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Abstract

In this paper, we discuss the role of statistics in simple linear regression, multiple linear
regression, and logistic regression. Python has been used to implement the algorithms
in these models.

1 Introduction

In today’s digital era, the field of machine learning has become increasingly popular. Data
plays a crucial role similar to that of oil in the past, and machine learning serves as the
driving force behind this data-centric world. The significance of machine learning cannot
be emphasized enough given its pivotal role in modern technology. However, many people
use the technology or want to become experts in this field without fully comprehending the
underlying concept. It’s a mistake to see some students solely relying on libraries for learning
about machine learning, as it doesn’t provide a thorough understanding. A solid grasp of
mathematics not only allows us to better comprehend existing algorithms but also empowers
us to develop new models and more efficient techniques.

One method for instructing computers to learn from data is through the use of machine
learning. Machine learning involves teaching computers how to learn from data, aiming to de-
velop algorithms capable of generating predictions or insights without explicit programming.
This field is grounded in mathematical principles [1]. Mathematics provides the necessary
basics to build an algorithm for the machine-learning process. We present a simple linear
regression model for predicting salaries, a multiple linear regression model for predicting
graduate admissions, and a logistic linear regression model for predicting whether a student
will pass or fail an exam by using the logistic regression techniques. The role of statistics in
these models is discussed.

Statistics is essential for concluding evidence [2]. It involves methods for collecting,
presenting, analyzing, and interpreting numerical data. In Machine Learning, statistics play
a vital role in handling large amounts of data and are crucial for an organization’s progress
and success. They are crucial for understanding insights and serve as the foundation for
further analysis. Techniques like condensation, summarization, and concluding use methods
like central tendencies, dispersion, skewness, kurtosis, correlation, regression, and others.
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In this work, we use the Statsmodels library for the analysis of the results of prediction.
After the prediction of models, we must have some error between prediction and the actual
value in the dataset if we consider that our model are high quality. In linear or multiple
regression, the errors between ŷ and y are typically measured using the Euclidean norm

error = (y − ŷ)2. (1)

Each prediction comes with an error, so we have n errors. The residual sum of squares is

SSE =
n∑
i=1

(yi − ŷi)2, (2)

where n is the total number of observations, yi is the observed value for observation i, ŷi is
the predicted value by the model for observation i.

The goal is to minimize the difference between the predicted and the actual value with
the smaller residuals indicating better accuracy. We use the sum of the squares since the
residuals can be positive and negative, their sum does not accurately reflect the true error
[3].

The paper is organized as follows. In section 2, we present the simple linear regression
model, followed by the multiple linear regression model in section 3, and the logistic regression
in section 4. The conclusion is given in section 5.

2 Simple linear regression model

Machine learning includes the supervised algorithm known as linear regression. This method
performs regression tasks and predicts targets based on the independent variables. The
primary focus of linear regression is to identify the relationship between variables and make
forecasts, making it applicable in various scenarios [4].

y = β0 + β1x+ ε. (3)

The linear equation (3) represents a simple linear relationship, where the dependent
variable y is expressed as a function of the independent variable x, β1 is the slope, β0 is the
intercept and ε is an error.

2.1 Example of a model to predict salaries

Let’s consider an example of using a model to predict salaries with regression techniques in
machine learning. We use linear regression to build our model, as it provides the best fit
with the training dataset. To do this, we use an experience dataset, apply linear regression,
and assess the accuracy and error. Additionally, we intend to use a set of random test cases
to observe the predicted salary values [5].

2.1.1 Data loading and preparation

This dataset contains two columns Years of Experience and Salary of some unknown employ-
ees. The primary objective is to accurately calculate and predict employees salaries within
a specific area using simple linear regression. Viewing the dataset, we obtain the following
scatter plot in Figure 1.
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Figure 1: Salary dataset

After applying data preprocessing techniques to improve the quality of the dataset, such
as handling missing data, removing duplicated data, we divide the data into training 80%
and test 20% sets. We can see this with the following plot in Figure 2.

Figure 2: Distribution of data between training and test sets

2.1.2 Model evaluation

We used Python’s Statsmodels library, which provides a wide range of algorithms and func-
tionalities for estimating various statistical models. It is an important resource for economet-
ric analysis. Its capabilities include supporting linear regression models, generalized linear
models, robust linear models, and time-series analysis [6]. This is shown in Figure 3.

Figure 3: Table of Ordinary Least Squares regression results for linear regression model
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2.1.3 Interpretation of the ordinary Least Squares regression results

� R-squared and Adjusted R-squared

– R-squared (0.965): The high coefficient of determination (R-squared) of 96.5%
suggests that the independent variable in the model can substantially account for
the variation in the dependent variable. This implies that the model exhibits a
strong goodness-of-fit to the empirical data under examination.

– Adjusted R-squared (0.963): The R-squared value is adjusted to account for the
number of predictors in the model. It is marginally less than the R-squared value,
but still very high, indicating a good fit.

� Analyze of F-statistic and its p-value

– F-statistic (601.7): This assesses the overall importance of the model. A high
F-statistic value suggests that the model is statistically significant.

– Prob (1.80e-17): This represents the p-value linked with the F-statistic. A very
low p-value (considerably less than 0.05) indicates that the model has statistical
significance and that the independent variable(s) fit the data well.

� The coefficients (coef) and their standard errors (std err)

– const (2.447e+04): The intercept represents the predicted value of the dependent
variable (Salary) when the independent variable (YearsExperience) is zero. In
this case, the intercept is 24.470, which indicates the expected Salary when the
individual has no years of experience.

– YearsExperience (9436.9135): This represents the slope of the regression line,
indicating the expected adjustment in Salary for each additional unit increase
in YearsExperience. This coefficient implies that an extra year of experience is
connected to a rise in Salary of about 9436.91 units.

� The t-statistics and p-values for each coefficient

– const (t = 10.003, P> |t| = 0.000): The intercept is statistically significant (p-
value ¡ 0.05).

– YearsExperience (t = 24.530, P> |t| = 0.000): This indicates a statistically sig-
nificant relationship with Salary, as the p-value is less than 0.05.

� Confidence intervals for the coefficients

– const [1.94e+04, 2.95e+04]: According to the 95% confidence interval for the
intercept, we can be 95% certain that the actual intercept value falls between
19, 400 and 29, 500.

– YearsExperience [8639.089, 1.02e+04]: The 95% confidence interval for the slope
indicates that we are confident at a level of 95% that the genuine slope value is
between 8639.089 and 10, 200.

2.1.4 Model building and training

We construct the model using the simple linear regression formula, then perform a fonction
to fit the model and minimize the parameters, and finally, make predictions on all test data.
We can see the following result in Figure 4.
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Figure 4: Curve of prediction on test data

2.2 Role of statistics in simple linear regression

Standard errors (std err): The statistical properties of the least squares estimators for the
regression parameters β0 and β1 can be readily detailed. The model Y = β0 +β1x+ε assumes
that the error term ε is a random variable with an expected value of zero and a variance of
σ2. We will examine the bias1 and variance2 characteristics of the least squares estimators
β0 and β1.

Let’s begin with β1. As β1 is a linear combination of the observed value Yi, we can apply
properties of expectation to demonstrate that the anticipated value of β1 is

E[β̂1] = β1. (4)

Same thing for the intercept
E[β̂0] = β0. (5)

To show that these estimators are unbiased, we need to demonstrate that

E[β̂1] = β1; and E[β̂0] = β0. (6)

1. Expectation of β̂1: Let’s start with β̂1. By definition of β̂1,

β̂1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
, (7)

where

Sxx =
∑n

i=1(xi − x̄)2 (8)

xi : The individual values of the independent variable. (9)

x̄ : The mean of the independent variable values. (10)

Sxx : The sum of the squares of the deviations from the mean of x (11)

It used to estimate and evaluate the regression coefficients. Substituting yi with its
expression in the regression model

yi = β0 + β1xi + εi, (12)

we have

β̂1 =

∑n
i=1(xi − x̄)((β0 + β1xi + εi)− ȳ)∑n

i=1(xi − x̄)2
. (13)

1Bias is the difference between the model’s prediction and the correct outcome, with a preference for a
certain direction [8]

2variance to the stability in performance on future data[8]
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Note that
ȳ = β0 + β1x̄+ ε̄, (14)

where ε̄ = 1
n

∑n
i=1 εi. Substituting this expression for ȳ,

β̂1 =

∑n
i=1(xi − x̄)[(β0 + β1xi + εi)− (β0 + β1x̄+ ε̄)]∑n

i=1(xi − x̄)2
; (15)

β̂1 =

∑n
i=1(xi − x̄)[β1(xi − x̄) + (εi − ε̄)]∑n

i=1(xi − x̄)2
. (16)

Breaking down this sum,

β̂1 = β1 +

∑n
i=1(xi − x̄)(εi − ε̄)∑n

i=1(xi − x̄)2
. (17)

Now let’s calculate the expectation of β̂1

E[β̂1] = β1 + E

[∑n
i=1(xi − x̄)(εi − ε̄)∑n

i=1(xi − x̄)2

]
. (18)

Given that εi are independent random variables with zero expectation (E[εi] = 0),

E

[
n∑
i=1

(xi − x̄)(εi − ε̄)

]
=

n∑
i=1

(xi − x̄)E[εi − ε̄] = 0. (19)

Therefore
E[β̂1] = β1. (20)

2. Expectation of β̂0: For β̂0, we have

β̂0 = ȳ − β̂1x̄. (21)

Taking the expectation
E[β̂0] = E[ȳ − β̂1x̄], (22)

where ȳ = β0 + β1x̄+ ε̄ and, using the linearity of expectation, we have

E[β̂0] = E[β0 + β1x̄+ ε̄− β̂1x̄], (23)

E[β̂0] = β0 + β1x̄+ E[ε̄]− E[β̂1x̄]. (24)

Since E[ε̄] = 0 and E[β̂1] = β1,

E[β̂0] = β0 + β1x̄− β1x̄; (25)

E[β̂0] = β0. (26)

3. Now, let’s examine the variance of β1 and β0: Given our assumption that V (εi) = σ2,
it can be concluded that V = σ2.

The model is given by
yi = β0 + β1xi + εi, (27)

where εi ∼ NID(0, σ2).

Estimator β̂1:
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The ordinary least squares (OLS) estimator for β1 is given by

β̂1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
=

∑n
i=1(xi − x̄)yi

Sxx
, (28)

where Sxx =
∑n

i=1(xi − x̄)2.

Variance of β̂1:

To find the variance of β̂1, we use the property of the variance of weighted sums of
errors

β̂1 =

∑n
i=1(xi − x̄)(β0 + β1xi + εi)

Sxx
= β1 +

∑n
i=1(xi − x̄)εi

Sxx
. (29)

Since E[εi] = 0 and Var(εi) = σ2, we have

Var(β̂1) = Var

(∑n
i=1(xi − x̄)εi

Sxx

)
.

As εi are independent and identically distributed (i.i.d.)

Var(β̂1) =

∑n
i=1(xi − x̄)2σ2

S2
xx

=
σ2
∑n

i=1(xi − x̄)2

S2
xx

=
σ2Sxx
S2
xx

=
σ2

Sxx
.

Estimator β̂0:

The ordinary least squares (OLS) estimator for β0 is given by:

β̂0 = ȳ − β̂1x̄. (30)

Variance of β̂0:

To find the variance of β̂0, we use the definition

Var(β̂0) = Var(ȳ − β̂1x̄). (31)

Since ȳ and β̂1x̄ are linearly combined

Var(β̂0) = Var(ȳ) + x̄2Var(β̂1)− 2x̄Cov(ȳ, β̂1). (32)

Using Var(ȳ) = σ2

n
and Cov(ȳ, β̂1) = 0 (because ȳ and β̂1 are uncorrelated), we obtain

Var(β̂0) =
σ2

n
+
x̄2σ2

Sxx
. (33)

In the context of simple linear regression, the estimated standard error for the slope
and intercept are calculated as follows

se(β̂1) =

√
σ2

Sxx
. (34)

se(β̂0) =

√
σ̂2

[
1

n
+

x̄2

Sxx

]
. (35)

7



The t-statistics for each coefficient: An essential aspect of evaluating the effectiveness
of a linear regression model involves conducting statistical tests on the model parame-
ters and creating specific confidence intervals. This section covers hypothesis testing3

in simple linear regression, while methods for constructing confidence intervals. To
test hypotheses regarding the slope and intercept of the regression model, we need to
also assume that the error component in the model, denoted as e, follows a normal
distribution[7].

Let us examine the hypothesis that the slope of the model, denoted as β1,0, is equal to
a specific constant value. The relevant hypotheses are:

H0 : β1 = β1,0; H1 : β1 6= β1,0. (36)

The test statistic for the slope, denoted T0, is given by

T0 =
β̂1 − β1,0√

σ̂2

Sxx

, (37)

where the standard error of the slope is denoted as σ̂β. Under the null hypothesis that
the slope parameter β1 is equal to a specified value β1,0, the test statistic T0 follows
a t-distribution with (n − 2) degrees of freedom4. We would reject H0 : β1 = β1,0 if
|t0| > tα/2,n−2, where t0 is computed from the above equation.

Analogous procedures may be employed to investigate hypotheses concerning the re-
gression intercept. To test

H0 : β0 = β0,0 H1 : β0 6= β0,0. (38)

We would use the statistic T0 given by

T0 =
β̂0 − β0,0√
σ̂2
[

1
n

+ x̄2

Sxx

] (39)

can be rejected if the calculated value of the test statistic, t0, exceeds the critical value
tα/2,n−2. Additionally, the null hypothesis should be rejected when the calculated
value of the test statistic, t0, is greater than tα/2,n−2. It is important to note that the
denominator of the test statistic equation (4.3.19) represents the standard error of the
intercept.

A highly significant instance of the hypotheses presented in Equation 4.3.16 is:

H0 : β1 = 0 H1 : β1 6= 0 (40)

The hypotheses pertain to the significance of regression. If we fail to reject the null
hypothesis H0 : β1 = 0, it means that we are concluding that there is no linear
correlation between the variables x and Y .

Confidence intervals on the slope and intercept: further to calculating the point es-
timates for the slope and intercept, it is also possible to derive confidence interval

3hypothesis test is decision making process[7]
4”Degrees of freedom are the maximum number of logically independent values, which may vary in a data

sample. Degrees of freedom are calculated by subtracting one from the number of items within the data
sample” [10]
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estimates for these parameters. The range of these confidence intervals provides a
measure of the overall reliability of the regression line. If the error terms εi in the
regression model follow a normal distribution and are independent.

This leads to the following definition of 100(1− α)%. 5.

Assuming the observations follow a normal distribution and are statistically indepen-
dent, a 100(1− α)% confidence interval for the slope coefficient, β1, in a simple linear
regression model is given by

β̂1 − tα/2,n−2

√
σ2

Sxx
≤ β1 ≤ β̂1 + tα/2,n−2

√
σ2

Sxx
. (41)

Similarly, a 100(1− α)% confidence interval on the intercept β0 is

β̂0 − tα/2,n−2

√
σ2

[
1

n
+

x̄2

Sxx

]
≤ β0 ≤ β̂0 + tα/2,n−2

√
σ2

[
1

n
+

x̄2

Sxx

]
. (42)

F-statistic: It is a method to evaluate the significance of the model. The significance
of regression can be tested using a technique known as analysis of variance6. This
method involves breaking down the total variability in the response variable into dis-
tinct components, serving as the foundation for conducting the test. The formula for
analysis of variance is expressed as:

n∑
i=1

(yi − ȳ)2 =
n∑
i=1

(yi − ŷi)2 +
n∑
i=1

(ŷi − ȳ)2, (43)

where

� yi: The actual value of the i-th observation.

� ȳ: The mean of all observed values y, calculated as ȳ = 1
n

∑n
i=1 yi.

� ŷi: The predicted value of the i-th observation.

�
∑n

i=1(yi− ȳ)2: The total sum of squares (TSS), which measures the total variation
in the observed values.

�
∑n

i=1(yi− ŷi)2: The residual sum of squares (RSS), which quantifies the variation
in the observed values not accounted for by the model.

�
∑n

i=1(ŷi − ȳ)2: The regression sum of squares, which quantifies the variation
in the predicted values explained by the model. Equation 4.3.10 expresses the
relationship between the total sum of squares, the regression sum of squares, and
the error sum of squares by [7]:

SST = SSR + SSE. (44)

R-squared and Adjusted R-squared: The coefficient of determination R-squared is
computed by dividing SSR by SST. A value nearing 1 indicates that the variable in
the equation has a stronger capability to explain Y, and signifies that the model fits
the data well [3].

R2 =
SSR
SST

= 1− SSR
SSE

. (45)

The coefficient judges the adequacy of a regression model.

5A confidence interval provides a range of values depending on λ̂(estimate) such that the probability of
λ(parameter) being within the interval is 1− α [11]

6“Analysis of variance (ANOVA) is a statistical test used to evaluate the difference between the means
of more than two groups” [12]
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3 Multiple linear regression model

Multiple linear regression is a statistical technique utilized to predict the value of a dependent
variable by employing multiple independent variables. The purpose of MLR is to construct
a model that represents the linear correlation between the independent variables x and
dependent variable y, which will then be examined [9].

y = β0 + β1x1 + β2x2 + β3x3 + β4x4 + . . .+ βnxn. (46)

3.1 Practical example of predicting graduate admissions

We can take an example like the Prediction of Graduate Admissions. Many students struggle
with choosing graduate programs due to a lack of knowledge about university rankings
and misleading advice, leading to missed admissions and wasted resources. Our goal is to
help students connect with their preferred university by thoroughly evaluating their profiles,
ensuring accurate assessments without overestimating or underestimating their potential.

3.1.1 Data loading and preparation

During the preparation of our manuscript, the dataset has been downloaded over 400 times
and viewed more than 2000 times. It includes parameters that are meticulously evaluated
by the admissions committee, such as GRE scores, TOEFL scores, Undergraduate GPA,
University rating, research, Statement of Purpose, and Letter of Recommendation[16].

Figure 5: graduate dataset

Viewing the dataset in Figure 5, we obtain the following plot in Figure 6.

Figure 6: Features vs Chance of Admit
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Dividing the data into training 80% and test 20% sets, we have the following plot in
Figure 7.

Figure 7: Distribution of data between training and test sets

3.1.2 Model evaluation

We have the result on prediction of test data in Figure 8.

Figure 8: Result on prediction of test data
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3.1.3 Interpretation of the ordinary Least Squares regression results

� R-squared and Adjusted R-squared

– R-squared (0.817): The R-squared value of 0.817 implies that the independent
variables in the model account for approximately 81.7% of the observed variation
in the dependent variable, indicating a strong model fit.

– Adjusted R-squared (0.813): This value, at 0.813, takes into account the number
of predictors and remains high, further supporting a good fit for the model.

� F-statistic and its p-value

– F-statistic (218.4): It evaluates the overall significance of the model, with a high
value indicating statistical significance.

– Prob (F-statistic) (3.85e− 139): It represents the p-value associated with the F-
statistic; an extremely low p-value (much less than 0.05) signifies that the model
is statistically significant, suggesting that the independent variables collectively
strongly predict the dependent variable.

� Coefficients (coef) and their standard errors (std err)

– const (-1.2539): The intercept value represents the predicted Chance of Admit
when all other independent variables in the regression model are held constant
at zero. This intercept has a negative value, which might not have a meaningful
real-world interpretation in this context.

– GRE Score (0.0016): For each one-point increase in GRE Score, there is an as-
sociated 0.16% increase in the Chance of Admit while holding all other variables
constant- indicated by its statistically significant coefficient with a p-value of
0.006.

– TOEFL Score (0.0031): Similarly, a one-unit rise in TOEFL Score is associated
with a 0.31% increase in the probability of admission while keeping all other
factors constant; this coefficient is also statistically significant, with a p-value of
0.003.

– University Rating (0.0043): The coefficient is not statistically significant with a
p-value of 0.320, indicating that University Rating might not have a meaningful
impact on the Chance of Admit.

– SOP (0.0057): The coefficient is not statistically significant with a p-value of
0.272, indicating that SOP might not have a meaningful impact on the Chance
of Admit.

– LOR (0.0147): A one-unit rise in LOR is linked to a 1.47% increase in the prob-
ability of admission while keeping all other factors constant. This coefficient
demonstrates statistical significance with a p-value of 0.002.

– CGPA (0.1198): A one-unit rise in CGPA is linked to an 11.98% increase in
the Chance of Admit while keeping all other factors constant. This coefficient
demonstrates statistical significance with a p-value of 0.000.

– Research (0.0261): Participation in research activities is associated with a
2.61% higher Chance of Admission when controlling for other factors. This finding
is statistically significant with a p-value of 0.001.
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� The t-statistics and p-values for each coefficient

– const (t = -10.519,(P> |t| = 0.000): The intercept is statistically significant (p-
value ¡ 0.05) indicating that the constant term is significantly different from zero.
This implies that the baseline Chance of Admit when all other predictors are zero
is meaningful and not due to random chance.

– Serial No. (t = 4.892, P> |t| = 0.000): The coefficient for Serial No. a statistically
significant (P-value ¡ 0.05), indicating that the serial number has a non-zero effect
on the Chance of Admit. However, the effect size is very small and likely not
practically significant.

– GRE Score (t = 2.753, P> |t| = 0.006): The coefficient for GRE Score a statisti-
cally significant (P-value < 0.05), indicating that GRE Scores have a significant
positive effect on the Chance of Admit.

– TOEFL Score (t = 3.020, P> |t| = 0.003): The coefficient for TOEFL Score a
statistically significant (P-value < 0.05), suggesting that higher TOEFL Scores
are associated with a higher Chance of Admit.

– University Rating: (t = 0.996, P> |t| = 0.320): The coefficient for University
Rating is not statistically significant (P-value ¿ 0.05), indicating that university
rating does not have a significant effect on the Chance of Admit.

– SOP: (t = 1.100, P> |t| = 0.272): The coefficient for SOP is not statistically
significant (P-value ¿ 0.05), suggesting that the statement of purpose does not
significantly affect the Chance of Admit.

– LOR: (t = 3.059, P> |t| = 0.002): The coefficient for LOR is statistically sig-
nificant (P-value ¡ 0.05), indicating that stronger letters of recommendation are
associated with a higher Chance of Admit.

– CGPA: (t = 10.497, P> |t| = 0.000): The coefficient for CGPA is highly significant
(P-value ¡ 0.05), suggesting that higher cumulative GPA is strongly associated
with a higher Chance of Admit.

– Research: (t = 3.509, P> |t| = 0.001): The coefficient for Research is statis-
tically significant (P-value ¡ 0.05), indicating that having research experience is
associated with a higher Chance of Admit.

3.1.4 Model building and training

We construct the model using the multiple linear regression formula, then perform a function
to fit the model and minimize the parameters, and finally make predictions on all test data.
We can see the following result on the curve on prediction of test data in Figure 9.
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Figure 9: Curve on prediction of test data

3.2 Role of statistics in multiple linear regression

Standard errors(std err): To calculate the standard error we must compute the estimation
of variance. The estimator of the variance of the error terms, σ̂2, is given by

σ̂2 =
SSE

(n− p)
. (47)

In this formula

� n is the number of observations.

� p is the number of model parameters (including the intercept).

then determine the matrix Cjj is the j-th component of the matrix (X ′X)−1. Once we have
c we can extract the diagonal component. Finally the standard errors of the least squares
estimator β is

β̂j =
√
σ2 [(XTX)−1]jj. (48)

The F-statistics for each coefficient: In this part, we outline several significant hypothesis-
testing methods. Just like in the case of simple linear regression, hypothesis testing neces-
sitates that the error terms εi in the regression model follow a normal and independent
distribution with an average of zero and variance σ2. The significance test for regression
examines whether there is a linear association between the response variable y and a subset
of the predictor variables x1, x2, ..., xk. It evaluates the following hypotheses:

H0 : β1 = β2 = · · · = βk = 0. (49)

H1 : βj 6= 0 for at least one j. (50)

The rejection of the null hypothesis suggests that at least one of the predictor variables
x1, x2, . . . , xk makes a significant contribution to the model. If H0 : β1 = β2 = · · · = βk = 0
is indeed true, SSR/σ2 follows a chi-square distribution with k degrees of freedom. The test
statistic for ANOVA.

F0 =
SSR/k

SSE/n− p
. (51)
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We must reject the null hypothesis if the calculated test statistic value in Equation (51),
denoted as f0, exceeds fα,k,n−p.

The t-statistic: Hypothesis testing could be employed to assess the relative significance of
each regressor variable within the regression model. This may involve considering the inclu-
sion of extra variables or the removal of existing ones to enhance the model’s effectiveness.
One essential hypothesis test involves determining if an individual regression coefficient,
denoted as βj, equals a specified value βj0.

H0 : βj = βj,0; H1 : βj 6= βj,0. (52)

The test statistic for this hypothesis is

T0 =
β̂j − βj,0√
σ2Cjj

=
β̂j − βj,0
se(β̂j)

. (53)

The diagonal element Cjj of (X′X)−1 corresponds to β̂j. The denominator of Equation

4.3.29 represents the standard error of the regression coefficient β̂j. The null hypothesis
H0 : βj = βj,0 is rejected if the absolute value of the test statistic t0 exceeds the critical value
tα/2,n−p. This is considered a partial or marginal test, as the estimated regression coefficient

β̂j depends on all other predictor variables xi included in the model [7].
R-squared and Adjusted R-squared: The coefficient of determination, denoted as R-

squared, can be employed as a comprehensive metric to assess the model’s goodness of fit.
From a statistical standpoint, this value can be computed as:

R2 =
SSR
SST

= 1− SSR
SSE

. (54)

4 Logistic linear regression model

Logistic regression is a statistical model used for classification tasks, where the goal is to
predict a categorical or discrete outcome variable. It estimates the probability of the depen-
dent variable B, which is a binary or dichotomous class, based on the independent variables
A by determining P (A|B). The model classifies the binary class label B using the following
equations [17]:

P (B = 1|A) =
1

1 + exp (W0 +
∑n

i=1 WiAi)
. (55)

P (B = 0|A) =
exp (W0 +

∑n
i=1WiAi)

1 + exp (W0 +
∑n

i=1 WiAi)
. (56)

4.1 Practical example

We can take an example like some information about students and aims to predict whether
a student will pass or fail based on several characteristics. The columns in the dataset are
as follows

1. Student Id: An identifier unique to each student.

2. Gender: The gender of the student, where ’M’ stands for male and ’F’ stands for
female.

3. Age: The age of the student in years.
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4. Final mark: The final grade obtained by the student in the exam or course.

5. Pass: A binary indicator where 1 means the student passed and 0 means the student
failed.

The goal is to use this information to predict the probability of a student passing or failing
the exam or course by using logistic regression techniques, we can model the relationship
between the students’ characteristics (age and final mark) and their success or failure, as
represented by the ’pass’ column.

4.1.1 Data loading and preparation

Figure 10: dataset students

Figure 11: train test split data between training and test sets
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4.1.2 Model building and training

It is the same process as the last model.

Figure 12: Curve of prediction on training
data

Figure 13: Curve of prediction on test
data

4.1.3 Model evaluation

We can see the following figure below

Figure 14: Table of classification report for the logistic regression model

4.1.4 Interpretation

� Precision The precision metric represents the proportion of true position predictions
among the total number of positive predictions made by the model. A precision of 1.00
for classes 0 and 1 means that all positive predictions in your model are correct.
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Figure 15: Table of confusion matrix for the logistic regression model

� Recall The recall measure reflects the fraction of true positive predictions out of the
total number of actual positive instances. A recall of 1.00 for classes 0 and 1 means
that our model has correctly identified all positive instances in each class.

� F1-Score The f1-Score represents the harmonic mean of precision and recall. An f1-
Score of 1.00 for classes 0 and 1 means that our model performs perfectly in terms of
precision and recall.

� Support The support values represent the number of true examples belonging to each
class. In your case, there are 3 instances of class 0 and 5 instances of class 1.

� Accuracy: Accuracy is the proportion of correct predictions out of all predictions. An
accuracy of 1.00 means that all predictions in our model are correct.

4.2 Role of statistics in logistic regression

A binary classifier’s confusion matrix is depicted in Figure 16. It shows the actual values
labeled as True and False, along with their predictions as Positive and Negative. The per-
formance of a classification model is evaluated based on the values of true positive, true
negative, false positive, and false negative entries in the confusion matrix.

Figure 16: Confusion matrix for the binary classification problem

TP (True Positive): A true positive in the confusion matrix occurs when a positive result
is accurately predicted.
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FP (False Positive): In the confusion matrix, a false positive arises when the model
incorrectly predicts a positive outcome, yet the actual outcome is negative. This situation
corresponds to Type 1 Error and can be likened to an unwelcome stroke of luck.

FN (False Negative): A false negative occurs in the confusion matrix when a negative
result is wrongly predicted as positive. This situation is commonly referred to as a Type 2
Error and is considered equally detrimental as a Type 1 Error.

TN (True Negative): When a negative prediction aligns with the actual outcome, it is
considered a True Negative in the confusion matrix. This is demonstrated in the binary
classification results depicted in Figure 16 [20].

Figure 17: Representation of the test set classification results in elliptical form for four binary
outcomes.

The model’s accuracy is calculated by summing the number of correctly predicted positive
and negative cases (TP + TN) and then dividing that sum by the total number of data sets
(P + N). The highest possible accuracy score is 1.0, while the lowest is 0.00 [21].

Figure 18: Two ellipses demonstrate the method of accuracy calculation

The sensitivity metric, also referred to as recall or true positive rate, is calculated by
dividing the number of correct positive predictions by the total number of actual positive
cases. It is referred to as Sensitivity or Recall. A perfect TP Rate is represented by 1.0,
while the lowest rate is denoted by 0.0 [21].

19



Figure 19: Two ellipses demonstrate the method of accuracy calculation

Precision is determined by the ratio of correctly predicted positive cases to the total
number of predicted positive cases (TP + FP). The highest achievable accuracy is 1.0, while
the lowest is 0.0 [21].

Figure 20: Two ellipses demonstrate the method of precision calculation

The F-Measure, also known as the F-score, quantifies the test’s accuracy and is computed
using precision and recall in the following formula [21].

F-Score = 2× precision× recall

precision + recall
. (57)

5 Conclusion

Statistics plays a crucial role in the field of machine learning. In this work, we studied
three models: simple linear regression, a multiple linear regression model, and the logistic
regression model. The evidence role of statistics in machine learning is highlighted. The
fundamentals of machine learning are deeply rooted in mathematical concepts. It is applied
to aid real estate companies in predicting apartment prices, and banks in detecting anoma-
lies and classifying handwritten digit recognition (postal codes) among other uses. This is
accomplished through a blend of mathematics and extensive programming skills, particu-
larly using Python. In future work, we will explore other more complex algorithms, fostering
innovation and pushing the limits of what machine learning can accomplish. For instance,
we can consider exploring the multinomial logistic regression, ridge and lasso regression, and
Generalized Linear Models (GLMs) algorithm to understand its mathematical principles,
potential enhancements, and efficacies. Why not create our algorithm for machine learning?
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