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Abstract

It is shown how generalized Clifford algebras allows to construct the
N -th root of N -order linear differential equations involving massless and
massive particles. Such generalized Dirac-like equations differ from the
ones in the literature. Explicit solutions are found. We conclude with
some remarks on pseudo-unitary algebras, modular arithmetic, modified
Dirac equations, Octonions, and the Okubo algebra.
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1 Generalized Clifford Algebras and Dirac-like
Equations

Extensive studies on Clifford algebras, the generalizations, and their physical
applications were made for about a decade starting 1967, under the name of L-
Matrix Theory, by Ramakrishnan and his collaborators [1], [2]. In this work we
shall focus on a very special case of these generalized Clifford algebras (GCA)
with ordered ω -commutation relations [1], [2]. In particular, let us begin with

the complex ternary Clifford algebra denoted in two dimensions by Cl
1
3
2 [4], [5]

with two generators e1, e2 obeying

e31 = e32 = e; e1 e2 = ω e2 e1; ω ≡ e
2πi
3 (1)

e is the identity element. ω is the primitive complex cubic root of unity satisfying

ω3 = 1, 1 + ω + ω2 = 0; ω̄ = ω2; ω − ω2 = i
√
3 (2)
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More recently, a natural realization of unitary Lie groups which are im-
portant in physics and other applications, using only operations in generalized
Clifford algebras, and without using the corresponding matrix representations,
has been provided by [5]. Basis-free definitions of the determinant, trace, and
characteristic polynomial in this special class of generalized Clifford algebras
were constructed by [5]. Also, a similar operational procedure to what occurs
in ordinary complex Clifford algebras, was introduced in the definition of Her-
mitian conjugation (or Hermitian transpose) without using the corresponding
matrix representations.

Let us begin with arbitrary element of the complex ternary Clifford algebra
[5]

U =

j,k=2∑
j,k=0

ujk e
j
1 e

k
2 = u00 e+ u10 e1 + u01 e2 + u20 e

2
1 + u02 e

2
2+

u11 e1 e2 + u21 e
2
1 e2 + u12 e1 e

2
2 + u22 e

2
1 e

2
2 (3)

The coefficients of (3) are complex-valued and the complex ternary Clifford

algebra Cl
1
3
2 was shown to be isomorphic to the unitary algebra u(3). In general,

for d = even, the generalized Clifford algebra (GCA) associated with the N -th

root of unity is isomorphic to the unitary algebra u(N
d
2 ) of dimension Nd. [5].

The d = odd case is more complicated because the unitary algebra associated
with the generalized Clifford algebra (GCA) is now given by the direct sum of

N copies of u(N
d−1
2 ). The matrix realization of each one of the ei generators

(i = 1, 2, 3, . . . , d) are given by N
d−1
2 ×N d−1

2 matrices, hence N copies span the
N ×Nd−1 = Nd-dimensional space of the GCA.

From some of the entries of the multiplication table of the ternary Clifford

algebra Cl
1
3
2 like

e2 e1 = ω2 e1 e2; e2 e
2
1 = ω e21 e2; e1 e

2
1 = e; e2 e

2
2 = e (4)

e2 e1 e2 = ω2 e1 e
2
2; e2 e

2
1 e2 = ω e21 e

2
2; . . . (5)

one can show that the cube of the linear differential operator L = e1∂1 + e2∂2,
with ∂1 ≡ ∂

∂x1 , ∂2 ≡ ∂
∂x2 , is equal to a third-order linear differential operator

without any mixed derivatives

(e1∂1 + e2∂2)
3 = ∂31 + ∂32 + (1 + ω + ω2) (∂21 ∂2 + ∂1 ∂

2
2) =

∂31 + ∂32 (6a)

and which results from the null sum of the three cubic roots of unity
1 + ω + ω2 = 0.

In the case of the complex generalized Clifford algebra associated to the N -
th root of unity ω ≡ e2πi/N in d-dimensions, with d generators e1, e2, e3, . . . , ed,
one has the more general relation
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(e1∂1 + e2∂2 + . . . + ed∂d)
N = ∂N1 + ∂N2 + . . . + ∂Nd (6b)

due to the algebraic constraint 1 + ω + ω2 + ω3 + . . . + ωN−1 = 0, and the
commutation relations eiej = ωejei, i < j, i, j = 1, 2, 3, . . . , d. eNi = e.

Thus one can linearize certain N -th order partial differential operators using
the generalized Clifford algebra (GCA) similar to the way that the Clifford alge-
bra helped linearize the second order Klein-Gordon partial differential equation
as shown by Dirac after “squaring” the linear operator (−iγµ∂µ+m)(−iγν∂ν −
m) = −(∂µ∂

µ +m2) in units h̄ = c = 1. See section 7 of [2] for more details.
Therefore, from eqs-(6a,6b) one can infer that by taking the N -th root of

the N -order linear differential operator in the right-hand side yields the linear
operator

∑i=d
i=1 ei∂i. The cubic analog of Laplace and d’Alembert equations with

mixed derivatives were first considered by Humbert [9]

(
∂

∂x
+

∂

∂y
+

∂

∂z
) (

∂

∂x
+ ω

∂

∂y
+ ω2 ∂

∂z
) (

∂

∂x
+ ω2 ∂

∂y
+ ω

∂

∂z
) =

∂3

∂x3
+

∂3

∂y3
+

∂3

∂z3
− 3

∂3

∂x∂y∂z
(7)

Before proceeding we should add some important remarks. (i) One may note
that eq-(6a) differs from eq-(7) due to the presence of mixed derivatives. (ii)
The ternary Clifford algebra depicted above is not the same as the one formu-
lated by Kerner [8] involving the cyclic anticommutator QaQbQc + QbQcQa +
QcQaQb = 3ρabc1 and which is the ternary analog of QaQb + QbQc = 2ηab1.
(iii) The existence and particular properties of the cubic Grassmann and Clifford
algebras studied by Kerner [8] were used to define cubic roots of linear differen-
tial operators which clearly differ from the operators found in this work. For
more on cubic forms and algebras with cubic constitutive relations see [10].

One can introduce mass terms to the above equations (6) as follows. In the
ternary Clifford algebra case one can show that

(e1∂1 + e2∂2 + m) (e1∂1 + e2∂2 + ω m) (e1∂1 + e2∂2 + ω2 m) =

∂31 + ∂32 + m3 (8)

as a result of the algebraic relation 1+ω+ω2 = 0 involving the primitive cubic
root of unity ω.

Given a 3 × 3 matrix representation of the e1, e2 generators and the unit
element e [5]

e1 =

 0 1 0
0 0 1
1 0 0

 (9a)
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e2 =

 1 0 0
0 ω 0
0 0 ω2

 (9b)

e =

 1 0 0
0 1 0
0 0 1

 (9c)

one can study the following three differential equations

(e1∂1 + e2∂2 + m)Ψ(1) = 0 (10a)

(e1∂1 + e2∂2 + ω m)Ψ(2) = 0 (10b)

(e1∂1 + e2∂2 + ω2 m)Ψ(3) = 0 (10c)

Eq-(10a) is the ternary analog of the Dirac equation with Ψ(1) a column matrix
whose three entries (not to be confused with a spinor associated to an ordinary
Clifford algebra) are given by

Ψ(1) =

 ψ1

ψ2

ψ3

 (11)

Eq-(10a) leads to three coupled linear partial differential equations

(∂2 + m)ψ1 + ∂1ψ2 = 0, (ω ∂2 + m)ψ2 + ∂1ψ3 = 0

∂1Ψ1 + (ω2 ∂2 + m)Ψ3 = 0 (12)

In the massive case, m ̸= 0, a solution to eq-(10a) is

Ψ(1) =

 c1 e
α(x1+x2)

c2 e
α(x1+x2)

c3 e
α(x1+x2)

 (13)

with

α = − m

21/3
, c1 = 1, c2 = − α+m

α
= 21/3 − 1 (14)

c3 = − α

ω2α+m
= − 1

ω2 − 21/3
(15)

Due to α < 0 the entries of Ψ(1) in eq-(13) vanish at infinity x1 = ∞, x2 = ∞
and are finite at x1 = 0, x2 = 0. Form eqs-(14,15) one finds that the values of
c2, c3 are invariant under the scalings m → λm;α → λα which allows to find
the solutions to eqs-(10b,10c) by simply scaling the exponents in eq-(13) by ω
and ω2, respectively, leading to
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Ψ(2) =

 c1 e
ωα(x1+x2)

c2 e
ωα(x1+x2)

c3 e
ωα(x1+x2)

 (16)

Ψ(3) =

 c1 e
ω2α(x1+x2)

c2 e
ω2α(x1+x2)

c3 e
ω2α(x1+x2)

 (17)

The eqs-(10) can be recast in the following form

LΨ(1) = (e1∂1 + e2∂2)Ψ(1) = −m Ψ(1) (18a)

LΨ(2) = (e1∂1 + e2∂2)Ψ(2) = −ωm Ψ(2) (18b)

LΨ(3) = (e1∂1 + e2∂2)Ψ(3) = −ω2m Ψ(3) (18c)

and whose interpretation is that Ψ(1) is an eigenvector of the operator L with
−m for its eigenvalue, and similarly, Ψ(2),Ψ(3) are eigenvectors with−ωm;−ω2m
for their eigenvalues, respectively.

Given the three equations (18) and eq-(6) one learns that their cube is given
by

(e1∂1 + e2∂2)
3 Ψ(1) = −m3 Ψ(1) ⇒ (∂31 + ∂32) Ψ(1) = −m3 Ψ(1) ⇒

(∂31 + ∂32 + m3) Ψ(1) = 0 (19a)

(e1∂1 + e2∂2)
3 Ψ(2) = −(ω m)3 Ψ(2) ⇒ (∂31 + ∂32) Ψ(2) = −m3 Ψ ⇒

(∂31 + ∂32 + m3) Ψ(2) = 0 (19b)

(e1∂1 + e2∂2)
3 Ψ(3) = −(ω2 m)3 Ψ(1) ⇒ (∂31 + ∂32) Ψ(3) = −m3 Ψ ⇒

(∂31 + ∂32 + m3) Ψ(3) = 0 (19c)

Therefore, the three (column) eigenvectors Ψ(1),Ψ(2),Ψ(3) displayed by eqs-
(13,16,17) are simultaneous (degenerate) solutions of the ternary analog of the
Klein-Gordon equation (∂31 + ∂32 +m3)Ψ = 0, where the operators act on each
single one of the three entries comprising the column vector Ψ. This is just a
consequence of the fact that (ωm)3 = (ω2m)3 = m3.

The generalization of eqs-(19) to the N -th root case in d = 2k (even) dimen-
sions is given by

(∂N1 + ∂N2 + . . . + ∂Nd + (−1)N+1 mN ) Ψ = 0 (20)
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and is obtained by taking the N -th power of the linear operator L =
∑d=2k

i=1 ei∂i
acting on Ψ, and by using the relations in eqs-(6). There are N -solutions to eq-
(20) given by the column vectors Ψ(1),Ψ(2),Ψ(3), . . . ,Ψ(N) which are comprised

of N
d
2 = Nk entries. The N -solutions satisfy the following N linear differential

equations

LΨ(1) = −m Ψ(1), LΨ(2) = −(ω m) Ψ(2), . . . ,LΨ(N) = −(ωN−1 m) Ψ(N)

(21)
From eqs-(21) one can infer that the N -th powers of the operator L acting on
the Ψ’s yield the common factors of (−1)NmN multiplying the Ψ’s in the right
hand side due to the algebraic relation ωN = 1. As a result one arrives at
eq-(20). And conversely, eqs-(21) can be obtained as a result of taking the N -th
root of the N -order linear differential equation (20) involving the mass m.

One can find generalized solutions to eqs-(18, 20,21) similar to those found in
eqs-(13,16,17) where the exponential parameter β appearing in eω

nβ(x1+x2+...+xd),
n = 0, 1, 2, . . . , N − 1 obeys the relation dβN + (−1)N+1mN = 0 ⇒ β = − m

d1/N .
Given β and a representation of all the ei generators (i = 1, 2, 3, . . . , d) given by
Nd/2 ×Nd/2 matrices one can then solve for the Nd/2 coefficients c1, c2, c3, . . . ,
after setting c1 = 1 in eqs-(21). In d = odd dimensions the ei generators are

represented by N
d−1
2 × N

d−1
2 matrices and the Ψ’s are column vectors with

N
d−1
2 entries.
If one wishes to work only with real-valued physical masses, and not with

multiples of the mass like ωm,ω2m, . . . involving complex numbers, then the
ternary (N -th) analog of the Dirac equation must be given by an equation of the
form (L+m)Ψ = 0. The Dirac equation in natural units (h̄ = c = 1) is given by
(iγµ∂µ−m)Ψ(1) = 0. The equation for a negative mass is (iγµ∂µ+m)Ψ(2) = 0.

Squaring the Dirac operator yields (iγµ∂µ)(iγ
ν∂ν) = −(gµν + γ[µν])∂µ∂ν =

−∂µ∂µ, and one arrives in both cases at

−(∂µ∂
µ +m2)Ψ(1) = −(∂µ∂

µ +m2)Ψ(2) = 0 (22)

because m2 = (−m)2. Therefore, Ψ(1),Ψ(2) are the two degenerate solutions of
the Klein-Gordon-like equation (∂µ∂

µ +m2)Ψ = 0, where the operators act on
the two components of the spinor Ψ in two-dimensions.

In the massless case m = 0, a straightforward solution to eqs-(12) is given
by

Ψ =

 f(x1 − x2)
f(x1 − x2)
ω f(x1 − x2)

 (23)

where f(x1 − x2) is an arbitrary function of x1 − x2. Also, it is straightforward
to verify that (∂31 + ∂32)f(x1 − x2) = 0. Note that if one naively sets α = m = 0
in eqs-(13,14,15) it yields trivial (constant) solutions.
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2 Concluding Remarks

We began with the complex ternary Clifford algebra Cl
1
3
2 [4], [5] with two gen-

erators e1, e2 in d = 2 obeying the relations in eq-(1) and such that it was
isomorphic to the unitary u(3) algebra. It is interesting to see if one can obtain
an algebra isomorphic to pseudo-unitary algebras u(2, 1),u(1, 2) by having one
generator ẽ1 obeying now ẽ31 = −e, while the other still obeys ẽ32 = e. Namely,
one defines the new generator as ẽ1 = βe1, β = eiπ/3, while ẽ2 = e2 remains the
same. One finds that a matrix realization of the generators described in eqs-(9)
yields that the combination e1 − e21 is anti-Hermitian, while the combination
ẽ1 − ẽ21 is now Hermitian. Therefore by multiplying e1 by the cubic root of −1
one can convert previous anti-Hermitian operators into Hermitian ones.

The Weyl unitary trick allows to relate the unitary group U(p+ q) and the
pseudo-unitary group U(p, q), and explains why one needs to decompose the
matrix generators of the non-compact pseudo-unitary group U(1, 3) in terms
of Hermitian and anti-Hermitian matrices by introducing judicious i factors.
Therefore, it is plausible that one may recover the pseudo-unitary algebras
(groups) in this fashion by a generalization of the Wick rotation : by mul-
tiplying e1 by the cubic root of −1 in the ternary Clifford algebra case. In
quadratic ordinary Clifford algebras a multiplication by i (square root of −1)
converts a Hermitian generator to an anti-Hermitian one, and vice versa.

In the massless case, eqs-(6b) reveals that theN -th root of theN -order linear

differential operator in the right-hand side yields the linear operator
∑i=d

i=1 ei∂i.
Whereas in the massive case, one found that the N equations (21) can be ob-
tained as a result of taking the N -th root of the N -order linear differential
equation (20) involving the mass m. Symbolically speaking, eq-(6b) resembles
a congruence relation modulo p (prime) of the form

(x1 + x2 + x3 + . . .+ xd)
N ≡ xN1 + xN2 + xN3 + . . .+ xNd (24)

in modular arithmetic. Therefore, one should explore further connections among
modular arithmetic and generalized Clifford algebras (GCA).

A cubic root of the Klein-Gordon equation was provided by [7] by recurring
to the Clifford algebra of a polynomial. In the case of a cubic polynomial the
authors obtained a cubic root of the Klein-Gordon operator via the algebraic
relation m(pµp

µ −m2) = (gµp
µ +mg̃)3, where the generators gµ and g̃ satisfy

the following cubic algebra

S3(g̃, g̃, g̃) = g̃3 = −1, S3(gµ, g̃, g̃) = 0, S3(gµ, gν , g̃) =
1

3
ηµν , S3(gµ, gν , gτ ) = 0

(24)
The modified Dirac equation is obtained from the cubic root of the Klein-Gordon
equation as follows

−m(∂µ∂
µ +m2)Ψ = (igµ∂

µ +mg̃)3Ψ = 0 ⇒ (igµ∂µ +mg̃)Ψ = 0 (25)
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Two explicit matrix representations were given, and one of them gives an ap-
propriate equation for (1 + 1)-dimensional anyons of spin 1/3 and −2/3. The
modified Dirac equation (25) must not be confused with Duffin–Kemmer–Petiau
relativistic wave equation which describes spin-0 and spin-1 particles in the de-
scription of the standard model [13].

Moreover, the authors [7] remarked that as the Dirac equation is related to
supersymmetry, their equation can be related to an extension of supersymmetry
involving an n-th order algebra, namely fractional supersymmetry [11]

In general one may have the n-th degree polynomial

Pn,a(p) = mn−2a (pµp
µ −m2)a = (gµp

µ +mg̃)n (26)

where the generators gµ, g̃ belonging to the Clifford algebra associated to the
polynomial Pn,a(p) satisfy more complicated relations than the ones described
in eq-(24). It would be interesting to see if one could obtain similar results via
generalized Clifford algebras.

The next step in constructing the N -th root of the N -order linear differential
operators is to introduce gauge fields by replacing ∂µ → ∂µ − iqAµ, where Aµ

is a U(1) gauge field and q is the electric charge, for example, and also to write
the covariant differential equations in curved spacetimes.

The left/right action of the algebra of Octonions on themselves can be re-
alized in terms of the 26-dim Clifford algebra Cl(6) via 8 × 8 matrices. Re-
lated to the Octonions the authors [12] have explored the differences among the
three 8-dimensional, real, division, composition algebras, given by the Octo-
nions, para-Octonions and Okubonions, as well as their applications in particle
physics (QCD). The Octonions have a unit element; the para-Octonions do not
have a unit but have a para-unit element, and the Okubo algebra does not have
a unit nor a para-unit, but it has idempotent elements. These subtleties occur
because in general the unit, identity and idempotent elements do not necessary
coincide within the algebra. The automorphism group of the octonions and
para-octonions is the first exceptional group G2. Whereas the automorphism
group of the Okubo algebra (Okubonions) is the SU(3) group [12]. For this
reason it is warranted to explore if there is an underlying connection between
the ternary Clifford algebra and the Okubo algebra since the former algebra is
isomorphic to the u(3) algebra.

To finalize, we explored in [14] the construction of a generalized Dirac equa-
tion via the introduction of the notion of Clifford-valued actions, and which
was inspired by the work of [15] on the De Donder-Weyl theory formulation
of field theory. Crucial in this construction is the evaluation of the exponen-
tials of multivectors associated with ordinary Clifford algebras (hypercomplex)
analysis. Exact matrix solutions (instead of spinors) of the generalized Dirac
equation in D = 2, 3 spacetime dimensions were found. It remains to explore
these findings to the generalized Clifford algebras case.
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