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Abstract: The Collatz conjecture suggests that that for any integer, n € Z*, iterating the function:

— n . .
E if n is even

F(n) =

3n+1 if nis odd
eventually leads to 1. In this paper we develop a clear algebraic framework to prove that this
convergence occurs universally. We classify all positive integers into 16 distinct modulo residual
classes, where all types follow a specific transformation pattern and divisibility behaviour under the
Collatz map. This structure forms a finite-state transition system allowing us to discover modular
residual non trivial loops using depth first search, out of which fewer looping sequences are increasing
and most are decreasing. Our analysis proves and demonstrates that such increasing modulo type based
looping sequences are inherently unstable with finite number of cycles. This eventually exhibits net
contraction with division consistently dominating multiplicative growth. All together this Framework
offers rigorous and structurally complete resolution of the conjecture.

Introduction:

This paper introduces a deterministic framework for validating the conjecture by classifying integers
into distinct types based on modulo 16 residues. Positive odd integers are expressed as 16k+m, where
me{1,3,5,7,9,11,13,15}, representing Types 1 through 8. Positive even integers are expressed as
16k+m’, where m'€{0,2,4,6,8,10,12,14} representing EV1 through EVS.

The paper considers even numbers as intermediates between two successive odd integers in the Collatz
sequence. Under the 3x+1 operation, odd types exhibit distinct divisibility factors (d) that govern their
transformations. For instance:

o Types 1 and 5 become divisible by 4.

o Types 2,4, 6, and 8 become divisible by 2.
o Type 3 becomes divisible by 2" (n>4).

o Type 7 becomes divisible by 8.

These divisibility properties lead to specific transformation rules. For example:

o Type 1 transforms into Types 1, 3, 5, or 7.

Type 2 transforms into Types 3 or 7.

Types 3 and 7 can transform into any odd type.
Type 4 transforms into Type 2 or 6.

Type 5 transforms into Type 2, 4, 6 or 8.

Type 6 transforms into Type lor 5.

Type 8 transforms into Type 4 or Type 8 further.

Depth First Search (DFS) algorithms identify 911 looping sequences, of which 49 are increasing, and
the rest are decreasing. All looping sequences are shown to terminate within finite cycles, and



transformations converge universally to 1. The conjecture’s universality is established by the absence
of infinite looping, unbound growth and by the pigeonhole principle.

Methodology: The paper uses modulo residual classes of 16 as a tool for classification aiming to
explore disciplined structures in Collatz sequence. A clarification is needed why other modulo classes
are not used.
Modulo 8: We could have four residual classes of 8k + m: m =1, 3, 5 and 7. Let’s assign them as Type
A, B, C and D respectively. This system captures less granules than 16k + m and creates confusion.
Let’s take transformations of Type D:

8k +7 = 24k + 22 (by 3x +1)

24k +22 > 12k + 11
Now, substituting k by 8k” + m=> 12k + 11 =96k" + 12m + 11
For each values of m =1, 3,5, 7, 96k” + 12m + 11 represents Type D integer. This implies, there is no
escape route from Type D which indicates an unrealistic infinite looping or unbound growth. This is
where modulo 16 offers more clarity. Each defined modulo 16 types has definite escape route(s) that
adds new insight and transparency in understanding Collatz behaviour of all integers.
Modulo 32 or more: It is obvious that, higher modulo classes present more granules. A higher modulo
with greater number of classes and much greater number of looping sequences would only aid to the
complexity, and do not offer any new insight.
Therefore, by Occam’s razor, modulo 16 classes are the optimal choice for this purpose.
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Section 1:
Lemma 0: Classification: All odd positive integers can be expressed in a form of 16k +m where
me{1,3,5,7,9,11,13,15} and all even positive integers can be expressed as 16k + m’

Proof: When an odd positive integer >15 is divided by 16, there can be only eight values of remainder
‘m’ suchthatm=1,3,5,7,9, 11, 13 and 15.

When an even positive integer >15 is divided by 16, there can be only eight values of remainder
‘m” such thatm” =0, 2, 4, 6, 8, 10, 12 and 14. (k being the quotient in each case).

Table 1: Odd integers: Core integer ‘k’: Represents another positive integer — odd or even.

16k+m; m = 1 3 5 7 9 11 13 15

Defined as ‘Type’ Typel | Type2 |Type3 |Type4 | Type5 | Type6 | Type7 | Type 8
Table 2: Even Integers

16k+ m’; m” = 0 2 4 6 8 10 12 14

Defined as ‘Ev’ Ev 1 Ev2 Ev3 Ev 4 Ev5 Ev 6 Ev7 Ev 8

Lemma 1: Divisibility (d = 2"): Odd integers belonging to each defined types on 3x+1 operation

transform into the next odd integers when divided by 2", where n € Z*

Proof:

Type 1: 16k + 1 = 48k + 4 (by 3x +1 operation).
48k +4 > 12k +1 is an odd integer for any value of k. This gives n =2 i.e. divisibility ‘d’ (=2") =4




Similarly,

Type 2: 16k +3 = 48k+10 => Gives n = 1 i.e. divisibility ‘d’ =2

Type 3: 16k + 5 2 48k + 16 => Gives n = 4 or more (if k is odd), i.e. d = 16 or more
Type 4: 16k + 7 2 48k + 22 => Gives n = 1 i.e. divisibility ‘d’ =2

Type 5: 16k + 9 = 48k + 28 => Gives n = 2 i.e. divisibility ‘d’ = 4

Type 6: 16k + 11 = 48k + 34 => Gives n = 1 i.e. divisibility ‘d’ =2

Type 7: 16k + 13 - 48k + 40 => Gives n = 3 i.e. divisibility ‘d’ = 8

Type 8: 16k + 15 > 48k + 46 => Gives n = 1 i.e. divisibility ‘d’ =2

Table 3: Divisibility Factors (d) for Each Odd Type Under the 3x+1 Operation:

Types 1 2 3 4 5 6 7
Divisibility(d) 4 2 2" (n>4) 2 4 2 8 2

o0

Lemma 2: Integers transformation rules: On 3x + 1 operation followed by division by ‘d’
1) Type 1 transforms into Types 1, 3, 5, or 7.

2) Type 2 transforms into Types 3 or 7.

3) Types 3 transforms into any odd type.

4) Type 4 transforms into Type 2 or 6.

5) Type 5 transforms into Type 2, 4, 6 or 8.

6) Type 6 transforms into Type lor 5.

7) Type 7 transforms into any odd types

8) Type 8 transforms into Type 4 or Type 8 further.

Proof:

Typel transformation:

Step I: 16k +1 = 48k + 4 (by 3x + 1 operation) = 12k + 1 (division by 4)

Step II: If the core integer ‘k’ belongs to Typel, substituting ‘k’ by 16x + 1 (x € Z*):

12(16x +1) +1 = 192x + 13 = 16(12x) +13 which is a type7 integer. Therefore, Type 1 integers
transform into Type 7.

Likewise, if k belongs to Type 2, substituting ‘k’ by 16x+3:

12(16x +3) + 1 =192x + 37 = 16(12x + 2) + 5 => represents a Type 3 integer. Therefore, Typel
integers transform into Type 3 also.

The core integer ‘k’ when substituted by all even classes (Ev1 to Ev8) and by all odd classes (Typel to
Type 8), summarized results given in the following table:

Table 4: Transformation summary of Type 1:

‘k’ Substituted by Ev 1,3,5,7 Type 2, 4,6,8 Ev 2,4,6,8 Type 1,3,5,7
Transforms into Type 1 Type 3 Type 5 Type 7

With similar treatment on all the rest odd types, the following results are obtained:
Table 5: Transformation rules of Type2:

Type 2 Type 3 Type 7

Type of core k=> EV1,2,3,4,56,7,8 Type1,2,3,4,5,6,7, 8
(all even integers) (all odd integers)




[Mlustrative Examples: Type2 integer = 16k + 3 = 48k + 10 (by 3x +1) = 24k + 5 (division by 2)

If k = 2n (all even integers), 24k + 5 =48n + 5= 16x3n + 5 => a Type 3 integer.

If k=2n+ 1 (all odd integers), 24k + 5 =48n + 29 = 16(3n+1) +13 => Type7 integer.

Table 6: Transformation rules of Table3:

Type3 |Typel |Type2 |Type3 |Typed4 |TypeS5S |Type6 |Type7 |Type8
to
For core | Ev I: Ev 4: Ev 3: Ev 2: Ev5: Ev &: Ev 3: Ev 6:
integer, | 16m+0 |lbm+6 |lébm+4 |16m+2 |16m+8 |16m+14 | 16m+4 | 16m+ 10
k
Forcore | Type 1: | Type4: |Typel: |Type5: |Typel: |Typed: | Typel: | Type 8:
integer, |lém+1 |16m+3 |16m+1 |16m+9 |16m+1 |16m+3 |16m+1 | 16m+15
k m =4n m= m =4n m = 4n m =4n m=2n |m=4n |m=2n
type 1+2n +3 type | type +2 type | type +1 type | +1 type
even type odd | odd even even even odd odd
integers | integers | integers | integers | integers | integers | integers | integers
Forcore | Type3: | Type3: | Type2: |Type3: |Type3: |Type3: | Type2: | Type 3:
integer, | 16m+5 |l6m+5 | l6m+3 |16m+5 |16m+5 |16m+5 [16m+3 | l6m+5
k m=16n |m= m=2n |m=16n m=16n m=16n m=2n |m=16n
type lén+6 type +2type |+8type |+ 14 +1 type |+ 10 type
even type even even even type odd even
integers | even integers | integers | integers | even integers | integers
integers integers
Forcore | Type 6: | Type5: | Type3: |Type8: |Type6: |TypeS: | Type3: | TypeS5:
integer, | 16m + Ibm+9 | 16m+5 |16m+15 | 16m+ I6tm+9 |[16m+5 | 16m+9
k 11 m=4n |m=16n | m=2n 11 m=4n |m=16n | m=4n
m=2n |+1type |+12 type m= +3 type | +4type | +2 type
type odd type even 2n+1 odd even even
even integers | even integers | type odd | integers | integers | integers
integers integers integers
Forcore | Type7: | Type7: | Type7: |Type7: |Type7: |Type7: |Type7: | Type7:
integer, | 16m + 16m + 16m + 16m + 16m + 16m + 16m + 16m + 13
k 13 13 13 13 13 13 13 m = 8n
m=8n |m=8n |m=8n |m=8n | m=8n |m=8n |m=8n |+7type
+2 type | +5type | type +3 type | +6type |+1type |+4type |odd
even odd even odd even odd even integers
integers | integers | integers | integers | integers | integers | integers

lustrative Examples:

Type 3 integer = 16k + 5 > 48k +16 (by 3x+1) = 3k +1 (division by 16)
Ifk=Ev4d=16m+ 6,3k +1 =48x + 19 =16(3x +1) + 3 => a Type 2 integer.
Ifk=Ev5=16m+ 8§, 3k +1 =48m + 25= 16(3m +1) + 9 =>a Type 5 integer




Ifk=Typel=16m+ l,andm=4n+1,3k+1=3(64n+17) +1=192n+52=48n+ 13 = 16x3n +
13 =>a Type 7 integer.

Ifk=Type 8 =16m + 15 and m = 2n, 3k +1 = 3(32m + 15)+1 =96n + 46 = 48n + 23 = 16x(3n+1) + 7
=>a Type 4 integer.

Table 7: Transformation rules of Type 4:

Type 4 Type 2 Type 6
Core integer, k = Type 1,2,3,4,5,6,7, 8 Ev1,2,3,4,5,6,7,8
(all odd integers) (all even integers)

Ilustrative Examples: Type 4 integer = 16k + 7> 48k + 22 (by 3x + 1) = 24k + 11
If k =2n +1 (odd integers), 24k + 11 =48n + 35 =16 x(3n + 2) + 3 => a Type 2 integer.
If k = 2n (even integers), 24k + 11 =48n + 11 = 16x3n + 11 => a Type 6 integer.

Table 8: Transformation rules of Type 5:

Type 5 Type 2 Type 4 Type 6 Type 8

Core integer, k = Type 1,3,5.7 EV 1,3,5,7 Type 2,4, 6, 8 EV 2,4,6,8

[Mlustrative Examples: Type 5 integer =16k + 9 = 48k + 28 (by 3x +1) = 12k + 7 (division by 4)
Ifk=Type3=16m+5, 12k +7=12(16m+ 5) +7=192m + 67 = 16 (12m + 4) + 3 => a Type 2
integer.

Ifk=Ev2=16m+2, 12k +7=12(16m +2) +7=192m + 31 = 16(12m+1) + 15 => a Type 8 integer.

Table 9: Transformation rules of Type 6:

Type 6 Type 1 Type 5
Core integer, k = Ev1,2,3,4,5,6,7,8 (even) Type 1,2,3,4,5,6,7, 8 (odd)
(all even integers) (all odd integers)

[Mlustrative Examples: Type 6 integer = 16k + 11 = 48k + 34 (by 3x +1) = 24k + 17 (division by 2)
If k =2n (even), 24k + 17 =48k + 17 =16(3n+1) +1 => a Type 1 integer.
Ifk=2n+1 (odd), 24k + 17 =48k + 41 = 16(3n +2) + 9 => a Type 5 integer.

Table 10: Transformation rules of Type 7:

Type7 | Typel | Type2 Type 3 | Type 4 TypeS | Type 6 Type7 | Type 8

k= Ev2,6 | Type3,7 |[Ev1,5 |Type2,6 | Ev4,8 |Typel,5 Ev3,7 |Typed,8

[Mlustrative Examples: Type 7 integer = 16k + 13 = 48k + 40 (by 3x + 1) = 6k + 5 (division by 8)
Ifk=Type2=16m + 3, 6k +5=96m + 23 = 16x (6m + 1) + 7 => a Type 4 integer.
Ifk=Ev7=16m+ 12,6k +5=96m + 77 =16(6m +4) + 13 => a Type 7 integer.
Ifk=Type5=16m+9, 6k +5=96m + 59 = 16(6m + 3) + 11 => a Type 6 integer.



Table 11: Transformation rules for Type 8:

Type 8

Type 4

Type 8

Core integer, k =

Ev1,2,3,4,5,6,7,8 (even)
(all even integers)

Type 1,2,3,4,5,6,7, 8 (odd)
(all odd integer)

Ilustrative Examples: Type 8 integer = 16k + 15 = 48k + 46 (by 3x + 1) = 24k + 23

If k =2n (even), 24k + 23 =48n + 23 = 16(3n +1) + 7 => a Type 4 integer.
Ifk=2n+1 (odd), 24k + 23 =48n + 47 = 16(3n +2) + 15 => a Type 8 integer.
Table 12: Transformation Rules Summary of All Odd Integers:

Types Transformed into Forbidden Maximum divisor Growth
Transformations (d) Tendency
Type 1 | Type 1, 5 (for even core) Type 2, Type 4, Type 6 and 4 Decreasing
Type 3, 7 (for odd core) Type 8
Type 2 Type 3 (for even core), Type 1, Type 2, Type 4, Type 2 Increasing
Type 7 5, Type 6 and Type 8
Type 3 All None 16, 32 or more Decreasing
Type 4 Type 2 (odd), Type 6 Type 1, Type 3, Type 4, Type 2 Increasing
5, Type 7 and Type 8
Type 5 Type 2, Type 4, Type 6 Type 1, Type 3, and Type 5 4 Decreasing
and Type 8 and Type 7
Type 6 Type 5 and Type 1 Type 2, Type 3, Type 4, Type 2 Increasing
6, Type7 and Type 8
Type7 All None 8 Decreasing
Type 8 Type 4 and Type 8 Type 1, Type 2, Type 3, 2 Increasing
Type 5, Type 6, Type 7

Visual of Transformation Rules:

Type5

)

Typet

16k+ 11

Type2
16k+3

A' Type? |
Y |

Type 3 and 7 are the most connected integers and Type 8 are the least connected integers.




Section 2: Forbidden Transformations: Some transformations, like Type 1 to Type 2, Type 4 to

Type 8 or Type 8 to Type 6 etc. are mathematically impossible. These are ‘forbidden transformations.’

Following table summarizes all forbidden transformations:

Table 13:
Integer | Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7 Type 8
Type 1 Forbidden Forbidden Forbidden Forbidden
Type 2 | Forbidden | Forbidden Forbidden Forbidden | Forbidden Forbidden
Type 3
Type 4 | Forbidden Forbidden | Forbidden Forbidden Forbidden | Forbidden
Type 5 | Forbidden Forbidden Forbidden Forbidden
Type 6 Forbidden Forbidden | Forbidden Forbidden | Forbidden | Forbidden
Type 7
Type 8 | Forbidden | Forbidden Forbidden Forbidden | Forbidden | Forbidden

Examples of Valid Transformation Sequences:
Example 1: Type2 to Type3 to TypeS to Type6 to Typel (non-recursive).

Example 2: Type 8 to Type 4 to Type 2 to Type 7 to Type 6 to Type 5 (non-recursive).
Example 3: Type 6 to Type 1 to Type 3 to Type 5 to Type 6 (recursive: Type 6 to Type 6).

Example 4: Type 4 to Type 2 to Type 7 to Type 8 to Type 4(recursive: Type 4 to Type 4).

Section 3: Sequence Analysis: We have 8 odd modulo residual classes from Type 1 to Type 8.
Therefore, minimum 1 and maximum 8 allowed transformations required to encounter a repetition or to
form a looping sequence.

Let us assume there is a loop with n allowed transformations in which divisibility ‘d’ of modulo classes
involved = 22 2°,2¢, 24 2¢ 2f 2¢ 2h Since there are 4 classes with divisibility, d = 2, two classes with
d =4, one with d = 8 and one with d = 16 or more, at most of the exponents a, b, c, ... are equal to 1, at
most two exponents = 2, at most one exponent = 3 and at most one exponent > 4. If the starting integer
be x, which is sufficiently large and numerically competent for a loop, we can write the following
steps:

48k+3m+1
Step 1: 16k +m > ————
2a
Sten 2: 48k+3m+1 32.16k1+3%2m+3+22
tep : 20 2a+b

32.16k1+ 2m+3+29
2a+b

3316.k +33m+32+ 3.28+20+tb
%
2a+b+c

Step 3:

3%16.k+3*m+33+ 32.28+3.20+D 1 patb+c
2a+b+c+d

3316.k +33m+32+ 3.2442a+th
2a+b+c

Step 4:



3416.k+3*m+33+ 32.20+3.20+D 4 patb+c N 3516.k+35+3%+ 33.2043220+b 3 pa+b+cgatbtetrd
2a+b+c+d 2atb+c+d+e

Step 5:
For a sequence with n steps, if the modular form becomes 16k, + my, then,

316k +3"m+3""14 gn-22a 4 3n—32a+b+ .......... + 2a+b+c+---(n—1)th term

16kn + mn = 2a+b+c+d+e+:--nth term e (1)

Theorem 1: No odd positive integer >1 reappears in the Collatz sequence.

Proof: This deterministic framework provides us with the following constraints:
1) m and m, is any odd positive integer such that, 1< m, m, < 15
11 ) n is any positive integer such that, 2 <n < 8 as there are maximum 8 modular classes of odd
numbers available as per lemma 0 and at least two steps are involved to form a looping sequence.
111) k, k, are positive integers.
iv) a,b,c.d, ....., n™ term are all exponentials as per lemma 1 and at most
four of which can be = 1
two of which can be =2
one of which can be =3
one of which can be >4
Now, if an integer reappears in the above sequence then, 16k + m = 16k, + my , (1) becomes,

3"16.k + 3"m + 371 + 3n22a 4 3n-3a+by 4 patbrct-(n-Dthterm
16k Tm= 2a+b+c+d+e+:-nthterm
=>2516k +2°m=3"16.k + 3%.m + 371 4 307223 4 3n=3 patb . 42¥
S =atb+ct ..... +n" term, S’ = atbtc+ ...... + (n-1)" term
= m(3"- 25) +3n-14 gn-23a 4 gn-3ga+by 425
16.(25- 3m)
n-1 n-2 (a n-39a+b s’
__m 3M43nataan ity . +2 =i[R-m]
16 16.(25- 3m) 16
3n-14 3n-23a 4 gn-3za+by +25 N
here, R = =—
Where, Z5_ 3 5
!
N=3n"14 3n-2 2@ 4 3gn=3pa+b 4 .. + 2%
Now, if all exponents are equal,i.e.a=b=c=....=p,wegetS =p+p+...uptoqterms=q.p

And,S=p+p+p+....uptonterms=n.p

= 1 = - n-1 11— )
D=25on = gup_gn and, N=2 @2

n—-1
_ 2P\14 . . . 2P 2P
N=3n"1 E (?) => Represents a GP sum series with common ratio ‘r’ = 5 and first term = >
q=0

2P -3n 1 1
[ 2P-3 '[zn-P—3n] 2P-3




The exponents are so constrained that they can be equal to 1 or 2 or 3 or >4

1
Casel:a=b=c=d=...=1 R= " =-1

2+-3

1
Casell:a=b=c=d=...=2 R= > =1

24-3

1 1
Caselll:a=b=c=d=....=3 R = T = =

2°-3 5
CaseIV:a=b=c=d=.....=4+u R=24+u_3;R<1

Case II is only producing an integer R = 1 which leads to k = i [ 1-m]

m can be equal to all odd integers from 1 to 15 for odd integers presented as 16k +m.

Only m =1 yields a valid result k = 0

So, by theorem 1, only one looping sequence can exist in whichk =0, m=1, (a,b,c...) =(2,2,2...)
The starting integer = 16k+m = 16x0 +1 =1

Deviations: Any of the exponents aj >2, all others remain same, symmetry in the numerator N
disrupted. Let us consider following deviations from the uniformity:

A) Arbitrary adjustments: If a; = 2 + 0 and any other exponent a; is adjusted such that, ai=2 - 0,

S=2+0+2-0+2+2+...(upton"term) =2n

D= 2" _3n=4n_3"

The denominator remains same but some terms in the telescoping sum changes disrupting the

symmetry: R # 7"

B) Increased or decreased exponents: If at least one of the exponentials increases, a; =2 + u;

u => positive or negative integer

Let us rewrite the numerator N=3""! + Ty + T, + T3 + ...+ 2%

After introducing the deviation ‘u’, every ‘T’ picks up a factor 2" :

N =300+ T 2u+ To. 2+ T3. 29 + ... 4+2%.2% = 3014 2u(T; + Ty + T3 + ...+ 2%) (factoring out 2¥)

By definition, 3™ + T1 + T2 + Tz + ...+ 2 =N

Therefore, N’ = 3" + 2% (N — 3™1) = 2U N + (1- 2v).3™!

And adding up the deviation, the new denominator, D’ =

In this deterministic framework u may take the values 1, 2 or any integer > 3.

N’ =2"N - 3™l or, 2*.N —3.3™! or, 2N — 7.3™! or, 2".N — 15.3™! etc.

Can be written as, N’ =2"N —-i.3"!1 (i€ 1, 3,7, 15 etc.)

N =20N—i3m1 =20 (220 —3n) _j3nl=p20%0 _3nq3n_j3nlopy 430 30l

Nr D'+3"—j.3""1 3n—j.3n"1
=—= =1+ —
Dr D' D'
C) Even if more exponents are altered, N’ =37 + T, 28+ T, 2V "V + T3, 20V 4 4 25 #usvele.
And, D'=2 S+u+v+l+... _ 3N,

p2ntu_3n

=> cannot be an integer as D’ > 3™ — i - 371

The term 3™! remains invariant, while subsequent terms scale by 2, 24*V, 2u*V**-- etc, This disrupts the
telescoping sum, as the weights 3™! and 2° no longer align. Numerator changes polinomially, sub-
exponentially whereas the denominator changes exponentially keeping R # Z*

Therefore, only 1-4 - 1 i.e. 4 —2 - 1 loop exists and no odd positive integer >1 reappears. (Proved)



Corollary: If no odd integer>1 reappears in Collatz sequence, no even integers > 4 reappears in Collatz
sequence.

Theorem 2: An integer is capable of forming r cycles, it cannot form (r+1) cycles in a modular loop.

Proof: For a sequence with n (n>1) steps, if the modular form becomes 16k, + m, from 16k; +m then,

after first cycle:

3"16.k + 3"m +3""1 4+ 3n-22a 4 3n-3a+by +2atbtet-(n-Dth term
16k + my =

S=a+b+c+....+nM"term

2a+b+c+d+e+--nthterm

3"16.k +(3"-25).m + 3714 3n-22a 4 3n=3zatb, | patbtct-(n-1thterm
kn = 16.25

This takes the form of kn = 31112# ,

Where z = (371 _ 25)_m 4+ 3n-1 4 3n-2 pa | 3n-3pa+b e+ 2a+b+ct--(n—1)th term
And, 16.25 =25 is written as 2P .

This means, k is such a unique core integer due to which 16k+m is capable of completing 1 cycle of
this loop.

After 2" cycle, k becomes kn, therefore, substituting k by kn,

3"(kn).16.+z _ 32M162%.k +3™16.2+2P.z

kn+1 = 2P 52
37167k +3" D 1671 743(r-2)1 1672 74 ....... 20-Dp 4
Similarly, after r' cycle, kn+r=
’ 27D
3" 16"k +2Z1 _ — - - -
Or, knir="—"-——32/=3""116"1.z+ 3™ 216" 2.2+ ........207 Pz
2TP(K_n+r) =21 ) ) ) ) .
k= (3 r_n16r) => k is a unique core integer that is capable of completing r cycles.
3(r+1) 167 k 4371 1672430 D 1671 24 ........ 2rP 7
And, after (r+1)" cycle, Kn+r+1=
’ 2(r+1).p
3""16".k +2”
Or, Koy = ——— 20— 27 =30+ DN71 1672 4 37162 4 ... 2Pz

20+ DP (K +r41) —27
o 3(r+1).n 17
cycles of the same loop.
2TP(K_n+r) —Z1 2tV P(K, +1+1) —2”
3rnier 3(r+1)nqer
This shows, the core integer capable of completing r cycles cannot complete (r+1) cycles. Therefore,
every loop 1s bound to a finite number of cycles. (Proved)

=> k 1s a unique core integer that is capable of completing (r+1)

Evidently,

Section 4: Tracking of Transformation Paths: With the classification of integers and transformation
rules, randomness of the conjecture is replaced by strict mathematical discipline. It is now essential to

track all possible transformation paths between the defined types. Depth First Search (DFS) algorithm

are the most efficient tool for this purpose. Using a DFS python code, 911 looping sequences and 692
non-looping are exhaustively tracked. The DFS code is attached in the appendix section. Out of the



911 looping sequences and 692 non-looping sequences, it is found that:

1) only 49 found are of increasing or diverging growth tendency,

2) only 22 are found to be increasing/diverging,

Non-looping sequences are less relevant in proving convergence/divergence nature of the conjecture.
Diverging looping sequences, if found stable, lead to disproving the conjecture whereas unstable or
bounded growth indicates a universal convergence. All increasing looping sequences and some samples
of decreasing looping sequences are displayed in the appendix section.

Lemma 3: Growth tendency of looping and non-looping sequences is determined by comparing
accumulation of power of 3 in numerator with accumulation of power of 2 in denominator.
Proof: an odd integer x, after n transformations forms odd integer =

3x+1 3243424 3n+3n—1+3n—2.2a+3n—3.2a+b+,_,+2a+b+c+---(n—1)th term 3N x +T
20 - 2a+b Tt 9 2a+b+c+--nt term - 2D
For large value of x, T is negligible. Therefore, if 3" > 2P then the sequence is increasing and if 3" < 2P,
it is decreasing.
Threshold ratio: The ratio, that decides whether a sequence is increasing or decreasing is the ratio of p
to n such that p > n.log,3
logx3 = 1.585, hence, p > 1.585.n
For example, n = 3, threshold p > (1.585 x 3) = 5 will hold 2P >3". This concept aligns with Terence
number of even steps ~ log:3 = 1.585

Tao’s probabilistic observation of threshold ratio
number of odd steps

Demonstrative Examples:

A) Looping sequence: Type 2 to Type 7 to Type 8 to Type 4 to Type 2:

Step I: Starting Type 2 = 16k + 3 = 24k + 5 (3x + 1, followed by division by 2).

Step II: 24k + 5 (Type 7, according to sequence) = 9k + 2 (3x + 1, followed by division by 8).

k
Step I11: 9k + 2 (Type 8) > = 2+7
27k 81k+2
. ;’ (3x + 1, followed by division by 2)
81k
The filial modulo class of the loop = Type 2 (say, 16k’ +3) = !

= 81k+
64

The loop will continue for a single cycle if initiated by the core integer k = 37 + 64.n only.

Growth tendency = (numerator’s power of 3)/(denominator’s power of 2 ) = 3%/ 2 >1 = increasing.

(3x + 1, followed by division by 2).

Step IV: 22597 (Type 4) >

=> This equation is satisfied by the unique k =37 + 64.n yielding k' =47 + 81.n

B) Non-looping sequence: Type 1 to Type 3 to Type 2 to Type 7 to Type S to Type 6:
Step I: Starting Type 1 =16k+ 1 - 12k + 1 (3x + 1 operation followed by division by 4).

9k+1
Step II: 12k + 1 (Type 3, according to sequence) —=> T+ (3x + 1, followed by division by 16).

9k+1 27k
Step I11: T+ (Type 2, according to sequence) = 8+ (3x + 1, followed by division by 2).
27k+7 81k+2
Step 1V: 8+ (Type 7, according to sequence) = 6: (3x + 1, followed by division by 8).
81k ) 243k+151 oL
Step V: i (Type 5, according to sequence) > # (3x + 1, followed by division by 4)

64
243k+151

The last modulo class Type 6 (say, 16k'+11) = -



_ 243k-2665
4096

=k’ : The equation is satisfied by k = 3635 + 4096.n

yielding k' =215+ 243 n(ne Z").
This path is initiated only by core integer = 3635 + 4096.n type only.

Growth tendency = (power of 3 in numerator)/(power of 2 in denominator ) = 3°/ 212 <1 = decreasing.
Similarly, Type 1- 3 —2 —7 — 5 —3 — 4 — 6 path initiated by core integer, k =2611 + 16384.n only.

Table 14: Class-wise Analysis of Non-Looping Sequences:

Types Total Non-recurrent Decreasing Increasing
Sequences

Typel (16k+1) 115 112 03
Type 2 (16k+3) 91 88 03
Type 3 (16k+5) 116 116 00
Type 4 (16k+7) 72 70 02
Type 5 (16k+9) 75 71 04
Type 6 (16k+11) 74 72 02
Type 7 (16k+13) 114 112 02
Type 8 (16k+15) 35 29 06
All Types 692 670 22

Section 5: Samples of Looping sequences:

Case 1: Type 4 to type 2 to type 7 to type 8 to type 4: Let the parent integer be 16k+7.

1% Cycle: 16k+7 - 24k+ 11 (by 3x+1 operation, followed by division by 2 as divisibility of type4 is 2)
24k+11 - 36k+17 (by 3x+1 operation, followed by division by 2 as divisibility of type2 is 2).

36k+17 > 27k

2
27k 81k+4
2

> ” (by 3x+1 operation, followed by division by 2 as divisibility of typeS8 is 2).

(by 3x+1 operation, followed by division by 2 as divisibility of type7 is 8).

81k+41 | 243k+127  729k+389 | 2187k+1183  6561k+367

2M Cycle: -> > >
8 16 128 256

6561k+367 19683k+1128 59049k+3437 177147k+1041 531441k+320621

37 Cycle: > >
256 512 1024 8192 16384
The last term of the loop represents filial Type 4 integer and may be represented as 16m +7
531441k+320621
Therefore, 16k'+7 =
16384

_ 531441k+20599

k 262144
which yields k' = 500179 + 531441.n (n € Z*)

This equation is satisfied by the general expression k = 246723 + 262144.n

The parent integer should be 16k+7 = 3947575 +2%2.n
The calculations show that the said looping sequence initiated by 3947575 +222.n type of integer will
continue for 3 full cycles and will reach to 16m+7 = 8002871 + 8503056.n. Let us verify withn=0:

1% Cycle: 3947575(typed) = 5921363(type2) > 8882045(type7) = 3330767 (typel)
> 4996151 (typed) > 7494227(type2) > 11241341 (type7) > 4215503(type8) = 6323255(typed)

2nd Cycle: 6323255(typed)> 9484883 (type2) > 14227325(type7) > 5335247 (type8) > 8002871(=



16 x 500179 +7 => typed)

And then, the 3" cycle: 8002871 (typed) = 12004307 (type2) = 18006461 (type7) = 6752423 (typed)
So, the loop terminates after 3" cycle due to type mismatch.
Case 2: Type 2 — type 7 — type 8 — type 4 — type 6 — type 1 — type 5 — type 2:
Parent integer = 16k+3
27k+

1% Cycle: 16k+3 - 24k+5 > 9k+2 > >

81k+23 243k+ 729k+227 2187k+713
> > >

->

8 32 128
nd 2187k+713  6561k+2267  19683k+705 59049k+232 177147k+73753
27 Cycle: >
128 256 2048 4096 8192
531441k+22 1594323k+704 4782969k+217
16384 65536 262144
N 4782969k +217 4782969k +1393
After 2" cycle, the filial integer, say, 16m+3 = ==>m=
262144 262144x 16

The equation is satisfied by k = 232346 + 2%2.n yielding m = 2649556 + 34 n

Therefore, this loop with two cycles is initiated by the parent integer = 16k+7 = 37175379 + 2%6.n and
the filial integer will be 16m+7 = 42392899 + 76527504.n

Demonstration (with n = 0):

1% Cycle: 37175379 (type2) => 55763069 (type7) = 20911151 (type8) = 31366727 (typed) 2>
47050091 (type6) => 70575137 (typel) = 52931353 (type5) = 39698515 (type2)

27 Cycle: 39698515 (type2) = 59547773 (type7) = 22330415(type8) = 33495623(typed) >
50243435 (type6) = 75365153 (type 1) =2 56523865 (typeS) = 42392899 (type2)

And then, 3" cycle: 42392899 (type2) => 63589349 (type3) : 2-7-8-4-6-1-5-2 sequence terminates.

Case 3: Type 6 — Type 5 —Type 6 loop: Parent integer = 16k+11
1* Cycle: 16ki+11 > 24k + 17 - 18k + 13;
16k, + 11 =18k; +13

16k, =18k; +2
18k+2 9k+1
ko = =
16 8

ok2+  9{(9k+1)/8}+1 _ 81k+

20 Cycle: k3 =

8 64

9k3+1 _ 9{(81k+ )/64}+1 _ 729k+217
3" Cycle: ks = St 5 eHt o1

9k4+1 _ 9{(729k+217)/512}+1 _ 6561k+246
4™ Cycle: ks = A YN/ i

8 4096
6561Kk+246 L e

=>Kk5 = oo the equation is satisfied by k = 4095 + 212 n yielding ks = 6560 + 3%.n

Therefore, the loop initiates with parent integer 16k+11 = 65531 + 2!°.n and terminates after 4 cycles
with filial integer 16m + 11 = 104971+ 104976.n

Demonstration with n =0

15 Cycle: 65531 (type6) = 98297 (type5) = 73723 (typeb)

274 Cycle: 73723 (type6) = 110585 (type5) = 82939 (typeb)



34 Cyecle: 82939 (type6) = 124409 (type5) = 93307 (type6)
4th Cycle: 93307 (type6) = 139961 (type5) = 104971 (typeb)

And then: (type6) > 157457 (— 9841 x 16 +1 ——>type1)2 [he loop terminates as 6-5-6 sequence breaks
at this p()int_
5 _ k5+ 561k+2465

th Cycle: k6—9 1_ 9{(6561k+2465)/4096+

8

310k +26281
ke = ;T is satisfied by k = 32767 + 25.n

The starting integer which is capable of forming 5 cycles is 16x32767 + 11 = 524283

Similarly, integers having core integers of the series 262143 + 2!8.n is capable of forming 6 cycles,
2097151 + 2%'.n of 7 cycles, 16777215 + 22*.n of 8 cycles etc. Loop will eventually terminate after the
defined number of cycles in each case. Visuals of the cycles are presented in the following:

Result Result Result
Integer = e _
ger = . _
- gl woooooen 33554427 integer = 65531

500001
35000001 350000001

30000001 300000001 400001
25000001 250000001

300001
20000001 200000001
15000001 150000001 200001
10000001 100000001

100001
5000001 50000001

1 1 1

Section 6: Infinite Oscillation: In this conjecture, some hypothetical integers are believed to yield
infinitely alternative odd-even parity patterns upon 3x+1 operation followed by division by 2. To
dissolve this hypothesis, we shall demonstrate Type 8 integers having odd core value (k) those can only
transform to Type 8 on repeated iterations.

We take an extreme (1111....)> parity pattern, i.e. 16k + 15, where, k =2* — 1.

16k +15=16(2*— 1)+ 15=2x"* 16 + 15 =2 -1 =2"—1 type integer.

By 3x + 1 operation, 2" — 1 = 3.2" - 2 & 3" — 1: This can be shown by stepwise synthetic deformation:
Ni=3Np+1 = 4+3(2+2%+2%+...42") (Performing 3x + 1 operation)

Or,No=2+3 (1 +2+22+23 +.... 2™ =5+ (2422423 +.....+2™") — this is evidently odd term.
Or,N3=3N, +1 =16+ 32 (2 +22 + 23 +.....+2™)

Or,Ny=8+32(142+22+23+.... 42" =17+ 332 + 22 + 23 +.....42"2) — Odd term
Or,Ns=3Ns+1=52+332+22+23+.....+2"2)

Or,Ne==26+33(14+2+22+2°+.... 42" =53 + 332 + 22 + 23 +.....+2"3) — Odd term

Or, N7=3Ne +1 =160 + 342 + 22 + 23 +.....+2™)



Or,Ng =80+ 341 +2 + 22+ 23 +.... 2™ =161 + 342 + 22+ 2° +.....+2™") — Odd term.

A closer look at the integers generated as odd terms reveals that, they bear a common form of 2.3*! -1
like,2.3% -1=17,2.3*- 1=53,23* -1=161.....

It can be concluded, all 2" — 1(Type 8) integers transform into 3" — 1 representing some other modulo
residual form than Type 8. Following table depicts some aligned results:

Table 15:

n 2m (3™ - 1)/2x Type of (3" -1)/2% Number of steps
taken to generate

4 31 121 Type 1 10+1

5 63 91 Type 6 1243

6 127 1093 Type 3 14+1

7 255 205 Type 7 16+ 5

8 511 9841 Typel 18 +1

9 1023 7381 Type 3 20+3

16 393214 64570081 Type 1 34+1

21 4194303 1961316225 Type 1 44+4

Evidently, boundary integers having (11111...1), binary pattern, generate alternative even-odd integers
unless the power of 2 exhausted. Thereafter these integers transform into 3" -1 type with disrupted
symmetry of binary pattern. 3" — 1 integers converge rather easily than Type8.

Section 7: Some Tangible Results: Enormous Numbers With Shortest Path of Convergence:

2n

3
These are all 16k+5 i.e Type 3 integers. As per transformation rules, shortest routes to Type 3 are:

1) Typel to Type 3,

2) Type 2 to Type 3,

3) Type 3 to Type 3,

4) Type 4 to Type 2 to Type 3,

5) Type 5 to Type 2 to Type 3,

6) Type 6 to Type 1 to Type 3,

7) Type 7 to Type 3,

8) Type 8 to Type 4 to Type 2 to Type 3.

We’ll form mathematical equations for all transformations. To establish the principle, lets demonstrate
the last and the longest route:

Step I: Type8: 16k+5 - 24k+23 (3x+, followed by division by 2) => This is Type 4
Step II: 24k+23 = 36k + 35 => This is Type 2

Step I1I: 36k + 35 = 54k + 53 => This is Type 3

The shortest route to convergence is widely discussed (ne Z") Some examples: 5, 21, 341 ...



22n_

To adopt the shortest path, Type 3 must be = =54k + 53
2n+3 _
Solving, 16k + 15 = ZT in the equation, n has a periodicity = 14 + 27m (m €Z") and after a few

iterations, it reaches 22", 2%" takes 2n more steps to reach 1.
All integers in this scope are necessarily Type8 and follow the shortest convergence route to unity.
Let’s verify:
22n+3_65 | :
For m =0, n = 14, gy glves= 26512143 =16 x 1657008 +15 - a Type 8 integer.
Convergence of 26512143 will have 3 more odd integers (Type4, Type2 and Type3) and 3 more odd

integer in between before reaching 228,
22n+3__6

Form=1,n=41 TS gives = 477600323798372019637007 - a Type8 integer.

Convergence of this huge number will generate three more odd integers (Type 4, Type 2 and Type 3)
and two more even integers in between before reaching 282,

Step I: 477600323798372019637007-> 1432800971395116058911022 (even) — By 3x+1

Step II: 1432800971395116058911022 > 716400485697558029455511(odd: Type 4) division by 2.
Step II1: 716400485697558029455511-> 2149201457092674088366534 (even).

Step IV: 2149201457092674088366534 > 1074600728546337044183267 (odd: Type 2).

Step V: 1074600728546337044183267 - 3223802185639011132549802 (even).

Step VI: 3223802185639011132549802-> 1611901092819505566274901(odd: Type 3)

Step VII: 1611901092819505566274901 - 4835703278458516698824707 (even) = 23

These 24 digit odd numbers of quintillion magnitude can be predicted without any computing
machine’s validation. Next number in this series comes up with a dimension of 2'3° and behaves in the
same way. Sets of such enormous integers belonging to other modulo classes are listed in the
following:

2n+2 _

1) Typel =

n=3m+1 (meZ")

22n+1_5

2) Type 2 = n=3m+2 (me Z")

2n_
3) Type 3="—— n=3m+2 (meZ")

2n+2_19

4) Type 4 = pral 9m +5 (m € Z")
22n+3_29

5) Type 5 = n=9m+8 (me Z")

27



22n+3_23

6) Type 6 = v n=9m+4 (me Z")
2n+3_ 1
7)Type7=Tn=3m+2 (meZ"

Conclusion: In addition to computational methods, modulo- residual classes are also useful in
validating integers of enormous size.

Section 8: Demonstration of Real Some Looping sequences:

Example 1: 27( 16 x 1 + 11=>Type 6) > 41 > 31 > 47> 71 > 107> 161 > 121 > 91 > 137>
103 > 155 > 233 > 175 263 > 395 > 593 > 445 > 167 > 251 > 377 > 283 > 425 > 319 >
479 > 719 > 1079 > 1619 > 2429 > 911 > 1367 > 2051 > 3077 > 577 > 433 > 325 > 61 >
235355535551

Types of the above integers in the same sequence: Type 6 =2 Type 5 = Type 8 = Type 8 = Type 4 >
Type 6 2 Type 1 2 Type 5 2 Type 6 2 Type 5 = Type 4 = Type 6 2 Type 5 2 Type 8 2 Type 4
- Type 6 > Type 1 2 Type 7 =2 Type 4 = Type 6 2 Type 5 = Type 6 2 Type 5 2 Type 8 >
Type 8 > Type 8 2 Type 4 > Type 2 2> Type 7 2> Type 8 > Type 4 > Type 2 > Type 3 > Type
1 > Type 1 = Type 3 2> Type 7 = Type 4 > Type 2 2> Type 3 2> Type 3 = Type 1

An illustration, how 27, a Type 6 integer has followed loops like 5-6-5, 8-8, 8-4-2-7-8. All loops being
unstable, it has converged to unity.

Example 2: 431 (16 x 16 + 15 => Type 8) 2 647 (16 x 40 + 7=>Type 4) > 971 (16 x 60 + 11 =>
Type 6) 2 1457 (16 x 91 + 1 =>Type 1) = 1093 (16 x 68 + 5=> Type 3) = 205 (16 x 12+ 13 =>
Type 7) 2 77 (16 x4 +13=>Type 7) 2 29 (16 x 1 + 13 =>Type 7) 2> 11 (16 x 0 + 11 => Type 6) 2>
17(16x1+1=>Type 1) 2> 13 (16 x0+13=>Type 7) 2 5(16 x 0+ 5=>Type 3) 2> 1 (Type 1)
Looping sequences: (Type 7 — Type 6 — Type 1 — Type 7) and (Type 1 — Type 7 — Type 3 — Type 1)
and (Type 7 — Type 7 — Type 7).

Section 9: Convergence Argument:

A Collatz sequence can logically have only three outcomes:
1) An unbound growth,

2) An infinite loop with sustaining magnitude, and,

3) Convergence to unity.

Theorem 1 and lemma 3 effectively rules out existence of non-trivial integer loops while theorem 2
eliminates all possibilities of unbound growth due to occurrence of increasing modular loops.

Applicability of Pigeonhole Principle:

1) All odd integers are confined within the finite framework of 8 modulo residual classes. This ensures
all odd integers in the sequence, after transformations, must repeatedly fall into one of these modular
classes and revisit previous modular classes. Type 1, 3, 5, and 7 (divisibility = 22, 24, 22 and 2°
respectively) contribute to a net reduction in magnitude due to their divisibility properties. This
reduction outweighs the cumulative growth induced by all Types.

3) No integer can reappear in a Collatz sequence by theorem 1 and lemma 3.



4) The pigeonhole principle guarantees that sequences confined to finite constraints must reduce. As
reduction is inevitable in Collatz conjecture, convergence to 1 is the only outcome.

Section 10: Research Outcomes:

1) Universal classification of integers: 16k + m : no integer left out of this classification.

2) Resolution of apparent chaos: The long-standing perception that Collatz conjecture is chaotic and
cannot be predicted is hereby resolved. With the transformation rules, it is possible to predict
convergence path of any integer.

3) Non-trivial loop redefinition: Perceived existence of non-trivial loop is hereby affirmed and
redefined: a non-trivial loop is a cyclic path of modulo residual patterns in Collatz sequence, not an
infinite cycle with recurrence of individual integers. This non-trivial loop of modulo residual classes
actually reinforce the statement of the conjecture rather than setting counterexamples.

4) Universal and inevitable convergence: As there is no unbound growth and a huge majority of
converging loops, a universal convergence is established by pigeonhole principle.




Appendix Section:

Appendix: A: DFS (Python) code:
Code begins:

def find_cycles(graph, start_node, current_node, visited, path, results):
# Add current node to the path and mark as visited
path.append(current_node)
visited.add(current_node)
# Check if we looped back to the start node
if current_node == start_node and len(path) > 1:
results.append(list(path))
else:
# Traverse each neighbor
for neighbor in graph[current_node][0]:
if neighbor not in visited or neighbor == start_node:
find_cycles(graph, start_node, neighbor, visited.copy(), path[:], results)
# Remove current node from path after recursion
path.pop()
count_total =0
count_convergent =0
count_divergent=0
save_str=""
def print_and_save(string):
global save_str
save_str += string + "\n"
print(string)
def analyze_graph(graph):
global count_total, count_convergent, count_divergent
for node in graph:
results =[]
find_cycles(graph, node, node, set(), [], results)
# Print table header
print(f"\nNode {node} Cycles:")
print(f"{'Path':<50} | {'Sum of Change Factors':<40} | {'Status'}")
print()

# Print each cycle in table format
for path in results:
# Calculate the sum of change factors for the path
change_sum = [graph[node][1] for node in path][:-1]
status = "Convergent" if sum(change_sum) <=0 else "Divergent"

path_str="->"join(map(str, path))
print_and_save(f"{path_str:<50} | {str(change_sum):<40} | {status}")
# Count totals
count_total +=1
count_convergent += 1 if status == "Convergent" else 0
count_divergent += 1 if status == "Divergent" else 0
print()
# Run analysis
analyze graph(transition table with worst case)

Code end



Appendix: B: All Divergent loops:

SL Loop Sequence Parent Filial type = A(% magnitude) Nature of loop
1 1>5->4->6->1 X (81x+143)/64 50.00 Divergent
2 4->6->1->5->4 X (81x+73)/64 32.00 Divergent
3 5->6->5 X (9x+7)/8 16.00 Divergent
4 6->1->5->4->6 X (81x+101)/64 31.48 Divergent
5 6->5->6 X (9x+5)/8 14.81 Divergent
6 8->8 X (3x+1)/2 51.00 Divergent
7 1->5->8->4->2->7->6->1 X (2187x+5845)/2048 12.24 Divergent
8 1->5->8->4->6->1 X (243x+493)128 100.00 Divergent
9 2->7->6->1->5->8->4->2 X (2187x+7087)/2048 13.73 Divergent
10 2->7->8->4->2 X (81x+125)/64 30.40 Divergent
11 2->7->8->4->6->1->5->2 X (2187x+4847)/2048 19.26 Divergent
12 4->2->7->6->1->5->8->4 X (2187x+4371)/2048 16.96 Divergent
13 4->2->7->8->4 X ((81x+89)/64 32.61 Divergent
14 4->56->1->5->2->7->8->4 X (2187x+3955)/2048 15.21 Divergent
15 4->6->1->5->8->4 X (243x+283)/128 100.00 Divergent
16 4->6->5->4 X (27x+19)/16 74.00 Divergent
17 5->4->6->1->5 X (81x+103)/64 33.00 Divergent
18 5->4->6->5 X (27x+29)/16 76.00 Divergent
19 6->1->5->2->7->8->4->6 X (2187x+5836)/2048 17.00 Divergent
20 6->1->5->8->4->2->7->6 X (2187x+3916)/2048 14.00 Divergent
21 6->1->5->8->4->6 X (243x+364)/128 100.00 Divergent
22 6->5->4->6 X (27x+23)/16 74.10 Divergent
23 7->6->1->5->8->4->2->7 X (2187x+10561)/2048 25.00 Divergent
24 7->8->4->2->7 X (81x+179)/64 36.00 Divergent
25 7->8->4->6->1->5->2->7 X (2187x+7201)/2048 11.00 Divergent
26 8->4->2->7->6->1->5->8 X (2187x+3227)/2048 12.00 Divergent
27 8->4->2->7->8 X (81x+65)/64 30.00 Divergent
28 8->4->6->1->5->2->7->8 X (2187x+2683)/2048 11.00 Divergent
29 8->4->6->1->5->8 X (243x+128)/128 96.00 Divergent
30 2->7->6->5->8->4->2 X (729x+1765)/512 60.52 Divergent
31 2->7->8->4->6->5->2 X (729x+1765)/512 57.65 Divergent
32 4->2->7->6->5->8->4 X (729x+1249)/1024 53.00 Divergent
33 4->6->5->2->7->8->4 X (729x+1009)/512 51.00 Divergent
34 4->6->5->8->4 X (81x+73)/32 163.00 Divergent
35 5->2->7->8->4->6->1->5 X (2187x+6509)/2048 19.50 Divergent
36 5->2->7->8->4->6->5 X (729x+1999)/512 58.00 Divergent
37 5->8->4->2->7->6->1->5 X (2187x+4349)/2048 15.30 Divergent
38 5->8->4->2->7->6->5 X (729x+1279)/512 52.40 Divergent
39 5->8->4->6->1->5 X (243x+341)/128 100.00 Divergent
40 5->8->4->6->5 X (81x+103)/32 166.00 Divergent
41 6->5->2->7->8->4->6 X (729x+1405)/512 52.50 Divergent
42 6->5->8->4->2->7->6 X (729x+925)/512 50.00 Divergent
43 6->5->8->4->6 X (81x+85)/32 163.00 Divergent
44 7->6->5->8->4->2->7 X (729x+2539)/512 61.00 Divergent
45 7->8->4->6->5->2->7 X (729x+2059)/512 56.25 Divergent
46 8->4->2->7->6->5->8 X (729x+1164)/512 50.00 Divergent
47 8->4->6->5->2->7->8 X (729x+745)/512 50.00 Divergent
48 8->4->6->5->8 X (81x+65)/32 60.00 Divergent
49 1->5->2->7->8->4->6->1 X (2187x+8725)/2048 31 Divergent




Appendix: D: Samples of Convergent Loops:

Serial Loop Power of 3 Power of 2 Tendency
1 1>3->7->1 3 9 Convergent
2 2->7->3->1->5->2 5 12 Convergent
3 7->3->1->5->2->7 5 12 Convergent
4 7->3->1->7 3 9 Convergent
5 1->3->2->7->1 4 10 Convergent
6 1>3->5->2->7->1 5 10 Convergent
7 1>3->7->5->6->1 5 12 Convergent
8 1->3->7->6->1 4 10 Convergent
9 1>5->2->3->7->1 5 12 Convergent
10 1>5->2->7->3->1 5 12 Convergent
11 1->5->2->7->3->6->1 6 12 Convergent
12 1>7->3->1 3 9 Convergent
13 1>7->3->5->6->1 5 12 Convergent
14 1->7->3->6->1 4 10 Convergent
15 2->3->7->1->5->2 5 12 Convergent
16 2->7->1->3->5->2 5 12 Convergent
17 2->7->3->1->5->4->2 6 13 Convergent
18 2->7->3->5->2 4 10 Convergent
19 2->7->3->6->1->5->2 6 13 Convergent
20 3->1->5->2->7->3 5 12 Convergent
21 3>1->7->3 3 9 Convergent
22 3->7->1->3 3 9 Convergent
23 3->7->1->5->2->3 5 12 Convergent
24 3->7->3 2 7 Convergent
25 4->2->7->3->1->5->4 6 13 Convergent
26 5->2->7->3->1->5 5 12 Convergent
27 5>6->1->3->7->5 5 12 Convergent
28 6->1->3->7->5->6 5 12 Convergent
29 6->1->3->7->6 4 10 Convergent
30 6->1->7->3->5->6 5 12 Convergent
31 7->1->3->2->7 4 13 Convergent
32 7->1->3->5->2->7 5 12 Convergent
33 7>1->3->7 3 9 Convergent




