
A Deterministic Approach To Validate Universality of Collatz Conjecture 

Author: Aditya Bagchi         
Affiliation: Independent. 

Abstract: The Collatz conjecture suggests that that for any integer, n ∈ Z+, iterating the function:                                                                                                                    

                                                 
𝐧

𝟐
    if n is even                                                                                     

 F(n)  =    

                                         3n +1  if n is odd    
eventually leads to 1. In this paper we develop a clear algebraic framework to prove that this 
convergence occurs universally. We classify all positive integers into 16 distinct modulo residual 
classes, where all types follow a specific transformation pattern and divisibility behaviour under the 
Collatz map. This structure forms a finite-state transition system allowing us to discover modular 
residual non trivial loops using depth first search, out of which fewer looping sequences are increasing 
and most are decreasing. Our analysis proves and demonstrates that such increasing modulo type based 
looping sequences are inherently unstable with finite number of cycles. This eventually exhibits net 
contraction with division consistently dominating multiplicative growth. All together this Framework 
offers rigorous and structurally complete resolution of the conjecture. 

Introduction:  

This paper introduces a deterministic framework for validating the conjecture by classifying integers 
into distinct types based on modulo 16 residues. Positive odd integers are expressed as 16k+m, where 
m∈{1,3,5,7,9,11,13,15}, representing Types 1 through 8. Positive even integers are expressed as 
16k+m′, where m′∈{0,2,4,6,8,10,12,14} representing EV1 through EV8. 

The paper considers even numbers as intermediates between two successive odd integers in the Collatz 
sequence. Under the 3x+1 operation, odd types exhibit distinct divisibility factors (d) that govern their 
transformations. For instance: 

 Types 1 and 5 become divisible by 4. 
 Types 2, 4, 6, and 8 become divisible by 2. 
 Type 3 becomes divisible by 2n (n≥4). 
 Type 7 becomes divisible by 8. 

These divisibility properties lead to specific transformation rules. For example: 

 Type 1 transforms into Types 1, 3, 5, or 7. 
 Type 2 transforms into Types 3 or 7. 
 Types 3 and 7 can transform into any odd type. 
 Type 4 transforms into Type 2 or 6. 
 Type 5 transforms into Type 2, 4, 6 or 8. 
 Type 6 transforms into Type 1or 5. 
 Type 8 transforms into Type 4 or Type 8 further.  

Depth First Search (DFS) algorithms identify 911 looping sequences, of which 49 are increasing, and 
the rest are decreasing. All looping sequences are shown to terminate within finite cycles, and 



transformations converge universally to 1. The conjecture’s universality is established by the absence 
of infinite looping, unbound growth and by the pigeonhole principle. 

Methodology: The paper uses modulo residual classes of 16 as a tool for classification aiming to 
explore disciplined structures in Collatz sequence. A clarification is needed why other modulo classes 
are not used.  
Modulo 8: We could have four residual classes of 8k + m: m = 1, 3, 5 and 7. Let’s assign them as Type 
A, B, C and D respectively. This system captures less granules than 16k + m and creates confusion. 
Let’s take transformations of Type D:  
   8k + 7  24k + 22 (by 3x +1)  
   24k + 22  12k + 11 
Now, substituting k by 8k´ + m=> 12k + 11 = 96k´ + 12m + 11  
For each values of m = 1, 3, 5, 7, 96k´ + 12m + 11 represents Type D integer. This implies, there is no 
escape route from Type D which indicates an unrealistic infinite looping or unbound growth. This is 
where modulo 16 offers more clarity. Each defined modulo 16 types has definite escape route(s) that 
adds new insight and transparency in understanding Collatz behaviour of all integers.  
Modulo 32 or more: It is obvious that, higher modulo classes present more granules. A higher modulo 
with greater number of classes and much greater number of looping sequences would only aid to the 
complexity, and do not offer any new insight.  
Therefore, by Occam’s razor, modulo 16 classes are the optimal choice for this purpose.  
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Section 1:  
Lemma 0: Classification: All odd positive integers can be expressed in a form of 16k +m where 
m∈{1,3,5,7,9,11,13,15} and all even positive integers can be expressed as 16k + m´  
 
Proof: When an odd positive integer >15 is divided by 16, there can be only eight values of remainder 
‘m’ such that m = 1, 3, 5, 7, 9, 11, 13 and 15.  
  When an even positive integer >15 is divided by 16, there can be only eight values of remainder 
‘m´’ such that m´ = 0, 2, 4, 6, 8, 10, 12 and 14. (k being the quotient in each case). 
 
Table 1: Odd integers: Core integer ‘k’: Represents another positive integer – odd or even.  

16k+m; m =  1 3 5 7 9 11 13 15 
Defined as ‘Type’ Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7 Type 8 

 
Table 2: Even Integers 

16k+ m´; m´  =  0 2 4 6 8 10 12 14 
Defined as ‘Ev’ Ev 1 Ev 2 Ev 3 Ev 4 Ev 5 Ev 6 Ev 7 Ev 8 

 
Lemma 1: Divisibility (d = 2n): Odd integers belonging to each defined types on 3x+1 operation 
transform into the next odd integers when divided by 2n, where n € Z+   
Proof:  
Type 1: 16k + 1  48k + 4 (by 3x +1 operation). 
48k + 4  12k +1 is an odd integer for any value of k. This gives n = 2 i.e. divisibility ‘d’ (= 2n) = 4 



Similarly, 
Type 2: 16k +3  48k+10 => Gives n = 1 i.e. divisibility ‘d’ = 2 
Type 3: 16k + 5  48k + 16 => Gives n = 4 or more (if k is odd), i.e. d = 16 or more 
Type 4: 16k + 7  48k + 22 => Gives n = 1 i.e. divisibility ‘d’ = 2 
Type 5: 16k + 9  48k + 28 => Gives n = 2 i.e. divisibility ‘d’ = 4 
Type 6: 16k + 11  48k + 34 => Gives n = 1 i.e. divisibility ‘d’ = 2 
Type 7: 16k + 13  48k + 40 => Gives n = 3 i.e. divisibility ‘d’ = 8 
Type 8: 16k + 15  48k + 46 => Gives n = 1 i.e. divisibility ‘d’ = 2 
 
Table 3: Divisibility Factors (d) for Each Odd Type Under the 3x+1 Operation: 

Types 1 2 3 4 5 6 7 8 
Divisibility(d) 4 2 2n (n≥ 4) 2 4 2 8 2 

Lemma 2: Integers transformation rules: On 3x + 1 operation followed by division by ‘d’ 
1) Type 1 transforms into Types 1, 3, 5, or 7. 
2) Type 2 transforms into Types 3 or 7. 
3) Types 3 transforms into any odd type. 
4) Type 4 transforms into Type 2 or 6. 
5) Type 5 transforms into Type 2, 4, 6 or 8. 
6) Type 6 transforms into Type 1or 5. 
7) Type 7 transforms into any odd types 
8) Type 8 transforms into Type 4 or Type 8 further.  

Proof:  
Type1 transformation:  
Step I: 16k +1  48k + 4 (by 3x + 1 operation)  12k + 1 (division by 4) 
Step II: If the core integer ‘k’ belongs to Type1, substituting  ‘k’ by 16x + 1 (x ∊ Z+): 
12(16x +1) +1 = 192x + 13 = 16(12x) +13 which is a type7 integer. Therefore, Type 1 integers 
transform into Type 7. 
Likewise, if k belongs to Type 2, substituting ‘k’ by 16x+3: 
12(16x + 3) + 1 = 192x + 37 = 16(12x + 2) + 5 => represents a Type 3 integer. Therefore, Type1 
integers transform into Type 3 also.  
The core integer ‘k’ when substituted by all even classes (Ev1 to Ev8) and by all odd classes (Type1 to 
Type 8), summarized results given in the following table:  
 
Table 4: Transformation summary of Type 1:  

‘k’ Substituted by Ev 1,3,5,7 Type 2, 4,6,8 Ev 2,4,6,8 Type 1,3,5,7 
Transforms into Type 1 Type 3 Type 5 Type 7 

 
With similar treatment on all the rest odd types, the following results are obtained:  
Table 5: Transformation rules of Type2: 

Type 2 Type 3 Type 7 

Type of core k=> EV 1, 2, 3, 4, 5, 6, 7, 8  
(all even integers) 

Type 1, 2, 3, 4, 5, 6, 7, 8 
(all odd integers) 



Illustrative Examples: Type2 integer = 16k + 3  48k + 10 (by 3x +1)  24k + 5 (division by 2) 
If k = 2n (all even integers), 24k + 5 = 48n + 5 = 16x3n + 5 => a Type 3 integer.  
If k = 2n + 1 (all odd integers), 24k + 5 = 48n + 29 = 16(3n+1) +13 => Type7 integer. 

Table 6: Transformation rules of Table3: 

Type 3 
to 

Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7 Type 8 

For core 
integer, 
k  

Ev 1: 
16m + 0 

Ev 4:  
16m + 6 

Ev 3: 
16m + 4 

Ev 2: 
16m +2 

Ev 5:  
16m + 8 

Ev 8:  
16m+ 14 

Ev 3: 
16m + 4 

Ev 6: 
16m + 10 

For core 
integer, 
k 

Type 1: 
16m +1 
m =4n 
type 
even 
integers 

Type 4: 
16m +3 
m = 
1+2n 
type odd 
integers 

Type 1: 
16m +1 
m =4n 
+3 type 
odd 
integers 

Type 5:  
16m + 9 
m = 4n 
type 
even 
integers 

Type 1: 
16m +1 
m =4n 
+2 type 
even 
integers 

Type 4: 
16m +3 
m = 2n 
type 
even 
integers 

Type 1: 
16m +1 
m =4n 
+1 type 
odd 
integers 

Type 8: 
16m+15 
m = 2n 
+1 type 
odd 
integers 

For core 
integer, 
k 

Type 3: 
16m + 5 
m = 16n 
type 
even 
integers 

Type 3: 
16m + 5 
m = 
16n+6 
type 
even 
integers 

Type 2: 
16m + 3 
m = 2n 
type 
even 
integers 

Type 3:  
16m + 5 
m = 16n 
+ 2 type 
even 
integers 

Type 3:  
16m + 5 
m = 16n 
+ 8 type 
even 
integers 

Type 3:  
16m + 5 
m = 16n 
+ 14 
type 
even 
integers 

Type 2: 
16m + 3 
m = 2n 
+1 type 
odd 
integers 

Type 3:  
16m + 5 
m = 16n 
+ 10 type 
even 
integers 

For core 
integer,  
k  

Type 6:  
16m + 
11 
m = 2n 
type 
even 
integers 

Type 5:  
16m + 9 
m = 4n 
+1 type 
odd 
integers 

Type 3:  
16m + 5 
m = 16n 
+ 12 
type 
even 
integers 

Type 8: 
16m+15 
m = 2n  
type 
even 
integers 

Type 6:  
16m + 
11 
m = 
2n+1 
type odd 
integers 

Type 5:  
16m + 9 
m = 4n 
+3 type 
odd 
integers 

Type 3:  
16m + 5 
m = 16n 
+ 4 type 
even 
integers 

Type 5:  
16m + 9 
m = 4n 
+2 type 
even 
integers 

For core 
integer, 
k 

Type 7: 
16m + 
13 
m = 8n 
+2 type 
even 
integers 

Type 7: 
16m + 
13 
m = 8n 
+5 type 
odd 
integers 

Type 7: 
16m + 
13 
m = 8n 
type 
even 
integers 

Type 7: 
16m + 
13 
m = 8n 
+3 type 
odd 
integers 

Type 7: 
16m + 
13 
m = 8n 
+6 type 
even 
integers 

Type 7: 
16m + 
13 
m = 8n 
+1 type 
odd 
integers 

Type 7: 
16m + 
13 
m = 8n 
+4 type 
even 
integers 

Type 7: 
16m + 13 
m = 8n 
+7 type 
odd 
integers 

 
Illustrative Examples:  
Type 3 integer = 16k + 5  48k +16 (by 3x+1)  3k +1 (division by 16) 
If k = Ev4 = 16m + 6, 3k +1 = 48x + 19 = 16(3x +1) + 3 => a Type 2 integer.  
If k = Ev5 = 16m + 8, 3k +1 = 48m + 25= 16(3m +1) + 9 => a Type 5 integer 



If k = Type 1 = 16m + 1, and m = 4n +1, 3k + 1 = 3(64n +17) + 1 = 192n + 52 = 48n + 13 = 16x3n + 
13 => a Type 7 integer. 
If k = Type 8 = 16m + 15 and m = 2n, 3k +1 = 3(32m + 15)+1 = 96n + 46 = 48n + 23 = 16x(3n+1) + 7 
=> a Type 4 integer.  

Table 7: Transformation rules of Type 4:  

Type 4 Type 2 Type 6 

Core integer, k = Type 1, 2, 3, 4, 5, 6, 7, 8 
(all odd integers) 

Ev 1, 2, 3, 4, 5, 6, 7, 8 
(all even integers) 

 
Illustrative Examples: Type 4 integer = 16k + 7 48k + 22 (by 3x + 1)  24k + 11 
If k = 2n +1 (odd integers), 24k + 11 = 48n + 35 = 16 x(3n + 2) + 3 => a Type 2 integer.  
If k = 2n (even integers), 24k + 11 = 48n + 11 = 16x3n + 11 => a Type 6 integer.  
 
Table 8: Transformation rules of Type 5: 

Type 5 Type 2 Type 4 Type 6 Type 8 

Core integer, k = Type 1, 3, 5. 7 EV 1, 3, 5, 7 Type 2, 4, 6, 8 EV 2, 4, 6, 8 

 
Illustrative Examples: Type 5 integer =16k + 9  48k + 28 (by 3x +1)  12k + 7 (division by 4) 
If k = Type 3 = 16m + 5, 12k + 7 = 12(16m+ 5) + 7 = 192m + 67 = 16 (12m + 4) + 3 => a Type 2 
integer. 
If k = Ev 2 = 16m + 2, 12k + 7 = 12(16m + 2) +7 = 192m + 31 = 16(12m+1) + 15 => a Type 8 integer.  
 
Table 9: Transformation rules of Type 6: 

Type 6 Type 1 Type 5 

Core integer, k = Ev 1, 2, 3, 4, 5, 6, 7, 8 (even) 
(all even integers) 

Type 1, 2, 3, 4, 5, 6, 7, 8 (odd) 
(all odd integers) 

 
Illustrative Examples: Type 6 integer = 16k + 11  48k + 34 (by 3x +1)  24k + 17 (division by 2) 
If k = 2n (even), 24k + 17 = 48k + 17 = 16(3n+1) +1 => a Type 1 integer.  
If k = 2n +1 (odd), 24k + 17 = 48k + 41 = 16(3n +2) + 9 => a Type 5 integer.  
 
Table 10: Transformation rules of Type 7: 

Type 7 Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7 Type 8 

k = Ev 2, 6 Type 3, 7 Ev 1, 5 Type 2, 6 Ev 4, 8 Type 1, 5 Ev 3, 7 Type 4, 8 

 
Illustrative Examples: Type 7 integer = 16k + 13  48k + 40 (by 3x + 1)  6k + 5 (division by 8) 
If k = Type 2 = 16m + 3, 6k + 5 = 96m + 23 = 16x (6m + 1) + 7 => a Type 4 integer.  
If k = Ev 7 = 16m + 12, 6k + 5 = 96m + 77 = 16(6m + 4) + 13 => a Type 7 integer.  
If k = Type 5 = 16m + 9, 6k + 5 = 96m + 59 = 16(6m + 3) + 11 => a Type 6 integer.  



 
Table 11: Transformation rules for Type 8: 

Type 8 Type 4 Type 8 

Core integer, k = Ev 1, 2, 3, 4, 5, 6, 7, 8 (even) 
(all even integers) 

Type 1, 2, 3, 4, 5, 6, 7, 8 (odd) 
(all odd integer) 

 
Illustrative Examples: Type 8 integer = 16k + 15  48k + 46 (by 3x + 1)  24k + 23 
If k = 2n (even), 24k + 23 = 48n + 23 = 16(3n +1) + 7 => a Type 4 integer. 
If k = 2n + 1 (odd), 24k + 23 = 48n + 47 = 16(3n +2) + 15 => a Type 8 integer.  
Table 12: Transformation Rules Summary of All Odd Integers:  

Types Transformed into Forbidden 
Transformations 

Maximum divisor 
(d) 

Growth 
Tendency 

Type 1 Type 1, 5 (for even core) 
Type 3, 7 (for odd core) 

Type 2, Type 4, Type 6 and 
Type 8 

4 Decreasing 

Type 2 Type 3 (for even core), 
Type 7 

Type 1, Type 2, Type 4, Type 
5, Type 6 and Type 8 

2 Increasing 

Type 3 All None 16, 32 or more Decreasing 

Type 4 Type 2 (odd), Type 6 Type 1, Type 3, Type 4, Type 
5, Type 7 and Type 8 

2 Increasing 

Type 5 Type 2, Type 4, Type 6 
and Type 8 

Type 1, Type 3,  and Type 5 
and Type 7 

4 Decreasing 

Type 6 Type 5 and Type 1 Type 2, Type 3, Type 4, Type 
6, Type7 and Type 8 

2 Increasing 

Type7 All None 8 Decreasing 

Type 8 Type 4 and Type 8 Type 1, Type 2, Type 3, 
Type 5, Type 6, Type 7 

2 Increasing 

 

Visual of Transformation Rules:  

 
 
Type 3 and 7 are the most connected integers and Type 8 are the least connected integers. 



 
Section 2: Forbidden Transformations: Some transformations, like Type 1 to Type 2, Type 4 to 
Type 8 or Type 8 to Type 6 etc. are mathematically impossible. These are ‘forbidden transformations.’ 
Following table summarizes all forbidden transformations:  
Table 13:  

Integer Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7 Type 8 

Type 1  Forbidden  Forbidden  Forbidden  Forbidden 

Type 2 Forbidden Forbidden  Forbidden Forbidden Forbidden  Forbidden 

Type 3         

Type 4 Forbidden  Forbidden Forbidden Forbidden  Forbidden Forbidden 

Type 5 Forbidden  Forbidden  Forbidden  Forbidden  

Type 6  Forbidden Forbidden Forbidden  Forbidden Forbidden Forbidden 

Type 7         

Type 8 Forbidden Forbidden Forbidden  Forbidden Forbidden Forbidden  

 
Examples of Valid Transformation Sequences: 
Example 1: Type2 to Type3 to Type5 to Type6 to Type1 (non-recursive). 
 
Example 2: Type 8 to Type 4 to Type 2 to Type 7 to Type 6 to Type 5 (non-recursive). 
 
Example 3: Type 6 to Type 1 to Type 3 to Type 5 to Type 6 (recursive: Type 6 to Type 6). 
 
Example 4: Type 4 to Type 2 to Type 7 to Type 8 to Type 4(recursive: Type 4 to Type 4). 
 

Section 3: Sequence Analysis: We have 8 odd modulo residual classes from Type 1 to Type 8. 
Therefore, minimum 1 and maximum 8 allowed transformations required to encounter a repetition or to 
form a looping sequence.  
Let us assume there is a loop with n allowed transformations in which divisibility ‘d’ of modulo classes 
involved = 2a, 2b, 2c, 2d, 2e, 2f, 2g, 2h. Since there are 4 classes with divisibility, d = 2, two classes with 
d = 4, one with d = 8 and one with d = 16 or more, at most of the exponents a, b, c, … are equal to 1, at 
most two exponents = 2, at most one exponent = 3 and at most one exponent ≥ 4. If the starting integer 
be x, which is sufficiently large and numerically competent for a loop, we can write the following 
steps:  

Step 1: 16k + m  
ସ଼௞ାଷ௠ାଵ

ଶೌ
   

Step 2: 
ସ଼௞ାଷ௠ାଵ

ଶೌ →
ଷమ⋅ଵ଺௞ଵାଷమ௠ାଷାଶೌ

ଶೌశ್    

 

Step 3: 
ଷమ⋅ଵ଺௞ଵା మ௠ାଷାଶೌ

ଶೌశ್  →
ଷయଵ଺.௞ ାଷయ௠ାଷమା ଷ.ଶೌାଶೌశ್

ଶೌశ್శ೎  

 

Step 4: 
ଷయଵ଺.௞ ାଷయ௠ାଷమା ଷ.ଶೌାଶೌశ್

ଶೌశ್శ೎   
ଷరଵ଺.௞ାଷర௠ାଷయା ଷమ⋅ଶೌାଷ.ଶೌశ್ାଶೌశ್శ೎

ଶೌశ್శ೎శ೏  



 

Step 5: 
ଷరଵ଺.௞ାଷర௠ାଷయା ଷమ⋅ଶೌାଷ.ଶೌశ್ାଶೌశ್శ೎

ଶೌశ್శ೎శ೏   
𝟑𝟓𝟏𝟔.𝒌ା𝟑𝟓ା𝟑𝟒ା 𝟑𝟑.𝟐𝒂ା𝟑𝟐𝟐𝒂శ𝒃ା𝟑.𝟐𝒂శ𝒃శ𝒄ା𝟐𝒂శ𝒃శ𝒄శ𝒅

𝟐𝒂శ𝒃శ𝒄శ𝒅శ𝒆  

For a sequence with n steps, if the modular form becomes 16kn + mn, then, 
 

16kn + mn =  
𝟑𝒏𝟏𝟔.𝒌 ା 𝟑𝒏.𝒎 ା 𝟑𝒏ష𝟏 ା  𝟑𝒏ష𝟐.𝟐𝒂 ା 𝟑𝒏ష𝟑𝟐𝒂శ𝒃ା     ….…...  ା 𝟐𝒂శ𝒃శ𝒄శ⋯(𝒏ష𝟏)𝒕𝒉 𝒕𝒆𝒓𝒎

𝟐𝒂శ𝒃శ𝒄శ𝒅శ𝒆శ⋯𝒏𝒕𝒉 𝒕𝒆𝒓𝒎  ….. (i) 

 
Theorem 1: No odd positive integer >1 reappears in the Collatz sequence. 

Proof: This deterministic framework provides us with the following constraints: 
i) m and mn is any odd positive integer such that, 1≤ m, mn ≤ 15  
ii ) n is any positive integer such that, 2 ≤ n ≤ 8 as there are maximum 8 modular classes of odd 
numbers available as per lemma 0 and at least two steps are involved to form a looping sequence. 
iii) k, kn are positive integers.  
iv) a,b,c,d, ….., nth term are all exponentials as per lemma 1 and at most  
  four of which can be = 1 
  two of which can be = 2 
  one of which can be = 3 
  one of which can be ≥ 4 
 Now, if an integer reappears in the above sequence then, 16k + m = 16kn + mn , (i) becomes, 

16k + m =  
𝟑𝒏𝟏𝟔.𝒌 ା 𝟑𝒏.𝒎 ା 𝟑𝒏ష𝟏 ା  𝟑𝒏ష𝟐.𝟐𝒂 ା 𝟑𝒏ష𝟑𝟐𝒂శ𝒃ା     ….…...  ା 𝟐𝒂శ𝒃శ𝒄శ⋯(𝒏ష𝟏)𝒕𝒉 𝒕𝒆𝒓𝒎

𝟐𝒂శ𝒃శ𝒄శ𝒅శ𝒆శ⋯𝒏𝒕𝒉 𝒕𝒆𝒓𝒎
 

=> 2S.16k + 2s.m = 3୬16. k +  3୬. m +  3୬ିଵ +  3୬ିଶ. 2ୟ  +  3୬ିଷ. 2ୟାୠ +      … . … . . .  + 2ୗᇱ 
S = a+b+c+ ….. + nth term, S’ = a+b+c+ …… + (n-1)th term 
 

k =  
𝒎൫𝟑𝒏ି  𝟐𝑺൯ ା 𝟑𝒏ష𝟏 ା  𝟑𝒏ష𝟐.𝟐𝒂 ା 𝟑𝒏ష𝟑𝟐𝒂శ𝒃ା     ….…...  ା 𝟐𝑺ᇲ

𝟏𝟔.(𝟐𝑺ି  𝟑𝒏)
 

  = - 
௠

ଵ଺
 +  

 𝟑𝒏ష𝟏 ା  𝟑𝒏ష𝟐.𝟐𝒂 ା 𝟑𝒏ష𝟑𝟐𝒂శ𝒃ା     ….……  ା 𝟐𝑺ᇲ

𝟏𝟔.(𝟐𝑺ି  𝟑𝒏)
 = 

ଵ

ଵ଺
 [ R -m] 

Where, R = 
 𝟑𝒏ష𝟏 ା  𝟑𝒏ష𝟐.𝟐𝒂 ା 𝟑𝒏ష𝟑𝟐𝒂శ𝒃ା     ….……  ା 𝟐𝑺ᇲ

(𝟐𝑺ି  𝟑𝒏)
 = 

୒

ୈ
  

N = 𝟑𝒏ି𝟏 +  𝟑𝒏ି𝟐. 𝟐𝒂  +  𝟑𝒏ି𝟑𝟐𝒂ା𝒃 +      … . … …  +  𝟐𝑺ᇲ
 

Now, if all exponents are equal, i.e. a = b = c = …. = p, we get S’ = p + p + … up to q terms = q.p 
And, S = p + p + p + …. up to n terms = n.p  

D = 
ଵ

ଶೄିଷ೙ = 
ଵ

ଶ೙.೛ିଷ೙  and,  N = ෌ (𝟑)𝒏ି𝟏ି𝒙𝒏ି𝟏

𝒙ୀ𝟎
. 2q.p       

N = 3௡ିଵ ෍ ቀ
ଶ೛

ଷ
ቁ

௤௡ିଵ

௤ୀ଴
 => Represents a GP sum series with common ratio ‘r’ =  

ଶ೛

ଷ
 and first term = 

ଶ೛

ଷ
 

 

   = 3௡ିଵ ⋅
௥೙ିଵ

௥ିଵ
 = 3௡ିଵ ⋅ ൥

൬
మ೛

య
൰

೙

ିଵ

మ೛

య
ିଵ

൩ = 
ଶ೙.೛ିଷ೙

ଶ೛ିଷ
 

 

R = 
୒

ୈ
  =  [

ଶ೙.೛ିଷ೙

ଶ೛ିଷ
]. [

ଵ

ଶ೙.೛ିଷ೙]    =>  R = 
ଵ

ଶ೛ିଷ
  



The exponents are so constrained that they can be equal to 1 or 2 or 3 or ≥ 4 
 

Case I: a = b = c = d = … = 1      R = 
ଵ

ଶభିଷ
 = -1  

Case II: a = b = c = d = … = 2      R = 
ଵ

ଶమିଷ
 = 1 

Case III: a = b = c = d =…. = 3     R = 
ଵ

ଶయିଷ
 = 

ଵ

ହ
  

Case IV: a = b = c = d =….. = 4 +u    R = 
ଵ

ଶరశೠିଷ
 ; R < 1 

 

Case II is only producing an integer R = 1 which leads to k = 
ଵ

ଵ଺
 [ 1 -m]  

m can be equal to all odd integers from 1 to 15 for odd integers presented as 16k +m.  
Only m = 1 yields a valid result k = 0  
So, by theorem 1, only one looping sequence can exist in which k = 0, m = 1, (a,b,c…) = (2,2,2…) 
The starting integer = 16k+m = 16x0 +1 = 1 
Deviations: Any of the exponents aj >2, all others remain same, symmetry in the numerator N 
disrupted. Let us consider following deviations from the uniformity: 
 
A) Arbitrary adjustments: If aj = 2 + ∂ and any other exponent ai is adjusted such that, ai = 2 - ∂,  
S = 2 + ∂ + 2 - ∂ + 2 + 2 + … (up to nth term) = 2n 
D =  2np – 3n = 4n – 3n   
The denominator remains same but some terms in the telescoping sum changes disrupting the 
symmetry: R ≠ Z+ 
B) Increased or decreased exponents: If at least one of the exponentials increases, ai = 2 + u;  
u => positive or negative integer 
Let us rewrite the numerator N = 3n -1 + T1 + T2 + T3 + …+ 2S’  
After introducing the deviation ‘u’, every ‘T’ picks up a factor 2u :  
N’ = 3n -1 + T1. 2u + T2. 2u + T3. 2u   + …+ 2S’. 2u     =  3n -1 + 2u.(T1 + T2 + T3 + …+ 2S’) (factoring out 2u) 
By definition, 3n-1 + T1 + T2 + T3 + …+ 2S’ = N  
Therefore, N’ = 3n -1 + 2u (N – 3n-1) = 2u.N + (1- 2u).3n-1  

And adding up the deviation, the new denominator, D’ = 22n + u – 3n  .  
In this deterministic framework u may take the values 1, 2 or any integer  ≥ 3. 
N’ = 2u.N - 3n-1 or, 2u.N – 3.3n-1 or, 2u.N – 7.3n-1 or, 2u.N – 15.3n-1 etc.  
Can be written as, N’ = 2u.N – i.3n-1 (i € 1, 3, 7, 15 etc.) 

N’ = 2u.N – i.3n-1 = 2u (22n – 3n) – i.3n-1 = 22n + u  - 3n + 3n – i.3n-1 = D’ + 3n  – i.3n-1.  

R = 
୒ᇱ

ୈᇱ
 = 

஽ᇲାଷ೙ି௜⋅ଷ೙షభ

஽ᇲ  = 1 +  
ଷ೙ି௜⋅ଷ೙షభ

஽ᇲ  => cannot be an integer as D’ > 3௡ − 𝑖 ⋅ 3௡ିଵ 

C) Even if more exponents are altered, N’ = 3n -1 + T1. 2u + T2. 2u + v + T3. 2u + v + l  + …+ 2S’ +u + v + l +… .  
And, D' = 2 S + u + v + l + ….  – 3n. 
 
The term 3n-1 remains invariant, while subsequent terms scale by 2u, 2u+v, 2u+v+l+… etc. This disrupts the 
telescoping sum, as the weights 3n-1 and 2S no longer align. Numerator changes polinomially, sub-
exponentially whereas the denominator changes exponentially keeping R ≠ ℤ+  
Therefore, only 1- 4 - 1 i.e. 4 – 2 - 1 loop exists and no odd positive integer >1 reappears.   (Proved) 



 
Corollary: If no odd integer>1 reappears in Collatz sequence, no even integers > 4 reappears in Collatz 
sequence.  
 
Theorem 2: An integer is capable of forming r cycles, it cannot form (r+1) cycles in a modular loop.  
 
Proof: For a sequence with n (n>1) steps, if the modular form becomes 16kn + m, from 16k1 +m then, 
after first cycle: 

16kn + mn =  
𝟑𝒏𝟏𝟔.𝒌 ା 𝟑𝒏.𝒎 ା 𝟑𝒏ష𝟏 ା  𝟑𝒏ష𝟐.𝟐𝒂 ା 𝟑𝒏ష𝟑𝟐𝒂శ𝒃ା     ….…...  ା 𝟐𝒂శ𝒃శ𝒄శ⋯(𝒏ష𝟏)𝒕𝒉 𝒕𝒆𝒓𝒎

𝟐𝒂శ𝒃శ𝒄శ𝒅శ𝒆శ⋯𝒏𝒕𝒉 𝒕𝒆𝒓𝒎
 

S = a + b + c + …. + nth term  
 

kn = 
𝟑𝒏𝟏𝟔.𝒌 ା(𝟑𝒏ି𝟐𝑺).𝒎  ା 𝟑𝒏ష𝟏 ା  𝟑𝒏ష𝟐.𝟐𝒂 ା 𝟑𝒏ష𝟑𝟐𝒂శ𝒃ା     ….…...  ା 𝟐𝒂శ𝒃శ𝒄శ⋯(𝒏ష𝟏)𝒕𝒉 𝒕𝒆𝒓𝒎

𝟏𝟔.𝟐𝑺
 

This takes the form of     kn = 
ଷ೙ଵ଺.௞ ା௭

ଶ೛  ,   

Where z = (3௡ − 2ௌ). 𝑚  +  3௡ିଵ +  3௡ିଶ. 2௔  +  3௡ିଷ2௔ା௕ +      … . … . . .  + 2௔ା௕ା௖ା⋯(௡ିଵ)௧௛ ௧௘௥௠ 
And, 16.2S = 2s+4  is written as 2p .  
This means, k is such a unique core integer due to which 16k+m is capable of completing 1 cycle of 
this loop.  
After 2nd cycle, k becomes kn, therefore, substituting k by kn, 

 kn+1 = 
ଷ೙(୩୬).ଵ଺.ା௭

ଶ೛  =  
ଷమ೙𝟏𝟔𝟐.௞ ା𝟑𝒏.ଵ଺.௭ା𝟐𝒑.௭

ଶమ.೛   

Similarly, after rth cycle, kn+r = 
ଷೝ.೙𝟏𝟔𝒓.௞ ା𝟑(𝒓ష𝟏).𝒏.𝟏𝟔𝒓ష𝟏.௭ା𝟑(𝒓ష𝟐).𝒏.𝟏𝟔𝒓ష𝟐.௭ା ……….𝟐(𝒓ష𝟏)𝒑.௭

ଶೝ.೛  

Or, kn+r = 
ଷೝ.೙𝟏𝟔𝒓.௞ ା௓ᇱ

ଶೝ.೛  ; z’ = 3୰.୬ିଵ. 16୰ିଵ. z + 3୰.୬ିଶ. 16୰ିଶ. z +  … … … . 2(୰ିଵ)୮. z 

  k = 
ଶೝ.೛(௄_௡ା௥) ି௓ᇱ

ଷೝ.೙𝟏𝟔𝒓  => k is a unique core integer that is capable of completing r cycles. 

And, after (r+1)th cycle, kn+r+1 = 
ଷ(ೝశభ).೙𝟏𝟔𝒓.௞ ା𝟑𝒓.𝒏.𝟏𝟔𝒓.௭ା𝟑(𝒓ష𝟏).𝒏.𝟏𝟔𝒓ష𝟏.௭ା ……….𝟐𝒓.𝒑.௭

ଶ(ೝశభ).೛  

Or, kn+r+1 = 
ଷೝ.೙𝟏𝟔𝒓.௞ ା୸’’

ଶೝ.೛  ; z’’ = 3(୰ାଵ).୬ିଵ. 16୰. z + 3୰.୬. 16୰. z +  … … … . 2୰.୮. z 

  k = 
ଶ(ೝశభ).೛(௄೙ା௥ାଵ) ି୸’’

ଷ(ೝశభ).೙.ଵ଺𝒓  => k is a unique core integer that is capable of completing (r+1) 

cycles of the same loop.  

Evidently, 
ଶೝ.೛(௄_௡ା௥) ି௓ᇱ

ଷೝ.೙𝟏𝟔𝒓  ≠  
ଶ(ೝశభ).೛(௄೙ା௥ାଵ) ି୸’’

ଷ(ೝశభ).೙𝟏𝟔𝒓   

This shows, the core integer capable of completing r cycles cannot complete (r+1) cycles. Therefore, 
every loop is bound to a finite number of cycles. (Proved) 
 

Section 4: Tracking of Transformation Paths: With the classification of integers and transformation 
rules, randomness of the conjecture is replaced by strict mathematical discipline. It is now essential to 
track all possible transformation paths between the defined types. Depth First Search (DFS) algorithm 
are the most efficient tool for this purpose. Using a DFS python code, 911 looping sequences and 692 
non-looping are exhaustively tracked. The DFS code is attached in the appendix section. Out of the 



911 looping sequences and 692 non-looping sequences, it is found that:  
1) only 49 found are of increasing or diverging growth tendency,  
2) only 22 are found to be increasing/diverging,  
Non-looping sequences are less relevant in proving convergence/divergence nature of the conjecture. 
Diverging looping sequences, if found stable, lead to disproving the conjecture whereas unstable or 
bounded growth indicates a universal convergence. All increasing looping sequences and some samples 
of decreasing looping sequences are displayed in the appendix section.  
 
Lemma 3: Growth tendency of looping and non-looping sequences is determined by comparing 
accumulation of power of 3 in numerator with accumulation of power of 2 in denominator.   
Proof: an odd integer x, after n transformations forms odd integer = 

𝑥 →
ଷ௫ାଵ

ଶೌ →
ଷమ௫ାଷାଶೌ

ଶೌశ್  ….  
ଷ೙ାଷ೙షభାଷ೙షమ.ଶೌାଷ೙షయ.ଶೌశ್ା⋯ାଶೌశ್శ೎శ⋯(೙షభ)೟೓ ೟೐ೝ೘

ଶೌశ್శ೎శ⋯⋅೙೟  ೟೐ೝ೘  = 
ଷ೙.௫ ା்

ଶ೛  

For large value of x, T is negligible. Therefore, if 3n > 2p then the sequence is increasing and if 3n < 2p, 
it is decreasing.  
Threshold ratio: The ratio, that decides whether a sequence is increasing or decreasing is the ratio of p 
to n such that p > n.log23  
log23 ≈ 1.585, hence, p > 1.585.n  
For example, n = 3, threshold p ≥ (1.585 x 3) ≈ 5 will hold 2p >3n. This concept aligns with Terence 

Tao’s probabilistic observation of threshold ratio  
௡௨௠௕௘௥ ௢௙ ௘௩௘௡ ௦௧௘௣௦

 ௡௨௠௕௘௥ ௢௙ ௢ௗௗ ௦௧௘௣௦
 ≈ log23 ≈ 1.585 

Demonstrative Examples:  
A) Looping sequence: Type 2 to Type 7 to Type 8 to Type 4 to Type 2: 
Step I: Starting Type 2 = 16k + 3  24k + 5 (3x + 1, followed by division by 2). 
Step II: 24k + 5 (Type 7, according to sequence)  9k + 2 (3x + 1, followed by division by 8). 

Step III: 9k + 2 (Type 8)  
ଶ଻୩ା଻

 ଶ
 (3x + 1, followed by division by 2). 

Step IV: 
ଶ଻୩ା଻

 ଶ
 (Type 4)  

଼ଵ୩ାଶ

 ସ
 (3x + 1, followed by division by 2) 

The filial modulo class of the loop = Type 2 (say, 16k’ +3) = 
଼ଵ୩ା

 ସ
. 

k’ = 
଼ଵ୩ା

 ଺ସ
 => This equation is satisfied by the unique k = 37 + 64.n yielding k’ = 47 + 81.n  

The loop will continue for a single cycle if initiated by the core integer k = 37 + 64.n only.  
Growth tendency =  (numerator’s power of 3)/(denominator’s power of 2 ) = 34/ 26 >1 = increasing. 
 

B) Non-looping sequence: Type 1 to Type 3 to Type 2 to Type 7 to Type 5 to Type 6: 
Step I: Starting Type 1 =16k+ 1  12k + 1 (3x + 1 operation followed by division by 4). 

Step II: 12k + 1 (Type 3, according to sequence)   
ଽ୩ାଵ

ସ
 (3x + 1, followed by division by 16). 

Step III:  
ଽ୩ାଵ

ସ
  (Type 2, according to sequence)   

ଶ଻୩ା

଼
  ( 3x + 1, followed by division by 2). 

Step IV: 
ଶ଻୩ା଻

଼
 (Type 7, according to sequence)   

଼ଵ୩ାଶ

଺ସ
  (3x + 1, followed by division by 8). 

Step V: 
଼ଵ୩ା

଺ସ
 (Type 5, according to sequence)  

ଶସଷ୩ାଵହଵ

ଶହ଺
 (3x + 1, followed by division by 4) 

The last modulo class Type 6 (say, 16k’+11) = 
ଶସଷ୩ାଵହଵ

ଶହ଺
  



=> k’ = 
ଶସଷ୩ିଶ଺଺ହ

ସ଴ଽ଺
∶ The equation is satisfied by k = 3635 + 4096.n  

                                           yielding k’ = 215 + 243.n (n ∊ Z+). 
This path is initiated only by core integer = 3635 + 4096.n type only. 

Growth tendency =  (power of 3 in numerator)/(power of 2 in denominator ) = 35/ 212 <1 = decreasing.  
Similarly, Type 1- 3 – 2 – 7 – 5 – 3 – 4 – 6 path initiated by core integer, k = 2611 + 16384.n only. 
 
Table 14: Class-wise Analysis of Non-Looping Sequences:  

Types Total Non-recurrent 
Sequences 

Decreasing Increasing 

Type1 (16k+1) 115 112 03 
Type 2 (16k+3) 91 88 03 
Type 3 (16k+5) 116 116 00 
Type 4 (16k+7) 72 70 02 
Type 5 (16k+9) 75 71 04 

Type 6 (16k+11) 74 72 02 
Type 7 (16k+13) 114 112 02 
Type 8 (16k+15) 35 29 06 

All Types 692 670 22 
 
Section 5: Samples of Looping sequences:  
Case 1: Type 4 to type 2 to type 7 to type 8 to type 4: Let the parent integer be 16k+7. 
1st Cycle: 16k+7  24k+ 11 (by 3x+1 operation, followed by division by 2 as divisibility of type4 is 2) 
 24k+11  36k+17 (by 3x+1 operation, followed by division by 2 as divisibility of type2 is 2). 

 36k+17  
ଶ଻୩ାଵ

ଶ
  (by 3x+1 operation, followed by division by 2 as divisibility of type7 is 8). 

 
ଶ଻୩

ଶ
  

଼ଵ୩ାସ

ସ
 (by 3x+1 operation, followed by division by 2 as divisibility of type8 is 2). 

2nd Cycle: 
଼ଵ୩ାସଵ

ସ
  

ଶସଷ୩ାଵଶ଻

଼
  

଻ଶଽ୩ାଷ଼ଽ

ଵ଺
  

ଶଵ଼଻୩ାଵଵ଼ଷ

ଵଶ଼
  

଺ହ଺ଵ୩ାଷ଺଻

ଶହ଺
 . 

3rd Cycle: 
଺ହ଺ଵ୩ାଷ଺଻

ଶହ଺
  

ଵଽ଺଼ଷ୩ାଵଵଶ଼

ହଵଶ
  

ହଽ଴ସଽ୩ାଷସଷ଻

ଵ଴ଶସ
  

ଵ଻଻ଵସ଻୩ାଵ଴ସଵ

଼ଵଽଶ
  

ହଷଵସସଵ୩ାଷଶ଴଺ଶଵ

ଵ଺ଷ଼ସ
. 

The last term of the loop represents filial Type 4 integer and may be represented as 16m +7  

Therefore, 16k’+7 = 
ହଷଵସସଵ୩ାଷଶ଴଺ଶଵ

ଵ଺ଷ଼ସ
            

k’ = 
ହଷଵସସଵ୩ାଶ଴ହଽଽ

ଶ଺ଶଵସସ
  This equation is satisfied by the general expression k = 246723 + 262144.n 

which yields k’ = 500179 + 531441.n (n ∊ Z+) 

The parent integer should be 16k+7 = 3947575 +222.n  
The calculations show that the said looping sequence initiated by 3947575 +222.n type of integer will 
continue for 3 full cycles and will reach to 16m+7 = 8002871 + 8503056.n. Let us verify with n = 0 : 
 
1st Cycle: 3947575(type4)  5921363(type2)  8882045(type7)  3330767(type8)  
 4996151(type4)  7494227(type2)  11241341(type7)  4215503(type8)  6323255(type4) 
 
2nd Cycle: 6323255(type4) 9484883(type2)  14227325(type7)  5335247(type8)  8002871(= 



16 x 500179 +7 => type4)  
 
And then, the 3rd cycle: 8002871(type4)  12004307 (type2)  18006461(type7)  6752423 (type4)  
So, the loop terminates after 3rd cycle due to type mismatch.  
Case 2: Type 2 – type 7 – type 8 – type 4 – type 6 – type 1 – type 5 – type 2: 
Parent integer = 16k+3 

1st Cycle: 16k+3  24k+5  9k+2  
ଶ଻୩ା

ଶ
  

଼ଵ୩ାଶଷ

ସ
  

ଶସଷ୩ା

଼
  

଻ଶଽ୩ାଶଶ଻

ଷଶ
  

ଶଵ଼଻୩ା଻ଵଷ

ଵଶ଼
 

 

2nd Cycle: 
ଶଵ଼଻୩ା଻ଵଷ

ଵଶ଼
  

଺ହ଺ଵ୩ାଶଶ଺଻

ଶହ଺
  

ଵଽ଺଼ଷ୩ା଻଴ହ

ଶ଴ସ଼
  

ହଽ଴ସଽ୩ାଶଷଶ

ସ଴ଽ଺
  

ଵ଻଻ଵସ଻୩ା଻ଷ଻ହଷ

଼ଵଽଶ
   

 
ହଷଵସସଵ୩ାଶଶ

ଵ଺ଷ଼ସ
  

ଵହଽସଷଶଷ୩ା଻଴ସ

଺ହହଷ଺
  

ସ଻଼ଶଽ଺ଽ୩ାଶଵ଻

ଶ଺ଶଵସସ
  

After 2nd cycle, the filial integer, say, 16m+3 = 
ସ଻଼ଶଽ଺ଽ୩ାଶଵ଻

ଶ଺ଶଵସସ
 => m = 

ସ଻଼ଶଽ଺ଽ୩ାଵଷଽଷ

ଶ଺ଶଵସସ୶ ଵ଺
  

The equation is satisfied by k = 232346 + 222.n yielding m = 2649556 + 314.n 

Therefore, this loop with two cycles is initiated by the parent integer = 16k+7 = 37175379 + 226.n and 
the filial integer will be 16m+7 = 42392899 + 76527504.n 

Demonstration (with n = 0): 
1st Cycle: 37175379 (type2)  55763069 (type7)  20911151 (type8)  31366727 (type4)  
47050091(type6)  70575137 (type1)  52931353 (type5)  39698515 (type2) 
2nd Cycle: 39698515 (type2)  59547773 (type7)  22330415(type8)  33495623(type4)  
50243435 (type6)  75365153 (type 1)  56523865 (type5)  42392899 (type2)  
And then, 3rd cycle: 42392899 (type2)    63589349 (type3) : 2-7-8-4-6-1-5-2 sequence terminates.  
 
Case 3: Type 6 – Type 5 –Type 6 loop: Parent integer = 16k+11  
1st Cycle: 16k1+11  24k + 17  18k1 + 13;  
16k2 + 11 = 18k1 +13 
16k2 = 18k1 + 2 

k2 = 
ଵ଼୩ାଶ

ଵ଺
  = 

ଽ୩ାଵ

଼
   

2nd Cycle: k3 = 
ଽ୩ଶା

଼
 =

9{(9k+1)/8}+1

8
=  

଼ଵ୩ା

଺ସ
   

3rd Cycle: k4 = 
ଽ୩ଷାଵ

଼
 = 

ଽ{(଼ଵ୩ା )/଺ସ}ାଵ

଼
 = 

଻ଶଽ୩ାଶଵ଻

ହଵଶ
 

4th Cycle: k5 = 
ଽ୩ସାଵ

଼
  = 

ଽ{(଻ଶଽ୩ାଶଵ଻)/ହଵଶ}ାଵ

଼
  = 

଺ହ଺ଵ୩ାଶସ଺

ସ଴ଽ଺
  

=> k5 = 
଺ହ଺ଵ୩ାଶସ଺

ସ଴ଽ଺
; the equation is satisfied by k = 4095 + 212.n yielding k5 = 6560 + 38.n  

Therefore, the loop initiates with parent integer 16k+11 = 65531 + 216.n and terminates after 4 cycles 
with filial integer 16m + 11 = 104971+ 104976.n 
Demonstration with n = 0 
1st Cycle: 65531 (type6)  98297 (type5)  73723 (type6)  
 
2nd Cycle: 73723 (type6)  110585 (type5)  82939 (type6)  
 



3rd Cycle: 82939 (type6)  124409 (type5)  93307 (type6)  
 
4th Cycle: 93307 (type6)  139961 (type5)  104971 (type6) 
 
And then: (type6)  157457 (= 9841 x 16 +1 =>type1): The loop terminates as 6-5-6 sequence breaks 
at this point.  

5th Cycle: k6 = 
ଽ୩ହାଵ

଼
 =  

ଽ{(଺ହ଺ଵ୩ାଶସ଺ହ)/ସ଴ଽ଺ା

଼
    

k6 =   
ଷభబ௞ାଶ଺ଶ଼ଵ

ଶభఱ  is satisfied by k = 32767 + 215.n 

The starting integer which is capable of forming 5 cycles is 16x32767 + 11 = 524283 
Similarly, integers having core integers of the series 262143 + 218.n is capable of forming 6 cycles, 
2097151 + 221.n of 7 cycles, 16777215 + 224.n of 8 cycles etc. Loop will eventually terminate after the  
defined number of cycles in each case. Visuals of the cycles are presented in the following: 
 

 
 
Section 6: Infinite Oscillation: In this conjecture, some hypothetical integers are believed to yield 
infinitely alternative odd-even parity patterns upon 3x+1 operation followed by division by 2. To 
dissolve this hypothesis, we shall demonstrate Type 8 integers having odd core value (k) those can only 
transform to Type 8 on repeated iterations.  
We take an extreme (1111….)2 parity pattern, i.e. 16k + 15, where, k = 2x – 1.  
16k + 15 = 16(2x – 1) + 15 = 2x+4 – 16 + 15 = 2x+4 – 1 = 2n – 1 type integer. 
By 3x + 1 operation, 2n – 1  3.2n - 2  3n – 1: This can be shown by stepwise synthetic deformation:  
N1 = 3N0 +1 =  4 + 3 (2 +22 +23 +…+2n)  (Performing 3x + 1 operation)  

Or, N2 = 2 + 3 (1 +2 +22 + 23 +..…+2n-1)  = 5 + (2 +22 + 23 +..…+2n-1) – this is evidently odd term.   

Or, N3 = 3N2 +1 = 16 + 32 (2 +22 + 23 +..…+2n-1) 

Or, N4 = 8 + 32 (1 +2 + 22 + 23 +..…+2n-2) = 17 + 32(2 + 22 + 23 +..…+2n-2) – Odd term 

Or, N5 = 3N4 + 1 = 52 + 33(2 + 22 + 23 +..…+2n-2)  

Or, N6 = = 26 + 33(1 +2 + 22 + 23 +..…+2n-3) = 53 + 33(2 + 22 + 23 +..…+2n-3) – Odd term 

Or, N7 = 3N6 +1 = 160 + 34(2 + 22 + 23 +..…+2n-3) 



Or, N8 = 80 + 34(1 +2 + 22 + 23 +..…+2n-4)  = 161 + 34(2 + 22 + 23 +..…+2n-4) – Odd term. 

A closer look at the integers generated as odd terms reveals that, they bear a common form of 2.3x+1  - 1 
like, 2. 32  - 1 = 17, 2. 33 -  1 = 53, 2.34  - 1 = 161 …..  

It can be concluded, all 2n – 1(Type 8) integers transform into 3n – 1 representing some other modulo 
residual form than Type 8. Following table depicts some aligned results:  
Table 15:  

n 2n+1  - 1 (3n+1  - 1)/2x Type of (3n  -1)/2x Number of steps 
taken to generate 

4 31 121 Type 1 10+1 

5 63 91 Type 6 12 +3 

6 127 1093 Type 3 14+1 

7 255 205 Type 7 16+ 5 

8 511 9841 Type1 18 +1 

9 1023 7381 Type 3 20+3 

16 393214 64570081 Type 1 34+1 

21 4194303 1961316225 Type 1 44+4 

 
Evidently, boundary integers having (11111…1)2 binary pattern, generate alternative even-odd integers 
unless the power of 2 exhausted. Thereafter these integers transform into 3n -1 type with disrupted 
symmetry of binary pattern. 3n – 1 integers converge rather easily than Type8.  
 
 
Section 7: Some Tangible Results: Enormous Numbers With Shortest Path of Convergence: 

The shortest route to convergence is widely discussed 
𝟐𝟐𝐧ି𝟏

𝟑
  (n∊ Z+) Some examples: 5, 21, 341 … 

These are all 16k+5 i.e Type 3 integers. As per transformation rules, shortest routes to Type 3 are: 
1) Type1 to Type 3,  
2) Type 2 to Type 3,  
3) Type 3 to Type 3,  
4) Type 4 to Type 2 to Type 3, 
5) Type 5 to Type 2 to Type 3,  
6) Type 6 to Type 1 to Type 3,  
7) Type 7 to Type 3,  
8) Type 8 to Type 4 to Type 2 to Type 3. 
We’ll form mathematical equations for all transformations. To establish the principle, lets demonstrate 
the last and the longest route:  
Step I: Type8: 16k+5  24k+23 (3x+, followed by division by 2) => This is Type 4 
Step II: 24k+23  36k + 35 => This is Type 2 
Step III: 36k + 35  54k + 53 => This is Type 3 



To adopt the shortest path, Type 3 must be = 
𝟐𝟐𝐧ି𝟏

𝟑
  = 54k + 53 

Solving, 16k + 15 = 
𝟐𝟐𝐧శ𝟑ି 𝟔𝟓

𝟖𝟏
  in the equation, n has a periodicity = 14 + 27m (m ∊Z+) and after a few 

iterations, it reaches 22n. 22n takes 2n more steps to reach 1.  
All integers in this scope are necessarily Type8 and follow the shortest convergence route to unity. 
Let’s verify:  

For m =0, n = 14,  
𝟐𝟐𝐧శ𝟑ି 𝟔𝟓

𝟖𝟏
 gives = 26512143 = 16 x 1657008 +15 - a Type 8 integer.  

Convergence of 26512143 will have 3 more odd integers (Type4, Type2 and Type3) and 3 more odd 
integer in between before reaching 228.  

For m =1, n = 41 
𝟐𝟐𝐧శ𝟑ି 𝟔𝟓

𝟖𝟏
 gives = 477600323798372019637007  - a Type8 integer.  

Convergence of this huge number will generate three more odd integers (Type 4, Type 2 and Type 3) 
and two more even integers in between before reaching 282.  
 
Step I: 477600323798372019637007 1432800971395116058911022 (even) – By 3x+1 
 
Step II: 1432800971395116058911022  716400485697558029455511(odd: Type 4) division by 2. 
 
Step III: 716400485697558029455511 2149201457092674088366534 (even). 
 
Step IV: 2149201457092674088366534  1074600728546337044183267 (odd: Type 2). 
 
Step V: 1074600728546337044183267  3223802185639011132549802 (even). 
 
 
Step VI: 3223802185639011132549802 1611901092819505566274901(odd: Type 3) 
 
Step VII: 1611901092819505566274901  4835703278458516698824707 (even) = 282 
These 24 digit odd numbers of quintillion magnitude can be predicted without any computing 
machine’s validation. Next number in this series comes up with a dimension of 2139 and behaves in the 
same way. Sets of such enormous integers belonging to other modulo classes are listed in the 
following: 

1) Type1 = 
𝟐𝟐𝐧శ𝟐ି𝟕

𝟗
  n = 3m +1 (m ∊ Z+) 

2) Type 2 = 
𝟐𝟐𝐧శ𝟏ି𝟓

𝟗
  n = 3m +2 (m ∊ Z+) 

3) Type 3 = 
𝟐𝟐𝐧ି𝟏

𝟑
    n = 3m +2 (m ∊ Z+) 

4) Type 4 =  
𝟐𝟐𝐧శ𝟐ି𝟏𝟗

𝟐𝟕
 n = 9m +5 (m ∊ Z+) 

5) Type 5 =  
𝟐𝟐𝐧శ𝟑ି𝟐𝟗

𝟐𝟕
  n = 9m +8 (m ∊ Z+) 



6) Type 6 =  
𝟐𝟐𝐧శ𝟑ି𝟐𝟑

𝟐𝟕
   n = 9m +4 (m ∊ Z+) 

7) Type 7 = 
𝟐𝟐𝐧శ𝟑ି𝟏𝟏

𝟗
 n = 3m +2 (m ∊ Z+) 

Conclusion: In addition to computational methods, modulo- residual classes are also useful in 
validating integers of enormous size.  
 
Section 8: Demonstration of Real Some Looping sequences:  

Example 1: 27( 16 x 1 + 11= >Type 6)  41  31  47  71  107  161  121  91  137  
103  155  233  175  263  395  593  445  167  251  377  283  425  319  
479  719  1079  1619  2429  911  1367  2051  3077  577  433  325  61  
23  35  53  5  1 

Types of the above integers in the same sequence: Type 6  Type 5  Type 8  Type 8  Type 4  
Type 6  Type 1  Type 5  Type 6  Type 5  Type 4  Type 6  Type 5  Type 8  Type 4 
 Type 6  Type 1  Type 7  Type 4  Type 6  Type 5  Type 6  Type 5  Type 8  
Type 8  Type 8  Type 4  Type 2 > Type 7  Type 8  Type 4  Type 2  Type 3  Type 
1  Type 1  Type 3  Type 7  Type 4  Type 2 > Type 3  Type 3  Type 1 
An illustration, how 27, a Type 6 integer has followed loops like 5-6-5, 8-8, 8-4-2-7-8. All loops being 
unstable, it has converged to unity.  

Example 2: 431 (16 x 16 + 15 => Type 8)  647 (16 x 40 + 7 => Type 4)  971 (16 x 60 + 11 => 
Type 6)  1457 (16 x 91 + 1 => Type 1)  1093 (16 x 68 + 5 => Type 3)  205 (16 x 12 + 13 => 
Type 7)  77 (16 x 4 +13 => Type 7)  29 (16 x 1 + 13 => Type 7)  11 (16 x 0 + 11 => Type 6)  
17 (16 x 1 +1 => Type 1)  13 (16 x 0 +13 => Type 7)  5 (16 x 0 + 5 => Type 3)  1 (Type 1)  
Looping sequences: (Type 7 – Type 6 – Type 1 – Type 7) and (Type 1 – Type 7 – Type 3 – Type 1) 
and (Type 7 – Type 7 – Type 7).  
 

Section 9: Convergence Argument:  

A Collatz sequence can logically have only three outcomes:  
1) An unbound growth,  
2) An infinite loop with sustaining magnitude, and, 
3) Convergence to unity.  

Theorem 1 and lemma 3 effectively rules out existence of non-trivial integer loops while theorem 2 
eliminates all possibilities of unbound growth due to occurrence of increasing modular loops.  
 
Applicability of Pigeonhole Principle:  
1) All odd integers are confined within the finite framework of 8 modulo residual classes. This ensures 
all odd integers in the sequence, after transformations, must repeatedly fall into one of these modular 
classes and revisit previous modular classes. Type 1, 3, 5, and 7 (divisibility = 22, 24, 22 and 23 
respectively) contribute to a net reduction in magnitude due to their divisibility properties. This 
reduction outweighs the cumulative growth induced by all Types.  
3) No integer can reappear in a Collatz sequence by theorem 1 and lemma 3.   



4) The pigeonhole principle guarantees that sequences confined to finite constraints must reduce. As 
reduction is inevitable in Collatz conjecture, convergence to 1 is the only outcome.  

Section 10: Research Outcomes: 

1) Universal classification of integers: 16k + m : no integer left out of this classification. 
 
2) Resolution of apparent chaos: The long-standing perception that Collatz conjecture is chaotic and 
cannot be predicted is hereby resolved. With the transformation rules, it is possible to predict 
convergence path of any integer. 
 
3) Non-trivial loop redefinition: Perceived existence of non-trivial loop is hereby affirmed and 
redefined: a non-trivial loop is a cyclic path of modulo residual patterns in Collatz sequence, not an 
infinite cycle with recurrence of individual integers. This non-trivial loop of modulo residual classes 
actually reinforce the statement of the conjecture rather than setting counterexamples.  
 
4) Universal and inevitable convergence: As there is no unbound growth and a huge majority of 
converging loops, a universal convergence is established by pigeonhole principle. 
 

                                                     
 
 

 

 
 
 

 

 

 

 

 

 

 

 



Appendix Section: 

Appendix: A: DFS (Python) code:  
Code begins:  
def find_cycles(graph, start_node, current_node, visited, path, results): 
    # Add current node to the path and mark as visited 
    path.append(current_node) 
    visited.add(current_node)     
    # Check if we looped back to the start node 
    if current_node == start_node and len(path) > 1: 
        results.append(list(path)) 
    else: 
        # Traverse each neighbor 
        for neighbor in graph[current_node][0]: 
            if neighbor not in visited or neighbor == start_node: 
                find_cycles(graph, start_node, neighbor, visited.copy(), path[:], results)     
    # Remove current node from path after recursion 
    path.pop()  
count_total = 0 
count_convergent = 0 
count_divergent = 0 
save_str = "" 
def print_and_save(string): 
    global save_str 
    save_str += string + "\n" 
    print(string) 
def analyze_graph(graph): 
    global count_total, count_convergent, count_divergent 
    for node in graph: 
        results = [] 
        find_cycles(graph, node, node, set(), [], results)         
        # Print table header 
        print(f"\nNode {node} Cycles:") 
        print(f"{'Path':<50} | {'Sum of Change Factors':<40} | {'Status'}") 
        print() 
         
        # Print each cycle in table format 
        for path in results: 
            # Calculate the sum of change factors for the path 
            change_sum = [graph[node][1] for node in path][:-1] 
            status = "Convergent" if sum(change_sum) <= 0 else "Divergent" 
             
            path_str = " -> ".join(map(str, path)) 
            print_and_save(f"{path_str:<50} | {str(change_sum):<40} | {status}")    
            # Count totals 
            count_total += 1 
            count_convergent += 1 if status == "Convergent" else 0 
            count_divergent += 1 if status == "Divergent" else 0 
          print() 
# Run analysis 
analyze_graph(transition_table_with_worst_case) 
Code end 

 



Appendix: B: All Divergent loops:  

SL Loop Sequence Parent Filial type ≈ ∆(%  magnitude) Nature of loop 

1 1 -> 5 -> 4 -> 6 -> 1 x (81x+143)/64 50.00 Divergent 

2 4 -> 6 -> 1 -> 5 -> 4 x (81x+73)/64 32.00 Divergent 

3 5 -> 6 -> 5 x (9x+7)/8 16.00 Divergent 

4 6 -> 1 -> 5 -> 4 -> 6 x (81x+101)/64 31.48 Divergent 

5 6 -> 5 -> 6 x (9x+5)/8 14.81 Divergent 

6 8 -> 8 x (3x+1)/2 51.00 Divergent 

7 1 -> 5 -> 8 -> 4 -> 2 -> 7 -> 6 -> 1 x (2187x+5845)/2048 12.24 Divergent 

8 1 -> 5 -> 8 -> 4 -> 6 -> 1 x (243x+493)128 100.00 Divergent 

9 2 -> 7 -> 6 -> 1 -> 5 -> 8 -> 4 -> 2 x (2187x+7087)/2048 13.73 Divergent 

10 2 -> 7 -> 8 -> 4 -> 2 x (81x+125)/64 30.40 Divergent 

11 2 -> 7 -> 8 -> 4 -> 6 -> 1 -> 5 -> 2 x (2187x+4847)/2048 19.26 Divergent 

12 4 -> 2 -> 7 -> 6 -> 1 -> 5 -> 8 -> 4 x (2187x+4371)/2048 16.96 Divergent 

13 4 -> 2 -> 7 -> 8 -> 4 x ((81x+89)/64 32.61 Divergent 

14 4 -> 6 -> 1 -> 5 -> 2 -> 7 -> 8 -> 4 x (2187x+3955)/2048 15.21 Divergent 

15 4 -> 6 -> 1 -> 5 -> 8 -> 4 x (243x+283)/128 100.00 Divergent 

16 4 -> 6 -> 5 -> 4 x (27x+19)/16 74.00 Divergent 

17 5 -> 4 -> 6 -> 1 -> 5 x (81x+103)/64 33.00 Divergent 

18 5 -> 4 -> 6 -> 5 x (27x+29)/16 76.00 Divergent 

19 6 -> 1 -> 5 -> 2 -> 7 -> 8 -> 4 -> 6 x (2187x+5836)/2048 17.00 Divergent 

20 6 -> 1 -> 5 -> 8 -> 4 -> 2 -> 7 -> 6 x (2187x+3916)/2048 14.00 Divergent 

21 6 -> 1 -> 5 -> 8 -> 4 -> 6 x (243x+364)/128 100.00 Divergent 

22 6 -> 5 -> 4 -> 6 x (27x+23)/16 74.10 Divergent 

23 7 -> 6 -> 1 -> 5 -> 8 -> 4 -> 2 -> 7 x (2187x+10561)/2048 25.00 Divergent 

24 7 -> 8 -> 4 -> 2 -> 7 x (81x+179)/64 36.00 Divergent 

25 7 -> 8 -> 4 -> 6 -> 1 -> 5 -> 2 -> 7 x (2187x+7201)/2048 11.00 Divergent 

26 8 -> 4 -> 2 -> 7 -> 6 -> 1 -> 5 -> 8 x (2187x+3227)/2048 12.00 Divergent 

27 8 -> 4 -> 2 -> 7 -> 8 x (81x+65)/64 30.00 Divergent 

28 8 -> 4 -> 6 -> 1 -> 5 -> 2 -> 7 -> 8 x (2187x+2683)/2048 11.00 Divergent 

29 8 -> 4 -> 6 -> 1 -> 5 -> 8 x (243x+128)/128 96.00 Divergent 

30 2 -> 7 -> 6 -> 5 -> 8 -> 4 -> 2 x (729x+1765)/512 60.52 Divergent 

31 2 -> 7 -> 8 -> 4 -> 6 -> 5 -> 2 x (729x+1765)/512 57.65 Divergent 

32 4 -> 2 -> 7 -> 6 -> 5 -> 8 -> 4 x (729x+1249)/1024 53.00 Divergent 

33 4 -> 6 -> 5 -> 2 -> 7 -> 8 -> 4 x (729x+1009)/512 51.00 Divergent 

34 4 -> 6 -> 5 -> 8 -> 4 x (81x+73)/32 163.00 Divergent 

35 5 -> 2 -> 7 -> 8 -> 4 -> 6 -> 1 -> 5 x (2187x+6509)/2048 19.50 Divergent 

36 5 -> 2 -> 7 -> 8 -> 4 -> 6 -> 5 x (729x+1999)/512 58.00 Divergent 

37 5 -> 8 -> 4 -> 2 -> 7 -> 6 -> 1 -> 5 x (2187x+4349)/2048 15.30 Divergent 

38 5 -> 8 -> 4 -> 2 -> 7 -> 6 -> 5 x (729x+1279)/512 52.40 Divergent 

39 5 -> 8 -> 4 -> 6 -> 1 -> 5 x (243x+341)/128 100.00 Divergent 

40 5 -> 8 -> 4 -> 6 -> 5 x (81x+103)/32 166.00 Divergent 

41 6 -> 5 -> 2 -> 7 -> 8 -> 4 -> 6 x (729x+1405)/512 52.50 Divergent 

42 6 -> 5 -> 8 -> 4 -> 2 -> 7 -> 6 x (729x+925)/512 50.00 Divergent 

43 6 -> 5 -> 8 -> 4 -> 6 x (81x+85)/32 163.00 Divergent 

44 7 -> 6 -> 5 -> 8 -> 4 -> 2 -> 7 x (729x+2539)/512 61.00 Divergent 

45 7 -> 8 -> 4 -> 6 -> 5 -> 2 -> 7 x (729x+2059)/512 56.25 Divergent 

46 8 -> 4 -> 2 -> 7 -> 6 -> 5 -> 8 x (729x+1164)/512 50.00 Divergent 

47 8 -> 4 -> 6 -> 5 -> 2 -> 7 -> 8 x (729x+745)/512 50.00 Divergent 

48 8 -> 4 -> 6 -> 5 -> 8 x (81x+65)/32 60.00 Divergent 

49 1 ->5 -> 2 -> 7 -> 8 -> 4 -> 6 -> 1 x (2187x+8725)/2048 31 Divergent 
 
 
 
 
 

 



 
Appendix: D: Samples of Convergent Loops:  

Serial 
Loop Power of 3 Power of 2 Tendency 

1 1 -> 3 -> 7 -> 1 3 9 Convergent 

2 2 -> 7 -> 3 -> 1 -> 5 -> 2 5 12 Convergent 

3 7 -> 3 -> 1 -> 5 -> 2 -> 7 5 12 Convergent 

4 7 -> 3 -> 1 -> 7 3 9 Convergent 

5 1 -> 3 -> 2 -> 7 -> 1 4 10 Convergent 

6 1 -> 3 -> 5 -> 2 -> 7 -> 1 5 10 Convergent 

7 1 -> 3 -> 7 -> 5 -> 6 -> 1 5 12 Convergent 

8 1 -> 3 -> 7 -> 6 -> 1 4 10 Convergent 

9 1 -> 5 -> 2 -> 3 -> 7 -> 1 5 12 Convergent 

10 1 -> 5 -> 2 -> 7 -> 3 -> 1 5 12 Convergent 

11 1 -> 5 -> 2 -> 7 -> 3 -> 6 -> 1 6 12 Convergent 

12 1 -> 7 -> 3 -> 1 3 9 Convergent 

13 1 -> 7 -> 3 -> 5 -> 6 -> 1 5 12 Convergent 

14 1 -> 7 -> 3 -> 6 -> 1 4 10 Convergent 

15 2 -> 3 -> 7 -> 1 -> 5 -> 2 5 12 Convergent 

16 2 -> 7 -> 1 -> 3 -> 5 -> 2 5 12 Convergent 

17 2 -> 7 -> 3 -> 1 -> 5 -> 4 -> 2 6 13 Convergent 

18 2 -> 7 -> 3 -> 5 -> 2 4 10 Convergent 

19 2 -> 7 -> 3 -> 6 -> 1 -> 5 -> 2 6 13 Convergent 

20 3 -> 1 -> 5 -> 2 -> 7 -> 3 5 12 Convergent 

21 3 -> 1 -> 7 -> 3 3 9 Convergent 

22 3 -> 7 -> 1 -> 3 3 9 Convergent 

23 3 -> 7 -> 1 -> 5 -> 2 -> 3 5 12 Convergent 

24 3 -> 7 -> 3 2 7 Convergent 

25 4 -> 2 -> 7 -> 3 -> 1 -> 5 -> 4 6 13 Convergent 

26 5 -> 2 -> 7 -> 3 -> 1 -> 5 5 12 Convergent 

27 5 -> 6 -> 1 -> 3 -> 7 -> 5 5 12 Convergent 

28 6 -> 1 -> 3 -> 7 -> 5 -> 6 5 12 Convergent 

29 6 -> 1 -> 3 -> 7 -> 6 4 10 Convergent 

30 6 -> 1 -> 7 -> 3 -> 5 -> 6 5 12 Convergent 

31 7 -> 1 -> 3 -> 2 -> 7 4 13 Convergent 

32 7 -> 1 -> 3 -> 5 -> 2 -> 7 5 12 Convergent 

33 7 -> 1 -> 3 -> 7 3 9 Convergent 

 


