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A universal expression of prime numbers

By Piren Mo

Abstract

We found that all prime numbers can be expressed in the form:

p =
k∑

t=0

rtpt−1!
p + 2

where pt−1!
p is the primorial of the (t-1)-th prime, and rt are coefficients

satisfying 0 ≤ rt ≤ pt − 1.

And based on this expression, we have studied the distribution of prime

numbers and twin primes, and we are able to predict primes within a certain

interval following known primes.
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1. Introduction

In Section 2, we begin by partitioning all positive integers into inter-

vals according to the Euclidean number pk!
p + 1, specifically within the range

(pk−1!
p + 1, pk!

p + 1]. We then compute the results of the expression within

each interval and assemble them into a matrix M(k). Subsequently, we form

a sequence M with M(k) as its elements. The proof that all prime numbers

are contained within the sequence M employs both mathematical induction

and proof by contradiction. Based on these results, we also present two minor

applications.

In Section 3, we primarily investigate the distribution of prime numbers.

We begin by examining the composition and properties of the matrix M(k).

Following this, we study the number of primes within M(k). We then derive

an expression for the π(x) function within M(k + 1), given the knowledge of

M(0) through M(k). Finally, we present a method to obtain all prime numbers

within M(k + 1) based on the known information from M(0) to M(k).

In Section 4, we delve into the study of twin primes. Initially, we identify

the origin of twin prime pairs based on the given expression. Subsequently,

we investigate the properties of the matrix M2(k), which is composed of twin

prime pairs within M(k). We then provide a method to obtain the twin prime

pairs in M2(k+1) given the information from M(0) through M(k). Finally, we

propose a conjecture that is slightly stronger than the Twin Prime Conjecture.

2. Deduction and proof of expressions

2.1. Definition.

Let pk denote the k-th prime number, for example: p1 = 2, p2 = 3, p3 = 5.

Using the symbol !p to denote the primorial, pk!
p represents the primorial

of the prime number pk. Then,

pk!
p =

k∏
t=1

pt

Specify p0!
p = 1! = 1, p−1!

p = 0! = 1.
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A UNIVERSAL EXPRESSION OF PRIME NUMBERS 3

Let fp
min(n) denote the smallest prime factor of n, for example:

fp
min(15) = 3

fp
min(31) = 31

Therefore, if fp
min(n) = n and n ≥ 2, then n is a prime number.

Let fp
2min(m,m + 2) denote the smallest prime factor of twin numbers

(m,m+ 2), for example:

fp
2min(23, 25) = 5

fp
2min(41, 43) = 41

Therefore, if fp
2min(m,m + 2) = m and m ≥ 3, then (m,m + 2) is twin

primes.

2.2. Calculation Rules.

For ease of expression, we will temporarily refer to the calculated numbers

as ”Mo numbers” denoted as m. The computed numbers m are divided based

on the Euclidean numbers pk!
p + 1 for k ≥ 1, the k-th interval is defined as

(pk−1!
p + 1, pk!

p + 1] for k ≥ 1, The matrix composed of the numbers m in

each interval is denoted as M(k), with the stipulation that M(0) = [2]. The

sequence formed by the matrices M(k) for k ≥ 0 as elements is denoted as M .

Thus,

M = {M(0),M(1),M(2), . . . ,M(k), . . . }
Denote the computational base number for the matrix M(k) as bk,

bk = pk−1!
p

The computation of the matrix M(k) involves using the Mo numbers from

M(0) to M(k − 1) whose smallest prime factors are greater than or equal to

pk. These numbers are collected as the computation factors for M(k) and rep-

resented as a row vector F (k). Given the row vector F (k), the computational

base number bk, and the constraint r ∈ Z with r ∈ [1, pk − 1], the r-th row of

the matrix M(k) is computed using the expression:

(2) M(k, r) = r × bk + F (k), r ∈ Z, r ∈ [1, pk − 1]

For example:

(1) For k = 1:

• The interval is (p0!
p + 1, p1!

p + 1] = (1 + 1, 2 + 1] = (2, 3]

• F (1) = [2], b1 = p0!
p = 1

• M(1) = [1× b1] + [F (1)] = [1] + [2] = [3]

(2) For k = 2:

• The interval is (p1!
p + 1, p2!

p + 1] = (2 + 1, 6 + 1] = (3, 7]

• F (2) = [3], b2 = p1!
p = 2
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• M(2) =

ñ
1× b2
2× b2

ô
+

ñ
F (2)

F (2)

ô
=

ñ
2

4

ô
+

ñ
3

3

ô
=

ñ
5

7

ô
(3) For k = 3:

• The interval is (p2!
p + 1, p3!

p + 1] = (6 + 1, 30 + 1] = (7, 31]

• F (3) =
[
5 7

]
, b3 = p2!

p = 6

• M(3) =


1× b3
2× b3
3× b3
4× b3

+


F (3)

F (3)

F (3)

F (3)

 =


6

12

18

24

+


5 7

5 7

5 7

5 7

 =


11 13

17 19

23 25

29 31


(4) For k = 4:

• The interval is (p3!
p + 1, p4!

p + 1] = (30 + 1, 210 + 1] = (31, 211]

• F (4) =
[
7 11 13 17 19 23 29 31

]
, b4 = p3!

p = 30

• Thus,

M(4) =



1× b4
2× b4
3× b4
4× b4
5× b4
6× b4

+



F (4)

F (4)

F (4)

F (4)

F (4)

F (4)



=



37 41 43 47 49 53 59 61

67 71 73 77 79 83 89 91

97 101 103 107 109 113 119 121

127 131 133 137 139 143 149 151

157 161 163 167 169 173 178 181

187 191 193 197 199 203 209 211



Because fp
min(25) = 5 < p4 = 7, the number 25 does not satisfy the

condition fp
min(m) ≥ pk. Therefore, when computing F (4), 25 will not be

included in F (4).

Therefore,

(3) M(k) =


1× bk
2× bk

...

(pk − 1)× bk

+


F (k)

F (k)
...

F (k)

 =


1× pk−1!

p

2× pk−1!
p

...

(pk − 1)× pk−1!
p

+


F (k)

F (k)
...

F (k)


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A UNIVERSAL EXPRESSION OF PRIME NUMBERS 5

The general expression for M(k), when F (k) is iteratively computed down

to F (1), is as follows:

M(k) =


b1 . . . 1× bk
b1 . . . 2× bk
...

. . .
...

b1 . . . (pk − 1)× bk

×


r1,1 r1,2 . . . r1,Ck

r2,1 r2,2 . . . r2,Ck

...
...

. . .
...

rk−1,1 rk−1,2 . . . rk−1,Ck

rk,1 rk,2 . . . rk,Ck

+


F (1)

F (1)
...

F (1)



Substituting F (1) = [2], the expression can be simplified to:

(4) M(k) =


b1 . . . 1× bk
b1 . . . 2× bk
...

. . .
...

b1 . . . (pk − 1)× bk

×


r1,1 r1,2 . . . r1,Ck

r2,1 r2,2 . . . r2,Ck

...
...

. . .
...

rk−1,1 rk−1,2 . . . rk−1,Ck

rk,1 rk,2 . . . rk,Ck

+ 2

Constraints:

• k ≥ 1

• The coefficients ri,j are constrained as follows:

– r1,j = 1 for all j.

– r2,j ∈ [1, 2] for all j.

– rk,j = 1 for all j.

– For i ∈ [3, k − 1],ri,j ∈ [0, pi−1], for all j.

– Ck =
∏k−1

t=1 (pt − 1) is the number of columns in matrix M(k) .
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For example:

M(1) =
[
1× b1

]
×
[
r1,1

]
+ 2

=
[
1× 1

]
×
[
1
]
+ 2

=
[
3
]

M(2) =

ñ
b1 1× b2
b1 2× b2

ô
×
ñ
r1,1
r2,1

ô
+ 2

=

ñ
1 1× 2

1 2× 2

ô
×
ñ
1

1

ô
+ 2

=

ñ
5

7

ô
M(3) =


b1 b2 1× b3
b1 b2 2× b3
b1 b2 3× b3
b1 b2 4× b3

×

r1,1 r1,2
r2,1 r2,2
r3,1 r3,2

+ 2

=


1 2 1× 6

1 2 2× 6

1 2 3× 6

1 2 4× 6

×

1 1

1 2

1 1

+ 2

=


11 13

17 19

23 25

29 31


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A UNIVERSAL EXPRESSION OF PRIME NUMBERS 7

M(4) =



b1 b2 b3 1× b4
b1 b2 b3 2× b4
b1 b2 b3 3× b4
b1 b2 b3 4× b4
b1 b2 b3 5× b4
b1 b2 b3 6× b4

×


r1,1 r1,2 r1,3 r1,4 r1,5 r1,6 r1,7 r1,8
r2,1 r2,2 r2,3 r2,4 r2,5 r2,6 r2,7 r2,8
r3,1 r3,2 r3,3 r3,4 r3,5 r3,6 r3,7 r3,8
r4,1 r4,2 r4,3 r4,4 r4,5 r4,6 r4,7 r4,8


+ 2

=



1 2 6 1× 30

1 2 6 2× 30

1 2 6 3× 30

1 2 6 4× 30

1 2 6 5× 30

1 2 6 6× 30

×


1 1 1 1 1 1 1 1

2 1 2 1 2 1 1 2

0 1 1 2 2 3 4 4

1 1 1 1 1 1 1 1

+ 2

=



37 41 43 47 49 53 59 61

67 71 73 77 79 83 89 91

97 101 103 107 109 113 119 121

127 131 133 137 139 143 149 151

157 161 163 167 169 173 178 181

187 191 193 197 199 203 209 211


We refer to the matrix

(5) B(k) =


b1 . . . 1× bk
b1 . . . 2× bk
...

. . .
...

b1 . . . (pk − 1)× bk


as the base matrix, denoted as B(k).

We refer to the matrix

(6) R(k) =


r1,1 r1,2 . . . r1,Ck

r2,1 r2,2 . . . r2,Ck

...
...

. . .
...

rk−1,1 rk−1,2 . . . rk−1,Ck

rk,1 rk,2 . . . rk,Ck


as the coefficient matrix, denoted as R(k).

Therefore, the expression for M(k) can be simplified as:

(7) M(k) = B(k)×R(k) + 2

In fact, the last column of the base matrix B(k) consists of the coefficients

of the base bk, so the last row of the coefficient matrix R(k) satisfies rk,j = 1

for all j.
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Therefore, the Mo number m(k, i, j) in M(k) can be expressed as:

(8) m(k, i, j) =
k∑

i=1

ri,jbi + 2 =
k∑

i=1

ri,jpi−1!
p + 2

where:

• When i = k, rk,j ∈ [1, pi − 1].

• Other conditions are consistent with those defined in the expression for

M(k).

For example:

m(4, 1, 1) =
4∑

i=1

ri,1pi−1!
p + 2

= 1× p3!
p + 0× p2!

p + 2× p1!
p + 1× p0!

p + 2

= 1× 30 + 0× 6 + 2× 2 + 1× 1 + 2

= 37

2.3. Proof : P ⊆ M .

The prime numbers p are divided based on the Euclidean numbers pk!
p+1

for k ≥ 1, the k-th interval is defined as (pk−1!
p + 1, pk!

p + 1] for k ≥ 1, The

set composed of the numbers p in each interval is denoted as P (k), with the

stipulation that P (0) = 2. The sequence formed by the sets P (k) for k ≥ 0 as

elements is denoted as P . Thus,

P = {P (0), P (1), P (2), . . . , P (k), . . . }

Proof: P ⊆ M .

Base Cases:

(1) For k = 0:

• P (0) = [2] = M(0), so P (0) ⊆ M(0).

(2) For k = 1:

• P (1) = [3] = M(1), so P (1) ⊆ M(1).

(3) For k = 2:

• P (2) =

ñ
5

7

ô
= M(2), so P (2) ⊆ M(2).

(4) For k = 3:

• P (3) =


11 13

17 19

23

29 31

, M(3) =


11 13

17 19

23 25

29 31

, so P (3) ⊆ M(3).
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Inductive Hypothesis:

Assume that for k = n, where n ≥ 3, P (n) ⊆ M(n).

Inductive Step:

We need to prove that for k = n+ 1, P (n+ 1) ⊆ M(n+ 1).

Assume for contradiction that there exists a prime p ∈ P (n+1) such that

p /∈ M(n+ 1).

• Let t = p mod pn!
p. Then, t < pn!

p.

• Since p is a prime and p > 2, p is odd.

• Since pn!
p is even, t must be odd, and t ∈ [1, pn!

p).

Case 1: t = 1

• Then, p = r×pn!
p+t = (r−1)×pn!

p+pn!
p+1, where 2 ≤ r ≤ pn+1−1.

• Since pn!
p + 1 ∈ M(n) (a Euclidean number), p ∈ M(n + 1), which

contradicts p /∈ M(n+ 1).

Case 2: t ∈ [3, pn!
p) and t is odd

• Subcase 2.1: If fp
min(t) ≤ pn, then p /∈ P , which contradicts p ∈

P (n+ 1).

• Subcase 2.2: If fp
min(t) ≥ pn+1:

– Subcase 2.2.1: If t ∈ M , then p ∈ M , which contradicts p /∈
M(n+ 1).

– Subcase 2.2.2: If t /∈ M , let t ∈ (pi−1!
p + 1, pi!

p + 1], and define

t1 = t mod pi−1!
p. Then:p = r×pn!

p+t = r×pn!
p+r1×pi−1!

p+t1
∗ If t1 ∈ M , then t ∈ M , which contradicts t /∈ M .

∗ If t1 /∈ M , repeat the process by defining

t2 = t1 mod pi1−1!
p, where t1 ∈ (pi1−1!

p + 1, pi1 !
p + 1] .

∗ Continue this process until tj ∈ (p0!
p + 1, p2!

p + 1] = (2, 7].

∗ Since tj ∈ M , it follows that tj−1 ∈ M , which contradicts

tj−1 /∈ M .

Conclusion:

• For k = n+ 1, p ∈ M(n+ 1).

• Therefore, P ⊆ M .

Q.E.D.

Therefore, The set of prime numbers is a subset of the Mo numbers. the

elements p in the set of prime numbers P (k) can also be expressed in the

following form:

p =
k∑

t=0

rtbt + 2 =
k∑

t=0

rtpt−1!
p + 2

The set of composite numbers in matrix M(k) is denoted as M
′
(k). Then

M(k) = P (k) ∪M
′
(k)
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Actually, the set M
′
(k) consists of all composite numbers in the interval

(pk−1!
p + 1, pk!

p + 1] whose smallest prime factor is greater than or equal to

pk. The proof method is similar to that used in previous sections, and we will

not repeat it here.

2.4. Two minor applications.

Given the known sequence M ,this will provide us with two minor appli-

cations:

1. Roughly Determining Whether a Number is Prime:

Determination Method:

If a number can be expressed in the form
∑k

t=1 rtbt + 2 and satisfies r1 =

rk = 1, r2 ∈ [1, 2] , For t ∈ [3, k − 1], rt ∈ [0, pt − 1], and fp
min(

∑i
t=1 rtbt + 2) ≥

pi+1 for each i ∈ [3, k− 1], it could be a prime number or a composite number

with a smallest prime factor greater than or equal to pk. Otherwise, the number

is not a Mo number and is definitely not a prime number.

For example:

(1) For the number 797:

• The expression is 797 = 3×210+5×30+2×6+1×2+1×1+2.

• According to the rule, 797 could be a prime number or a composite

number with a smallest prime factor greater than or equal to p5 =

11.

(2) For the number 763:

• The expression is 763 = 3× 210 + 133.

• Since fp
min(133) = 7 ≤ p4 = 7, 763 is not a Mo number.

• Therefore, 763 is definitely not a prime number.

2. Factorization of Large Numbers:

Factorization Method:

(1) Step 1: Determine the Interval and Matrix M(k):

• Identify the interval (pk−1!
p+1, pk!

p+1] to which the large number

n belongs.

• Check whether n is a Mo number in the corresponding matrix

M(k).

(2) Step 2: Find the Smallest Prime Factor fp
min(n):

• If n /∈ M(k), then fp
min(n) ∈ [3, pk−1].

• If n ∈ M(k), extract fp
min(n) directly from M(k).

(3) Step 3: Factorize n:

• Compute n/fp
min(n).

• Repeat the above steps for the quotient until complete factoriza-

tion is achieved.
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Examples:

(1) Factorization of 791:

• 791 ∈ (211, 2311], corresponding to M(5).

• Since 791 /∈ M(5), fp
min(791) ∈ [3, 7].

• We find fp
min(791) = 7, so 791 = 7× 113.

• Since 113 ∈ M(4) and is a prime number, the factorization of 791

is 7× 113.

(2) Factorization of 2007835897:

• 2007835897 ∈ (223092871, 6469693231], corresponding to M(10).

• Since 2007835897 ∈ M(10), we obtain fp
min(2007835897) = 1013,

so 2007835897 = 1013× 1982069.

• Since 1982069 ∈ (510511, 9699691], corresponding to M(8),

and 1982069 ∈ M(8) is a prime number, the factorization of

2007835897 is 1013× 1982069.

(3) Factorization of 6246600469:

• 6246600469 ∈ (223092871, 6469693231], corresponding to M(10).

• Since 6246600469 ∈ M(10), we obtain fp
min(6246600469) = 41, so

6246600469 = 41× 152356109.

• Since 152356109 ∈ (9699691, 223092871], corresponding to M(9),

and 152356109 ∈ M(9), we obtain fp
min(152356109) = 2621, so

152356109 = 2621× 58129.

• Since 58129 ∈ (30031, 510511], corresponding to M(7),

and 58129 ∈ M(7) is a prime number,

the factorization of 6246600469 is 41× 2621× 58129.

3. Distribution of Prime Numbers

3.1. Composition and Properties of the Matrix M(k).

We define the following notations:

• ⌊x⌋p as the largest prime number less than or equal to x.

• ⌈x⌉p as the smallest prime number greater than or equal to x.

We can easily know that the smallest prime factor of the elements inM
′
(k)

is between pk and
⌊√

pk!p + 1
⌋
p
.

According to the computational rules, we can easily see that the

matrix M(k) has the following properties:

(1) Column-wise Arithmetic Matrix:

• The matrix M(k) is a column-wise arithmetic matrix with a com-

mon difference of bk = pk−1!
p.

• This means that the elements in each column increase row by row,

and the difference between adjacent elements is pk−1!
p.



12

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

PIREN MO

(2) Size of the Matrix:

• For k ≥ 2, the matrix M(k) has pk−1 rows and
∏k−1

t=1 (pt − 1)

columns.

• Therefore, M(k) has a total of
∏k

t=1(pt − 1) elements.

(3) Boundaries of the Matrix:

• The smallest element in M(k) is:

m(k, 1, 1) = pk−1!
p + pk

• The largest element in M(k) is:

m(k, pk − 1,
k−1∏
t=1

(pt − 1)) = pk!
p + 1

• The smallest element in the r-th row of M(k) is:

m(k, r, 1) = r × pk−1!
p + pk

• The largest element in the r-th row of M(k) is:

m(k, r,
k−1∏
t=1

(pt − 1)) = (r + 1)× pk−1!
p + 1

According to the computational rules, we can easily determine that there

are pk − 1 rows, and we will not provide further deductive proof here. Before

discussing the number of columns in the matrix M(k), let us first examine the

smallest prime factor in the sequence M .

Let Fm
min(pk) denote the set of Mo numbers in the sequence M

whose smallest prime factor is pk. Then, Fm
min(pk) has the following

properties:

• The smallest element in Fm
min(pk) is pk, which is also the only prime

number in the set.

• The smallest composite number in Fm
min(pk) is p2k, which is also the

second smallest element.

• The largest element in Fm
min(pk) is (pk−1!

p−1)×pk, which is located in

the (pk−1)-th row and the (
∏k−1

t=1 (pt−1)−2)-th column of the matrix

M(k).

• The elements in Fm
min(pk) belong to the interval [pk, pk!

p − pk].

Relationship Between the Number of Columns Ck in Matrix

M(k) for k ≥ 2, the Number of Elements M(k − 1), and the Num-

ber of Mo Numbers with Smallest Prime Factor pk:

The number of columns Ck in matrix M(k) is given by:

(9) Ck =
k−1∏
t=1

(pt − 1)
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This value is equal to:

(1) The number of elements in matrix M(k − 1), i.e., |M(k − 1)|.
(2) The number of Mo numbers with the smallest prime factor pk, i.e.,

|Fm
min(pk)|.

Thus:

(10) Ck =
k−1∏
t=1

(pt − 1) = |M(k − 1)| = |Fm
min(pk)|

Since the number of rows in matrix M(k− 1) is pk−1− 1, we only need to

prove:

Ck =
k−1∏
t=1

(pt − 1) = |Fm
min(pk)|

Proof:

Base Cases:

• For k = 2:

C2 = 1 =
1∏

t=1

(pt − 1) = |Fm
min(p2)|

• For k = 3:

C3 = 2 =
2∏

t=1

(pt − 1) = |Fm
min(p3)|

• For k = 4:

C4 = 8 =
3∏

t=1

(pt − 1) = |Fm
min(p4)|

Inductive Hypothesis:

Assume that for k = n, where n ≥ 2, the following holds:

Cn =
n−1∏
t=1

(pt − 1) = |Fm
min(pn)|

Inductive Step:

We need to prove that for k = n+ 1, the following holds:

Cn+1 =
n∏

t=1

(pt − 1) = |Fm
min(pn+1)|

• Let |Fm
min(n, pn)| denote the number of composite numbers in M(n)

whose smallest prime factor is pn.

• Let |Fm
min([pn+1, pn!

p + 1],≥ pn+1)| denote the number of Mo numbers

in the interval [pn+1, pn!
p + 1] whose smallest prime factor is greater

than or equal to pn+1.
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• According to the computational rules of the matrix M(n+ 1):

Cn+1 = |Fm
min([pn+1, pn!

p + 1],≥ pn+1)|
= |M(n)| − |Fm

min(n, pn)|+ Cn − (|Fm
min(pn)| − |Fm

min(n, pn)|)
= |M(n)|+ Cn − |Fm

min(pn)|
= |M(n)|+ Cn − Cn

= (pn − 1)
n−1∏
t=1

(pt − 1)

=
n∏

t=1

(pt − 1)

|Fm
min(pn+1)| = Cn+1 + |M(n+ 1)| − Cn+2

= Cn+1 + |M(n+ 1)| − |M(n+ 1)|
= Cn+1

Conclusion:

• Thus, for k = n+ 1:

Cn+1 =
n∏

t=1

(pt − 1) = |Fm
min(pn+1)|

• By induction, the equation holds true for all n ≥ 2.

Q.E.D.

The table below provides statistics on the number of prime numbers and

Mo numbers in the matrix M(k). From the calculations in the table, it is

evident that Mo numbers constitute approximately 15% of all positive integers.

Moreover, as k increases, this proportion further diminishes. This reduction

narrows the scope of our research on prime numbers, effectively confining our

study to the investigation of Mo numbers.
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M(k)
Base number

bk = pk−1!
p

Interval

(pk−1!
p + 1, pk!

p + 1]

The number of

prime

numbers

The number

of Mo

numbers

M(0) 1 (1,2] 1 1

M(1) 1 (2,3] 1 1

M(2) 2 (3,7] 2 2

M(3) 6 (7,31] 7 8

M(4) 30 (31,211] 36 48

M(5) 210 (211,2311] 297 480

M(6) 2310 (2311,30031] 2904 5760

M(7) 30030 (30031,510511] 39083 92160

M(8) 510510 (510511,9699691] 603698 1658880

M(9) 9699690 (9699691,223092871] 11637502 36495360

M(10) 223092870 (223092871,6469693231] 288086265 1021870080

Table 1. Statistical of prime and Mo numbers in matrix M(k)

3.2. The Number of Prime Numbers in the Matrix M(k).

This method calculates the number of prime numbers in M(k) based on

the known matrices M(0) through M(k − 1).

Let pk+s =
⌊√

pk!p + 1
⌋
p
. Then, the set of smallest prime factors of the

elements in M
′
(k) is:

{pk, pk+1, . . . , pk+s−1, pk+s} , k, s ∈ Z, s ≥ 0

Let N(pk | M ′
(k)), where k ≥ 3, denote the number of Mo numbers in

the set M
′
(k) whose smallest prime factor is pk.

Examples:

(1) For M
′
(3) = {25}, there is only one element, N(5 | M ′

(3)) = 1.

(2) For M
′
(4) = {49, 77, 91, 119, 121, 133, 143, 161, 169, 187, 203, 209}:

• N(7 | M ′
(4)) = 7 (elements: 49, 77, 91, 119, 133, 161, 203).

• N(11 | M ′
(4)) = 4 (elements: 121, 143, 187, 209).

• N(13 | M ′
(4)) = 1 (element: 169).

Let N(pk | (a, b]) denote the number of Mo numbers in the interval (a, b]

whose smallest prime factor is greater than pk. Then:

(11) N(Pk | M ′
(k)) =

j−1∑
i=1

N(pk | (max(
pk−1!

p + 1

pik
, pk),

pk!
p + 1

pik
]) + δpk

where:

• j =
⌊
logpk (pk!

p + 1)
⌋
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• δpk =

{
1 if pjk ∈ (pk−1!

p + 1, pk!
p + 1]

0 if pjk /∈ (pk−1!
p + 1, pk!

p + 1]

Example 1: N(13 | M ′
(6))

N(13 | M ′
(6)) =

3∑
i=1

N(13 | (max(
11!p + 1

13i
, 13),

13!p + 1

13i
]) + δ13

• For i = 1:

N(13 | (max(
2311

13
, 13),

30031

13
]) = 408

• For i = 2:

N(13 | (max(
2311

132
, 13),

30031

132
]) = 34

• For i = 3:

N(13 | (max(
2311

133
, 13),

30031

133
]) = 0

• δ13 = 1 (since 134 = 28561 ∈ (2311, 30031]).

Thus:

N(13 | M ′
(6)) = 408 + 34 + 0 + 1 = 443

Example 2: N(41 | M ′
(6))

N(41 | M ′
(6)) =

1∑
i=1

N(41 | (max(
11!p + 1

41i
, 41),

13!p + 1

41i
]) + δ41

• For i = 1:

N(41 | (max(
2311

41
, 41),

30031

41
]) = 113

• δ41 = 0 (since 412 = 1681 /∈ (2311, 30031]).

Thus:

N(41 | M ′
(6)) = 113 + 0 = 113

Additionally, since:

(12)
∣∣∣M ′

(k)
∣∣∣ = s∑

n=0

N(pk+n | M ′
(k))

The number of prime numbers in the matrix M(k) is:

(13) |P (k)| = |M(k)| −
∣∣∣M ′

(k)
∣∣∣

Substituting the expressions for |M(k)| and
∣∣∣M ′

(k)
∣∣∣, we have:

(14)

|P (k)| =
k∏

t=1

(pt−1)−
s∑

n=0

(

j−1∑
i=1

N(pk+n | (max(
pk−1!

p + 1

pik+n

, pk+n),
pk!

p + 1

pik+n

])+δpk+n
)
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where:

• j =
ö
logpk+n

(pk!
p + 1)

ù
• δpk+n

=

{
1 if pjk+n ∈ (pk−1!

p + 1, pk!
p + 1]

0 if pjk+n /∈ (pk−1!
p + 1, pk!

p + 1]

• s is the value in the expression pk+s =
⌊√

pk!p + 1
⌋
p
.

3.3. The prime-counting function π(x).

Let x belong to the r-th row of the interval (pk−1!
p + 1, pk!

p + 1], and let

pk+s = ⌊
√
x⌋p.

Let N(pk | M ′
(k, x)) denote the number of Mo numbers in M

′
(k) that do

not exceed x and have pk as their smallest prime factor. Then:

(15) N(pk | M ′
(k, x)) =

j−1∑
i=1

N(pk | (max(
pk−1!

p + 1

pik
, pk),

x

pik
]) + δpk

where:

• j =
⌊
logpk x

⌋
• δpk =

{
1 if pjk ∈ (pk−1!

p + 1, x]

0 if pjk /∈ (pk−1!
p + 1, x]

Let
∣∣∣M ′

(k, x)
∣∣∣ denote the number of Mo numbers in M

′
(k) that do not

exceed x. Then:

(16)
∣∣∣M ′

(k, x)
∣∣∣ = s∑

n=0

(

j−1∑
i=1

N(pk+n | (max(
pk−1!

p + 1

pik+n

, pk+n),
x

pik+n

]) + δpk+n
)

Let |M(k, x)| denote the number of Mo numbers in M(k) that do not

exceed x. Then:

(17) |M(k, x)| = (r − 1)
k−1∏
i=1

(pi − 1) +N(pk−1 | (pk−1, x− rpk−1!
p])

Let |P (k, x)| denote the number of prime numbers in P (k) that do not

exceed x. Then:

(18) |P (k, x)| = |M(k, x)| −
∣∣∣M ′

(k, x)
∣∣∣

Therefore, the prime-counting function π(x) is given by:

(19) π(x) =
k−1∑
t=0

|P (t)|+ |P (k, x)| =
k−1∑
t=0

|P (t)|+ |M(k, x)| −
∣∣∣M ′

(k, x)
∣∣∣

Example:
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Let x = 139. We know that it belongs to the 4th row of the matrix M(4),

so k = 4 and r = 4.

• pk+s =
ö√

139
ù
p
= 11 = p5, so s ∈ {0, 1}, corresponding to the smallest

prime factors {7, 11}.
• For s = 0, the smallest prime factor is p4 = 7, and j = ⌊log7 139⌋ = 2.

Since 72 ∈ (31, 139], δ7 = 1.

• For s = 1, the smallest prime factor is p5 = 11, and j = ⌊log11 139⌋ = 2.

Since 112 ∈ (31, 139], δ11 = 1.

Thus:∣∣∣M ′
(4, 139)

∣∣∣ = 1∑
n=0

(

j−1∑
i=1

N(p4+n | (max(
p3!

p

pi4+n

, p4+n),
139

pi4+n

]) + δp4+n) = 6

|M(4, 139)| = 3×
3∏

i=1

(pi − 1) +N(p3 | (p3, 139− 4× p3!
p]) = 24 + 5 = 29

|P (4, 139)| = |M(4, 139)| −
∣∣∣M ′

(4, 139)
∣∣∣ = 29− 6 = 23

π(139) =
3∑

t=0

|P (t)|+ |P (4, 139)| = 11 + 23 = 34

3.4. Obtaining Primes in M(k) Based on M(0) to M(k − 1).

To facilitate computation, we construct the extended matrix M(k) of

M(k):

(20) M(k) =

ñ
F (k)

M(k)

ô
and define F (0) =

[
1
]
. Then:

M(0) =

ñ
F (0)

M(0)

ô
=

ñ
1

2

ô
Similarly, we can construct the sequence M with M(k) for k ≥ 0 as its

elements:

(21) M =
¶
M(0),M(1),M(2), . . . ,M(k), . . .

©
In fact, F (k) is the row vector composed of Mo numbers in M(k − 1)

whose smallest prime factor is greater than or equal to pk. Since M(k) is a

column-wise arithmetic matrix with a common difference of pk−1!
p, we can

derive M(k) from M(k − 1), and naturally obtain M(k).
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Example: For k = 3

M(3) =

ñ
F (3)

M(3)

ô
=


5 7

11 13

17 19

23 25

29 31


From this, we obtain:

F (4) =
[
7 11 13 17 19 23 29 31

]
Based on the common difference p3!

p = 30, we can easily derive:

M(4) =



7 11 13 17 19 23 29 31

37 41 43 47 49 53 59 61

67 71 73 77 79 83 89 91

97 101 103 107 109 113 119 121

127 131 133 137 139 143 149 151

157 161 163 167 169 173 179 181

187 191 193 197 199 203 209 211


Thus:

M(4) =



37 41 43 47 49 53 59 61

67 71 73 77 79 83 89 91

97 101 103 107 109 113 119 121

127 131 133 137 139 143 149 151

157 161 163 167 169 173 179 181

187 191 193 197 199 203 209 211


Generating M

′
(k) from F (k) and Deriving P (k):

Let pk+s =
⌊√

pk!p + 1
⌋
p
. Then, the set of smallest prime factors of the

elements in M
′
(k) is:

{pk, pk+1, . . . , pk+s−1, pk+s} k, s ∈ Z, s ≥ 0

We use the formula (11) in reverse, steps to Derive M
′
(k):

(1) Find Mo numbers in M
′
(k) with smallest prime factor pk:

• For i = 1 to j − 1, identify elements in F (k) that belong to the

interval:

(max(
pk−1!

p + 1

pik
, pk),

pk!
p + 1

pik
]

• Multiply these elements by pik.

• If pjk ∈ (pk−1!
p + 1, pk!

p + 1], include pjk as well.

(2) Repeat for smallest prime factors pk+1 to pk+s:
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• Use the same method to find Mo numbers in M
′
(k) with smallest

prime factors pk+1, pk+2, . . . , pk+s.

(3) Combine the results:

• The set M
′
(k) is the union of all Mo numbers found in the above

steps.

Example: Generating M
′
(4) from F (4) and Deriving P (4):

Given:

F (4) =
[
7 11 13 17 19 23 29 31

]
and ö√

p4!p + 1
ù
p
= 13 = p6

The set of smallest prime factors of the elements in M
′
(4) is:

{p4, p5, p6} = {7, 11, 13}

(1) Smallest prime factor p4 = 7:

• j =
⌊
logp4 (p4!

p + 1)
⌋
= ⌊log7 211⌋ = 2, so i = j − 1 = 1.

• Interval: (max(p3!
p+1
p14

, p4),
p4!p+1

p14
] = (7, 30].

• Elements in F (4) within (7, 30]: {11, 13, 17, 19, 23, 29}.
• Multiply by 7: {77, 91, 119, 133, 161, 203}.
• Since 72 = 49 ∈ (31, 211], include 49.

• Result: {49, 77, 91, 119, 133, 161, 203}.
(2) Smallest prime factor p5 = 11:

• j =
⌊
logp5 (p4!

p + 1)
⌋
= ⌊log11 211⌋ = 2, so i = j − 1 = 1.

• Interval: (max(p3!
p+1
p15

, p5),
p4!p+1

p15
] = (11, 19].

• Elements in F (4) within (11, 19]: {13, 17, 19}.
• Multiply by 11: {143, 187, 209}.
• Since 112 = 121 ∈ (31, 211], include 121.

• Result: {121, 143, 187, 209}.
(3) Smallest prime factor p6 = 13:

• j =
⌊
logp6 (p4!

p + 1)
⌋
= ⌊log13 211⌋ = 2, so i = j − 1 = 1.

• Interval: (max(p3!
p+1
p16

, p6),
p4!p+1

p16
] = (13, 16].

• No elements in F (4) within (13, 16].

• Since 132 = 169 ∈ (31, 211], include 169.

• Result: {169}.
(4) Combine results:

M
′
(4) = {49, 77, 91, 119, 133, 161, 203} ∪ {121, 143, 187, 209} ∪ {169}

= {49, 77, 91, 119, 121, 133, 143, 161, 169, 187, 203, 209}

Deriving P (4):
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Given:

M(4) = {37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 77, 79, 83, 89, 91, 97,
101, 103, 107, 109, 113, 119, 121, 127, 131, 133, 137, 139, 143,

149, 151, 157, 161, 163, 167, 169, 173, 179, 181, 187, 191, 193,

197, 199, 203, 209, 211}

Compute:

P (4) = M(4) \M ′
(4)

Result:

P (4) = {37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107,
109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179,

181, 191, 193, 197, 199, 211}

4. Research on Twin Primes

4.1. The Origin of Twin Numbers.

Twin primes originate from the computation of M(2):

M(2) =

ñ
1× b2 + p2
2× b2 + p2

ô
=

ñ
1× p1!

p + p2
2× p1!

p + p2

ô
=

ñ
1× 2 + 3

2× 2 + 3

ô
=

ñ
5

7

ô
• {3, 5} is the only pair of twin primes that spans across matrices.

• All subsequent twin primes are directly or indirectly generated from

M(2) =

ñ
5

7

ô
.

• M(2) is also the only pair of twin primes within a matrix that spans

across rows.

• The value b2 = p1!
p = 2 is the fundamental reason for the generation

of twin numbers.

4.2. Composition and Properties of the Matrix M2(k).

Let M2(k) denote the set of all twin number pairs in the matrix M(k),

P2(k) denote the set of all twin prime pairs in M(k), and M
′
2(k) denote the

set of all twin number pairs in M(k) that are not twin primes. Then:

(22) M2(k) = P2(k) ∪M
′
2(k)

Let Tk denote the number of twin number pairs in F (k). Then:

(23) Tk =
k−1∏
t=2

(pt − 2) , k ≥ 3
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The number of twin number pairs in M(k) is:

(24) |M2(k)| = (pk − 1)
k−1∏
t=2

(pt − 2) , k ≥ 3

Let Fm
2min(pk) denote the set of Mo twin number pairs with the smallest

prime factor pk. Then, the number of such twin number pairs is:

(25) |Fm
2min(pk)| = 2

k−1∏
t=2

(pt − 2) , k ≥ 3

Proof:

(1) Base Cases:

• For k = 3:

T3 = 1 =
2∏

t=2

(pt − 2), |Fm
2min(p3)| = 2

• For k = 4:

T4 = 3 =
3∏

t=2

(pt − 2), |Fm
2min(p4)| = 6

• For k = 5:

T5 = 15 =
4∏

t=2

(pt − 2), |Fm
2min(p5)| = 30

(2) Inductive Hypothesis:

• Assume that for k = n, where n ≥ 3, the following holds:

Tn =
n−1∏
t=2

(pt − 2) =
1

2
|Fm

2min(pn)|

(3) Inductive Step:

• Let |Fm
2min(n, pn)| denote the number of twin number pairs in

M2(n) with the smallest prime factor equal to pn.

• Let |Fm
2min([pn+1, pn!

p + 1],≥ pn+1)| denote the number of Mo twin

number pairs in the interval [pn+1, pn!
p+1] with the smallest prime

factor greater than or equal to pn+1, i.e., the number of twin num-

ber pairs in F (n+ 1).
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• According to the computational rules of the matrix M2(n+ 1):

Tn+1 = |Fm
2min([pn+1, pn!

p + 1],≥ pn+1)|
= |M2(n)| − |Fm

2min(n, pn)|+ Tn − (|Fm
2min(pn)| − |Fm

2min(n, pn)|)
= |M2(n)|+ Tn − |Fm

2min(pn)|
= (pn − 1)Tn + Tn − 2Tn

= (pn − 2)
n−1∏
t=2

(pt − 2)

=
n∏

t=2

(pt − 2)

• The number of twin number pairs with the smallest prime factor

pn+1 is:

|Fm
2min(pn+1)| = Tn+1 + |M2(n+ 1)| − Tn+2

= Tn+1 + (pn+1 − 1)Tn+1 − (pn+1 − 2)Tn+1

= Tn+1(1 + pn+1 − 1− pn+1 + 2)

= 2Tn+1

= 2
n∏

t=2

(pt − 2)

(4) Conclusion:

• Thus, for k = n+ 1:

Tn+1 =
n∏

t=2

(pt − 2) =
1

2
|Fm

2min(pn+1)|

• By induction, the equation holds true for all k ≥ 3.

Q.E.D.

If (pk, pk + 2) is a twin prime pair, then it is the only twin prime pair

in the set Fm
2min(pk); otherwise, there will be no twin prime pairs in the set

Fm
2min(pk).

4.3. Method for Obtaining the Set P2(k).

In Section 2.3, we introduced a method for obtaining P (k). Since P2(k) ⊆
P (k), we can derive P2(k) from P (k). However, here I would like to introduce

an alternative method to obtain P2(k) using F (k) and bk = pk−1!
p.

Let F2(k) denote the set of row vectors consisting of twin number pairs in

F (k). pk+s =
⌊√

pk!p + 1
⌋
p
. Then, we obtain the set of smallest prime factors
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in M
′
2(k) as:

{pk, pk+1, . . . , pk+s−1, pk+s} k, s ∈ Z, s ≥ 0

Step 1: Construct the Column Vector

Construct the column vector:
1× pk−1!

p

2× pk−1!
p

...

(pk − 1)× pk−1!
p


Take the modulus of each element in the column vector with respect to

the set {pk, pk+1, . . . , pk+s−1, pk+s}, resulting in the remainder matrix Rb:

pk pk+1 . . . pk+s

Rb =


r1,1 r1,2 . . . r1,s+1

r2,1 r2,2 . . . r2,s+1
...

...
. . .

...

rpk−1,1 rpk−1,2 . . . rpk−1,s+1


Step 2: Construct the Row Vector F2(k)

Take the modulus of each element in the row vector F2(k) with respect to

the set {pk, pk+1, . . . , pk+s−1, pk+s}, resulting in the remainder matrix Rf :
(f1,1,1, f1,1,2) (f1,2,1, f1,2,2) . . . (f1,Tk,1, f1,Tk,2)

(f2,1,1, f2,1,2) (f2,2,1, f2,2,2) . . . (f2,Tk,1, f2,Tk,2)
...

...
. . .

...

(fs+1,1,1, fs+1,1,2) (fs+1,2,1, fs+1,2,2) . . . (fs+1,Tk,1, fs+1,Tk,2)


pk
pk+1
...

pk+s

Here, in fs,i,j :

• s represents the index in the set {pk, pk+1, . . . , pk+s−1, pk+s}.
• i represents the i-th twin number pair in the row vector F2(k), Tk =∏k−1

t=2 (pt − 2).

• j represents the index of the number in the i-th twin number pair.

Step 3: Combine Rb and Rf to Form Rbf (n)
r1,n + (fn,1,1, fn,1,2) r1,n + (fn,2,1, fn,2,2) . . . r1,n + (fn,Tk,1, fn,Tk,2)

r2,n + (fn,1,1, fn,1,2) r2,n + (fn,2,1, fn,2,2) . . . r2,n + (fn,Tk,1, fn,Tk,2)
...

...
. . .

...

rpk−1,n + (fn,1,1, fn,1,2) rpk−1,n + (fn,2,1, fn,2,2) . . . rpk−1,n + (fn,Tk,1, fn,Tk,2)


where n ∈ [1, s+ 1], n ∈ Z.

Step 4: Sieve and Obtain P2(k)

For n = 1 to s + 1, sieve out elements in Rbf (n) that contain pk−n+1.

The remaining elements correspond to the positions of twin prime pairs in the
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matrix M2(k). Based on the computational rules of M2(k), we can then obtain

P2(k).

Example: Obtaining P2(4)

(1) Determine p4+s:

• p4+s =
⌊√

p4!p + 1
⌋
p
= 13 = p6

• Thus, s = 2, and the set of smallest prime factors in M
′
2(k) is

{p4, p5, p6} = {7, 11, 13} .
(2) Construct the Column Vector:

1× p3!
p

2× p3!
p

3× p3!
p

4× p3!
p

5× p3!
p

6× p3!
p

 =



30

60

90

120

150

180


(3) Compute Remainder Matrix Rb:

• Take the modulus of each element in the column vector with re-

spect to {7, 11, 13} :

Rb =



2 8 4

4 5 8

6 2 12

1 10 3

3 7 7

5 4 11


(4) Construct the Row Vector F2(4):

F2(4) = [(11, 13), (17, 19), (29, 31)]

(5) Compute Remainder Matrix Rf :

• Take the modulus of each element in F2(4) with respect to

{7, 11, 13}:

Rf =

 (4, 6) (3, 5) (1, 3)

(0, 2) (6, 8) (7, 9)

(11, 0) (4, 6) (3, 5)


(6) Combine Rb and Rf to Form Rbf (1):
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• Add the first column of Rb and the first row of Rf :

Rbf (1) =



2 + (4, 6) 2 + (3, 5) 2 + (1, 3)

4 + (4, 6) 4 + (3, 5) 4 + (1, 3)

6 + (4, 6) 6 + (3, 5) 6 + (1, 3)

1 + (4, 6) 1 + (3, 5) 1 + (1, 3)

3 + (4, 6) 3 + (3, 5) 3 + (1, 3)

5 + (4, 6) 5 + (3, 5) 5 + (1, 3)



=



(6, 8) (5, 7) (3, 5)

(8, 10) (7, 9) (5, 7)

(10, 12) (9, 11) (7, 9)

(5, 7) (4, 6) (2, 4)

(7, 9) (6, 8) (4, 6)

(9, 11) (8, 10) (6, 8)


• Sieve out elements containing 7:



(6, 8) (3, 5)

(8, 10)

(10, 12) (9, 11)

(4, 6) (2, 4)

(6, 8) (4, 6)

(9, 11) (8, 10) (6, 8)


(7) Combine Rb and Rf to Form Rbf (2):

• Add the second column of Rb and the second row of Rf :

Rbf (2) =



8 + (0, 2) 8 + (7, 9)

5 + (0, 2)

2 + (0, 2) 2 + (6, 8)

10 + (6, 8) 10 + (7, 9)

7 + (6, 8) 7 + (7, 9)

4 + (0, 2) 4 + (6, 8) 4 + (7, 9)



=



(8, 10) (15, 17)

(5, 7)

(2, 4) (8, 10)

(16, 18) (17, 19)

(13, 15) (14, 16)

(4, 6) (10, 12) (11, 13)


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• Sieve out elements containing 11:



(8, 10) (15, 17)

(5, 7)

(2, 4) (8, 10)

(16, 18) (17, 19)

(13, 15) (14, 16)

(4, 6) (10, 12)



(8) Combine Rb and Rf to Form Rbf (3):

• Add the third column of Rb and the third row of Rf :

Rbf (3) =



4 + (11, 0) 4 + (3, 5)

8 + (11, 0)

12 + (11, 0) 12 + (4, 6)

3 + (4, 6) 3 + (3, 5)

7 + (4, 6) 7 + (3, 5)

11 + (11, 0) 11 + (4, 6)



=



(15, 4) (7, 9)

(19, 8)

(23, 12) (16, 18)

(7, 9) (4, 6)

(11, 13) (10, 12)

(22, 11) (15, 17)



• Sieve out elements containing 13:



(15, 4) (7, 9)

(19, 8)

(23, 12) (16, 18)

(7, 9) (4, 6)

(10, 12)

(22, 11) (15, 17)



(9) Obtain P2(4):
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• Based on F2(4) =
[
(11, 13) (17, 19) (29, 31)

]
, we compute:

P2(4) =



1× 30 + (11, 13) 1× 30 + (29, 31)

2× 30 + (11, 13)

3× 30 + (11, 13) 3× 30 + (17, 19)

4× 30 + (17, 19) 4× 30 + (29, 31)

5× 30 + (29, 31)

6× 30 + (11, 13) 6× 30 + (17, 19)



=



(41, 43) (59, 61)

(71, 73)

(101, 103) (107, 109)

(137, 139) (149, 151)

(179, 181)

(191, 193) (197, 199)


4.4. Twin Prime Conjecture.

The sequence formed by the sets M2(k) for k ≥ 0 as elements is denoted

as M2. Thus,

M2 = {M2(0),M2(1),M2(2), . . . ,M2(k), . . . }

The sequence formed by the sets P2(k) for k ≥ 0 as elements is denoted

as P2. Thus,

P2 = {P2(0), P2(1), P2(2), . . . , P2(k), . . . }

The table below provides statistics on the number of twin prime pairs and

twin number pairs in the matrix M2(k).
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M(k)
Interval

(pk−1!
p + 1, pk!

p + 1]

The number of

twinprime

pairs

The number

of twin

number pairs

proportion

of twin

prime pairs

M(0) (1,2] 0 0 -

M(1) (2,3] 0 0 -

M(2) (3,7] 1 1 100.00%

M(3) (7,31] 3 4 75.00%

M(4) (31,211] 10 18 55.56%

M(5) (211,2311] 55 150 36.67%

M(6) (2311,30031] 398 1620 24.57%

M(7) (30031,510511] 4168 23760 17.54%

M(8) (510511,9699691] 52817 400950 13.17%

M(9) (9699691,223092871] 838609 8330850 10.07%

M(10) (223092871,6469693231] 17567651 222660900 7.89%

Table 2. Statistical of twin prime pairs in matrix M(k)

The table reveals that for k ≥ 2, as k increases, both the number of twin

prime pairs |P2(k)| and the number of twin pairs |M2(k)| grow exponentially.

However, the proportion of twin prime pairs exhibits a declining trend. This

indicates that the growth rate of twin pairs |M2(k)| surpasses that of twin

prime pairs |P2(k)| as k increases. Consequently, we propose the following

conjecture:

|P2(k + 1)| > |P2(k)| > 0, and lim
x→∞

|P2(k)|
|M2(k)|

= 0, k ≥ 2

Since P2 is an infinite sequence, the validity of the above conclusion would

imply the truth of the Twin Prime Conjecture.
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