thus, the minimal non-trivial cycle length
is k +m = 6586818670 + 10439860591 = 17.026.679.261 including the trivial Collatz-operation (division by 2).

In [Eliahou, 1993] we find for Card Ω several values of our table related to m: 301994 for 239, 17087915 for
248, 102225496 for 249 and 187363077 for 252. This makes sense due to the similar underlying interplay of 2m

and 3k. But our investigation shows that the cycle length in [Eliahou, 1993] should include the trivial Collatz
operation, leading to higher values for lower bound of non-trivial cycle lengths.

Our lower bound of 17.026.679.261 is confirmed by [Prost-Boucle, 2015] in its equation (12).

If m is chosen to be higher by e.g. one: 2m−1 > 3k > 2m−2. Then the term k · 3k−1 need to increase to being
a multiple of a0 and in the magnitude of a0 · 2m to satisfy the equality. In this scenario 2m > 2 · 3k and we
get k · 3k−1 ≈ k

3 · 2m. Consequently k ≈ 3a0, which would be much larger than the previous lower bound.
Consequently, we ignore this case.

If the Collatz conjecture is (computational) proven for higher values of a0, then we can derive directly the lower
bound for non-trivial Collatz-cycle length from the table 2. If for example the Collatz conjecture is proven for
a0 ≤ 272, then the lower bound for non-trivial cycle length is increasing to 186.265.759.595.
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log2
(
2m/3k − 1

)
log2 k log2 a0 k m k +m

23.362 -26.2877 48.0647 10781274 17087915 27.869.189
25.9427 -26.7706 51.1283 64497107 102225496 166.722.603
26.8168 -27.5018 52.7336 118212940 187363077 305.576.017
27.3572 -29.058 54.8302 171928773 272500658 444.429.431
28.5666 -33.1373 60.1189 397573379 630138897 1.027.712.276
32.6169 -36.5235 67.5554 6586818670 10439860591 17.026.679.261
36.0684 -37.4008 71.8842 72057431991 114208327604 186.265.759.595
37.0009 -40.0174 75.4333 137528045312 217976794617 355.504.839.929
39.696 -40.2223 78.3333 890638885193 1411629234715 2.302.268.119.908
40.5801 -40.4608 79.4559 1643749725074 2605281674813 4.249.031.399.887
41.1243 -40.7473 80.2866 2396860564955 3798934114911 6.195.794.679.866
41.5185 -41.1052 81.0387 3149971404836 4992586555009 8.142.557.959.845
41.8278 -41.5821 81.8249 3903082244717 6186238995107 10.089.321.239.824

Table 2: Relation between a0 and lower bound of non-trivial cycle length

8 Conclusion

This study introduces a novel reformulation of the Collatz conjecture by utilizing the binary structure of sequence
terms, defined by the recurrence ai+1 = 3ai + 2t(ai). Through a closed-form expression for the sequence {ai},
presented in Lemma 1, we enable a comprehensive analysis of bit-position dynamics, emphasizing the interaction
between leading and trailing bit positions. Our approach provides a fresh perspective on the Collatz conjecture,
shifting from numerical iterations to binary dynamics, thereby simplifying the examination of cycle conditions.
In Section 7, we establish a lower bound of at least 17,026,679,261 steps for any non-trivial cycle, indicating
that such cycles, if they exist, must be extraordinarily long and several orders of magnitude greater than the
number of bits in the binary representation of the initial a0. This result, supported by computational evidence
[Barina, 2020] and consistent with prior studies [Prost-Boucle, 2015, Eliahou, 1993], highlights the stringent
constraints on potential counterexamples.

The substantial lower bound strengthens the conjecture’s resilience against non-trivial cycles, supporting con-
vergence to the trivial cycle 1, 4, 2, 1 for all starting values. Future research could explore the growth rate of
t(ai) to further substantiate the Collatz conjecture’s validity. As noted in [Kiemes, 2025], stochastic bit analysis
and its impact on the growth rate of t(ai), combined with the significantly large cycle length, may contribute
to progress toward a complete proof of the conjecture.
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k m ≈ 2m/3k log2
(
2m/3k − 1

)
log2 k

1 2 1.333333333333333333 -1.58496 0
3 5 1.185185185185185185 -2.43296 1.58496
5 8 1.053497942386831275 -4.22437 2.32193
17 27 1.039318248343855660 -4.66866 4.08746
29 46 1.025329407756841110 -5.30304 4.85798
41 65 1.011528851808608503 -6.43861 5.35755
94 149 1.009418849414340658 -6.73023 6.55459

147 233 1.007313248387464218 -7.09527 7.19967
200 317 1.005212039546930401 -7.58394 7.64386
253 401 1.003115213730841665 -8.32645 7.98299
306 485 1.001022761796411767 -9.93331 8.25739
971 1539 1.000979063991867884 -9.99631 9.92333
1636 2593 1.000935368094871156 -10.0622 10.676
2301 3647 1.000891674105338314 -10.1312 11.168
2966 4701 1.000847982023186090 -10.2037 11.5343
3631 5755 1.000804291848331222 -10.28 11.8262
4296 6809 1.000760603580690448 -10.3606 12.0688
4961 7863 1.000716917220180515 -10.4459 12.2764
5626 8917 1.000673232766718169 -10.5366 12.4579
6291 9971 1.000629550220220161 -10.6334 12.6191
6956 11025 1.000585869580603248 -10.7371 12.764
7621 12079 1.000542190847784186 -10.8489 12.8958
8286 13133 1.000498514021679740 -10.9701 13.0165
8951 14187 1.000454839102206673 -11.1024 13.1278
9616 15241 1.000411166089281757 -11.248 13.2312
10281 16295 1.000367494982821764 -11.41 13.3277
10946 17349 1.000323825782743471 -11.5925 13.4181
11611 18403 1.000280158488963658 -11.8015 13.5032
12276 19457 1.000236493101399109 -12.0459 13.5836
12941 20511 1.000192829619966613 -12.3404 13.6597
13606 21565 1.000149168044582960 -12.7108 13.732
14271 22619 1.000105508375164945 -13.2104 13.8008
14936 23673 1.000061850611629368 -13.9809 13.8665
15601 24727 1.000018194753893029 -15.7461 13.9294
47468 75235 1.000010929714251747 -16.4814 15.5347
79335 125743 1.000003664727390306 -18.0579 16.2757

190537 301994 1.000000064507504852 -23.886 17.5397
10781274 17087915 1.000000012206982855 -26.2877 23.362
64497107 102225496 1.000000008734393951 -26.7706 25.9427

118212940 187363077 1.000000005261805059 -27.5018 26.8168
171928773 272500658 1.000000001789216179 -29.058 27.3572
397573379 630138897 1.000000000105843488 -33.1373 28.5666
6586818670 10439860591 1.000000000010123125 -36.5235 32.6169
72057431991 114208327604 1.000000000005510890 -37.4008 36.0684

137528045312 217976794617 1.000000000000898654 -40.0174 37.0009
890638885193 1411629234715 1.000000000000779694 -40.2223 39.696
1643749725074 2605281674813 1.000000000000660733 -40.4608 40.5801
2396860564955 3798934114911 1.000000000000541772 -40.7473 41.1243
3149971404836 4992586555009 1.000000000000422811 -41.1052 41.5185
3903082244717 6186238995107 1.000000000000303850 -41.5821 41.8278

Table 1: List of Minima for the pairs k and m
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