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Abstract

Takagi-Landsberg functions are a particular class of periodic, continuous and never differen-
tiable functions. Non-differentiability implies the non-convergence of the corresponding Fourier
series. Furthermore, these functions are fractal objects [1].

1 Definitions and first properties

Let us consider the sequence of functions f; : R — R:

{fk (t)}keN:fO (t)afl (t)77fk (t)7 (1)
where
fr (t) = A arccos [cos (wit)], Ap,wr >0 (k=0,1,2,...) (2)
In this way the sequences of elements are defined. R:
{Ak}keN : Ao,Al,...,Ak7... (3)

{wWr}pen t Wo, Wi, ony Wiy oo
For k — +o0 the first is infinitesimal and the second is divergent:

lim Ay =0, lim w; =400 (4)

k—+o00 k—+o00

such as to make the series of functions converge uniformly:
+o00
> fu () (5)
k=0

A possible choice [2] is wy = A", Precisely:
A = 27k, Wi = Qk, Vk e N (6)
wy, is an angular frequency (in dimensionless units), so wy = 271

2k—1
V = y Tk = 21_k7T (7)
™

Ty is the period of cos (wit) and therefore of f, (t). As is known::

z, 0<zx<m

arccos (cos z) :{ o w 0< <o (8)

SO
feos (241)] = 26, 0<2kt < 2k, o<t<2Fx
arccos |Ccos - oI — 2kt7 T S 2kt S At - o' — 2kt, 27167.‘. S t S 21*]671.

Infact arccos [cos (2’%)} is periodic with period T} (eq. 7). The function is also periodic with the
same period:

_ ok ka1t 0<t<27Fx
fr (t) = 27" arccos [cos (2 t)] = { ikt 9kn <t <ol hy 9)
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So the derivative: i
Lo 1, 0<t<2Fg
po={ b ST, (10)

so fi (t) is not derivable at the infinite points t, = Ty/2 and ¢} = Ty, but it is on the right and on
the left:

lim f, (t) =1, lim f;(t)=-1, VkeN

t—t, t—th

o the graph of fj (f)has a countable infinity of corner points. From the second of (7):

T,
Tk+1 = 7k = Vky1 = 2y, Vk e N
That is, the period of fy1 () is 1/2 is 1/2 of the period of fi (t) or what is the same, the frequency
of fry1(t) is twice the frequency of f (¢), while the amplitude is halved when going from fj () to
fr+1 (t). The result is that the graphs of these functions are nested ”one inside the other”, as shown
in Figs. 1-2.
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Figure 1: Function graph f; (¢) for £ = 0,1, 2.
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Figure 2: Function graph f (t) for £ =0, 1,2, 3, 4.

2 Uniform convergence and periodicity

Dalla sezione precedente segue

k—4o00

which as is known [3] is a necessary but not sufficient condition for the convergence of the series 5.
On the other hand, the functions f (¢) are bounded and Ay = supg | fx (t)| = 27%n, so the numerical

series:
—+o0 —+o0
E Ak =T E 2_k
k=0 k=0

converges. By a well-known theorem [3], the series 5 converges totally, therefore uniformly and
absolutely.



3 Continuity and periodicity, but not differentiability

By a well-known property [3] the sum of a uniformly convergent series in a given interval is a
continuous function in the same interval.

gy = fi () (11)

It is easy to persuade ourselves that ¢ (¢) is a periodic function of period Ty = 27, i.e. the period
of fo(t). We can therefore consider the restriction of g(¢) to the interval of periodicity [0, 2x]. It is
fundamental to observe that the sum g(¢) is not elementary expressible.

From (11)

g(0)=>"fi(0) = 0= g(2m)=0

fe(0)=0  To=2m

The theorem holds:
Theorem 1 The function(11) is not derivable at any point of R.

Dimostrazione. Taking into account the periodicity, let’s limit ourselves to the interval [0, 27]. Let
us consider the sequence of elements of R:

{2nt0}nEN : tg, 2t0, 4'[;0, ceey 2nt0,

manifestly divergent:

n——+o0o n——+o0o to>0

Denoting with [z] the integer part of x € R:
2] <@ < [2] + 1, (12)

we have
[2"t0] < 27ty < [27t0] + 1,

SO
27 [27] < tg < 27" [27] + 27" (13)

So tg € Z,, (ty) = [7’0771,7'6771] Vn € N, where:
Ton = 27" [2nt0] , T(l)’n = Ton + 27" (14)

terms of the sequences of elements of R: {79}, .\ » {7‘6771}”@\]. We show that they are both convergent
to tol

n1—i>I—|I—1c>o Ton = tg s nl_l}Iiloo Tom = Lo (15)
First:
nl—lgloo Ton = nl_lgloo 27" 2] =0 - 00 (16)
Let’s say &, = 2"ty €
Jim =t lim an



Noting that lim,, , « [£,] = +00

im G hz), hz)™ lz] (18)

n——+oo fn T——+00 T

The function h (x) is defined in X =R — {0}:

(0, 0<z<1

rl 1< <2

nel, n<x<n+1

[ -
So the graph of h(z) is made up of a countable infinity of hyperbola arcs arranged as in Fig. 3.
From (12):

] <z <[z]+1=[z] -1 <z—-1<]7]
r—1  [x] x—1
g Sl

—r—1<[z]<zx= <l=——<h(x)<1
>0 xr X xXr

It turns out:

1
lim ©—~ =17, lim 1:1>:> lim h(z)=1"

xr——+00 T xr——+00 r——+00

The implication follows from Sqeeze Theorem. Replacing the results found in (17):

Jim = )
Second
lim 75, = lim (To,n + 2_"> = lim 79, + lim 27" =1, +0" =1¢;
n—too " n—yfoo n—+00 n—+o00
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Figure 3: La curva y = % e limitata tra la curva y = %1 e la semiretta y = 1.

T

It follows that {Z, (to)},cy is @ sequence of intervals strictly contained in [0, 27| such that

toGIn(t()), Vn € N

n—-+oo


https://en.wikipedia.org/wiki/Squeeze_theorem

By definition of derivative:
9 (16,0) = 9 (70,)

g (to) = lim ; (21)
n—-+o0o 7’07n — TO,n
Let denote 1, (to) the incremental ratio of g(t) relative to the intervalZ, (y):
g T/n -9 (TO,n)
i 1) = ) (22
TO,n - TO,TL
which is the n-th term of the sequence of elements of R
{thn (0) e = Yo (to) s 101 (to) 5 oy ¥ (o) 5 - (23)
(21) becomes:
g (to) = lim oy, (to) (24)

n—-+o0o

that is, the derivative of g () in ¢, is the limit of the sequence (23). From (11):

U (to) = Z¢k,n (o) (25)

where:
Jr (76.0) = Jr (To.0)
T(’]yn - TO,TL

that is, the incremental ratio of f, (¢) relative to the intervalZ, (to). From (24):

¢k,n (t0> = (26)

J (to) =) Jim o (to)

But hmnﬁJroo ¢k,n (t0> = flg (tO)

g (to) = Zf;g (o) (27)
k=0

In other words, the derivative ¢’ (¢) is the sum of the numerical series >, f} (ty). From (10) we see
that the sequence { f; (to)},cy is indeterminate, and such is the aforementioned series:

N
ﬂNl_i}EM > i lto) = Bd (to) ,
k=0

from which the assertion by virtue of the arbitrariness of ty € [0,27]. m

The non-differentiability of g (t) at any point of [0, 27| and therefore of R, implies the absence of
the tangent line at any point of the graph I'y : y = ¢ (¢). Precisely, each P € I is a angular point.
Using a language of images, we can assert that I'y is uan infinitely «angulars curve. In Figs. 4-5 we
report the behavior of the partial sum of order N = 100 in different intervals.
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Figure 4: Trend of >, fi (t) in [0, 271].

Figure 5: Trend of 3, fi (¢) in [0, 107].

4 Fourier series
Theorem 2 The Fourier series associated with the function (11), diverges at every point t € R.

Dimostrazione. It is sufficient to show the divergence of the Fourier coefficient ag:
1 2

= — t)dt
Qo o 9()

Taking into account (11)and uniform convergence (which allows us to perform a series integration
i.e. the series of integrals is the integral of the series):

2 +00

Z fi () dt = ZMkdt

where
Mk_/ fio (t /tdt+/ (2" —t)dt == (2"F - 1)
So
m? iy 1—Fk 1—k w?
ap = ?; (2% - ZQ Zl = ? — (+00)) = —0
[ |
References

[1] On (signed) Takagi - Landsberg functions: p-th variation, maximum, and modulus of continuity.

6


https://arxiv.org/pdf/1806.05702

[2] J.-P. Kahane. Sur l'exemple, donn ‘e par M. de Rham, d’une fonction continue sans d “eriv’ee.
Enseignement Math, 5:53-57, 1959

[3] Ghizzetti A. Lezioni di Analisi matematica, vol. 2. Veschi.

[4] Fichera G., De Vito L., Funzioni analitiche di una variabile complessa. Edizioni Veschi.



	Definitions and first properties
	Uniform convergence and periodicity
	Continuity and periodicity, but not differentiability
	Fourier series
	Bibliografia

