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Abstract: The  concept  of  Spacetime  Impedance  as  a  tensor  quantity  Zμν  is 
introduced and derived from the Einstein-Hilbert action and demonstrates its 
relation to the energy-momentum tensor. By contracting this tensor, we obtain a 
scalar quantity Z proportional to the energy density of the universe, establishing 
a  relationship  between  spacetime  geometry  and  fundamental  physical 
quantities. This model allows for an impedance-matching condition between the 
Euclidean and Lorentzian domains, potentially influencing our understanding of 
wave transmission, tunnelling between these spacetime manifolds, and allows a 
mechanism for the Big Bang, and Dark Energy in extragalactic voids. 

§1.1 Spacetime Impedance

The concept of impedance is well understood in electromagnetism and wave 
physics,  where  it  governs  the  transmission  and  reflection  of  waves  at 
boundaries. However, a general formulation of impedance for  Spacetime itself 
has not been rigorously explored. In this work, we extend impedance principles 
to curved spacetime and propose a Spacetime Impedance tensor  related to 
the  Ricci  tensor  and  energy-momentum  tensor.  This  provides  a  novel 
interpretation  of  energy  propagation  in  general  relativity  and  quantum 
cosmology.

Let us assume an ansatz for “Spacetime Impedance” that is a measure of 
spacetime’s  intrinsic  resistance  to  deformation  by  energy  and  motion.  This 
quantity characterizes how spacetime opposes the propagation of distortions, 
such as gravitational waves, due to its geometric and physical properties.

To this end let’s attempt a general equation for Spacetime Impedance for 
Euclidean  and Lorentzian  spaces in the form of a tensor,

(1)

To derive this, we use the variation of the Einstein-Hilbert action:



(2)

Since the variation   can be written as:

(3)

we can read off the definition of  as

(4)

This expression holds the Einstein tensor , allowing us to 
write the Spacetime Impedance as,

(5)

Where the factor    sets the units to match the definition of impedance. 
Since the impedance tensor is defined as the response of the action to metric 

variations, it makes sense that it is proportional to the curvature response. This 
comes  directly  from taking  the  functional  derivative  of  the  Einstein-Hilbert 
action with respect  to the metric.  This makes    the natural  gravitational 
analogue  of  an  impedance  tensor,  describing  how  the  action  responds  to 
deformations in spacetime geometry.

We can now show a deep connection to the Einstein Tensor and Energy-
Momentum Tensor by examining the Einstein field equations

(6)

we find

(7)

Furthermore, on contracting the Spacetime Impedance   with the metric 
tensor, we obtain the “scalar spacetime impedance” Z

(8)



and then applying the Friedmann equation

(9)

we  find  the  remarkable  result  implying  the  Z is  the  energy  density  of 
spacetime,

(10)

Thus,  Spacetime Impedance entails  the tensorial  structure  of  the  Einstein 
tensor, the energy-momentum tensor, and the energy density,  demonstrating its 
fundamental role in describing energy propagation in spacetime.

We  next  examine  how  this  can  be  applied  to  Lorentzian  and  Euclidean 
manifolds.

§1.2 Lorentzian ( ) Spacetime Impedance
 

From our definition of the spacetime impedance as

(11)

we can also take the action for electromagnetism in curved spacetime as,

(12)

From this we can compute  by varying the action with respect to ,

(13)

In flat spacetime , we simplify to:

(14)

Now we can extract the Characteristic Impedance   of electromagnetism, 
by assuming a plane wave propagating in vacuum and writing,



(15)

Thus, the relevant component of  is:

(16)

Since the characteristic impedance of free space ( ) is defined as:

(17)

we immediately obtain:

(18)

This  shows that   naturally  arises  in  Lorentzian  space  from  ,  this  is 
important as the principle of impedance must applied consistently.

§1.3 Euclidean ( ) Spacetime Impedance 

We again define the spacetime impedance tensor as:

(19)

For a general field theory in , the action takes the form:

(20)

where  is a scalar, vector, or higher-rank field. The impedance tensor then 
follows as:

(21)

Now, in the Euclidean space ( ), consider a non-linear wave equation with 
a Lagrangian of the form:

(22)



The corresponding impedance tensor is:

(23)

From this we can write a soliton equation in  as a stable, localized solution 
to the field equation:

(24)

For specific choices of , such as:

(25)

This field equation admits topological soliton solutions, such as instantons or 
bounce solutions, which are localized in , with a finite action:

(26)

Since   is proportional to the stress-energy tensor of the field, which is 
localized for soliton solutions, we conclude that:

(27)

 Thus it can be seen the spacetime impedance tensor in  naturally supports 
solitonic solutions when applied to non-linear wave equations. This shows that 

 in Euclidean space leads to solitons without invoking electromagnetism, 
which again is important as it allows the principle of impedance to apply in 
both  and  spaces.

Next we discuss how the impedances interact between domains.

§1.4 Impedance Matching Between Euclidean and Lorentzian Spacetimes

§1.4.1 
Impedance mismatch determines how much of a wave is reflected versus 

transmitted when moving between different media, if we treat   and   as 
different  "media"  with  different  impedances,  then  the  power  transmission 
coefficient (T) is given by,



(28)

substituting  for  for the impedance in , and  for  as the impedance 
in . we arrive at

(29)

If  this will be undefined.

If , the denominator is dominated by , meaning that transmission is 
suppressed, leading to reflection.

If , the denominator is dominated by , meaning that transmission is 
enhanced, leading to transmission.

If , transmission is maximized.

It  is  to  be  expected  that  the  Big  Bang  takes  place  when  transmission  is 
maximized.

§1.4.2 Lorentzian Impedance for 

Before the Big Bang in  the energy density is either zero or tends to zero and 
the curvature of Spacetime is  flat,  and we can assume that  due to quantum 
fluctuations

(30)

thus there will be states where  is defined

After  the  Big  Bang the  spacetime  impedance  tensor  is  determined  by  the 
curvature tensor,

(31)



Since  in 4D spacetime, this simplifies to:

(32)

Using the vacuum result from Einstein’s field equations:

(33)

we substitute into our expression for ,

(34)

Taking the curvature scale as ,

(35)

Now substituting this into our expression for ,

(36)

Where the spacetime impedance  is directly related to the cosmological 
constant with an enormous magnitude. 

§1.4.3 Euclidean Impedance 
By  definition  Euclidean  space  is  devoid  of  energy,  matter  and  physics 

therefore, therefore the energy density of  before the Big Bang is assumed to 
be  zero,  accordingly  the  curvature  R  is  also  zero  for  a  flat  space  and  the 
Spacetime Impedance  is zero,

(37)

So the Spacetime Impedance is constant for all of .



§1.4.4 Spacetime Tunnelling

In  quantum  gravity  and  early  universe  cosmology,  transitions  between 
Euclidean and Lorentzian regions appear in multiple contexts. These transitions 
involve the “emergence of real time evolution from a quantum phase”, and their 
probability is governed by the transmission coefficient (T), which depends on 
how well the impedances match.  

(38)

-  Perfect  transmission  is  never  achieved  as  that  only  occurs  when 
 which is undefined.

- If , the transmission is high, and the universe naturally emerges into 
real time evolution, this only occurs when,
  

(39)

-  If  ,  then  tunnelling  is  suppressed,  affecting  the  likelihood  of 
universe formation. This leads to the presumption that once the Big Bang has 
occurred and matter has appeared with its concomitant energy density being 
much greater than zero,

(40)
 
then not only is further matter formation is suppressed in  but importantly 
the reverse process of matter tunnelling back into  is prevented and the post-
Big Bang universe settles down into stable state.

§1.4.5 Scalar Impedance Z and the Evolution of the Universe

If we compare the scalar impedance with Evolution with the Universe after the 
Big Bang we find the value of  depends on how the Ricci scalar R evolves 
over time. Since,

(41)

the  scalar  impedance  will  evolve  as  the  Hubble  parameter   and 
acceleration  change with time.



Scalar Impedance in Different Epochs
1.  Radiation-dominated era  :  such that   for  H = 1/2t,  so 

, leading to

(42)
     
2. Matter-dominated era ( : such that  for H = 2/3t, so , 
yielding,

(43)
     
3.  Dark  Energy  /  Inflationary  Era  :  such  that   for 

, so , leading to

(44)
    
Since  R is  tied to the curvature of spacetime, the scalar impedance behaves 
differently across cosmic epochs. 

We do need, however, to determine how  behaves across transitions 
like matter-radiation or dark energy dominance–possibly the relative values of (

 and ( ) regulate the probability of universe formation in this model. 

Experimentally as determined by cosmic red-shifts we can tabulate the timeline 
of the universe as table (1).

Table (1)
 Epoch  Time  a(t)  Dominant Component  ρ kg/m³)  References 

 Planck  10⁻⁴³ s  10⁻⁶¹  Quantum gravity  5 × 10⁹⁶  [1] 

 Inflation  10⁻³⁶ s  10⁻⁵⁰  Inflaton  10⁷⁹  [2] 

 Quark  10⁻⁶ s  10⁻¹⁴  Radiation  10²⁶  [1] 

 Lepton  1 s  10⁻¹⁰  Radiation  7.8 × 10¹⁰  [3] 

 Photon  380,000 yr  1/1090  Radiation  1.1 × 10⁻¹⁵  [4] 

 Matter  9 Gyr  0.75  Matter  6.4 × 10⁻²⁷  [3] 

 Dark Ages  150 Myr  0.01  Matter  2.7 × 10⁻²¹  [5]

 Galaxy  1 Gyr  0.1  Matter  2.7 × 10⁻²⁴  [3] 

 Acceleration  13.8 Gyr  1  Dark Energy  8.6 × 10⁻²⁷  [6] 



We see the energy density and accordingly the spacetime impedance)  drops 
dramatically on entering the Photon epoch, increases slightly during the Cosmic 
Dark Ages and Galactic formation, only to drop once more to approach the 
Matter Epoch in the Acceleration/Dark Matter epoch of 8.6 × 10⁻²⁷ .

§1.4.6 Inflation/Re-Inflation/Dark Energy
In this model Inflation is driven by the Principle of Least Action, entailed in the 
Einstein-Hilbert action. This action governs how spacetime geometry responds 
to energy and curvature,

(45)

Here,  is the Ricci scalar curvature,  is the determinant of the metric , and 
 includes  the  contributions  from  energy  density,  fields,  and  vacuum 

energy.  The dynamics  of  spacetime are  derived by varying this  action with 
respect  to  the  metric,  and  the  resulting  Euler-Lagrange  equations  yield 
Einstein’s field equations.

As particles tunnel from  into  across the “Great Divide”, this tunnelling 
event introduces a sharp increase in vacuum energy density  , which enters 
the energy-momentum tensor . Through the Einstein field equation,

(46)

The spike in  induces a corresponding increase in curvature. This means that 
the Ricci scalar  becomes large, and so the action  is no longer and extreme. 
To reduce the action, spacetime evolves — it changes its metric  to minimize 
the integral of . Since , and we cannot easily reduce the energy 
immediately after tunnelling, the only route to lowering   is  to increase the 
volume . This leads directly to a rapid expansion of spacetime — Inflation.

In short:

- The sudden increase in energy density  increases curvature ,
- The Principle of Least Action (minimize ) demands a response,
- Spacetime expands to increase volume , thereby lowering ,
- Lowering  reduces , which reduces ,
- This expansion is exactly what we observe as Inflation.



So  the  evolution  of  the  scale  factor   is  the  system’s  path  through 
configuration space that minimizes the Einstein-Hilbert action in the presence 
of high vacuum energy. Inflation is the geometric response of spacetime, via its 
metric, to minimize action after the asymmetry introduced by tunnelling. This 
aligns precisely with the variational principles at the heart of general relativity.

Furthermore, in the Acceleration epoch around 13.8 Gyr as the   the 
process of tunnelling can recommence across the Great Divide between  and 

 this in turn restarts Inflation.

Similarly Dark Energy appears in the galactic voids once more as .

Let  be the energy density of spacetime, and define the equation of state 
parameter as,

(47)

For radiation, , for matter , and for dark energy .  

As , particularly in voids, we observe,

(48) 

which implies,

(49)
  
From the Friedmann acceleration equation,

(50)

Substituting ,

(51)

If , then , leading to accelerated expansion.  

In the limit ,  
(52)



 
This is positive, and thus expansion accelerates.  

Therefore, as , if , then,

(53)
thus providing a mechanism that  drives expansion via the negative pressure 
term in the Einstein field equations.

§1.4.7 Units

For tunnelling to take place between   and   what I’m calling the “Great 
Divide” we need to account for the units between the dimensions, since  and 

 are defined in different spacetime signatures they generally have different 
physical dimensions, therefore for the transmission formula to be meaningful 
the units of   and  must match,

(54)

Since the action S) has units,

(55)

And  since  the  metric  tensor  ( ) is  dimensionless,  then  the  variation 
inherits the units from the action and the volume element. 

For 4D spacetime, the volume element has purely spacial units

(56)

Thus, the impedance tensor must have units

(57)

This aligns with the impedance in 

(58)

Similarly for , the impedance tensor has mixed units involving time

(59)



This  shows  that  the  spacetime  impedance  naturally  picks  up  a  phase 
factor under the Wick rotation, suggesting that the transition is analogous to an 
electrical  impedance  transformation. Clearly,  however,   and   have 
different dimensions, such that

(60)

For the transmission coefficient to be well-defined, we need to reconcile these 
units, and we can fix the units using Wick Rotation,

(61)

where Euclidean time ( ) has the same units as spatial  coordinates  ).  This 
suggests that we can introduce a characteristic Euclidean time scale  ), 
such that,

(62)

By setting ( ), we obtain,

(63)

Now we can match units,

(64)

Thus, by correctly accounting for Wick rotation effects, we get unit consistency 
in the transmission formula.

§1.5 Predictions and Tests

First derive the equation of state  as a function of impedance, starting from 
the assumption that spacetime impedance is proportional to variations of energy 
density over the history of the universe,

(65)



We can without loss of generality define pressure as a response to changing 
impedance, like a damping term in mechanical systems

(66)

where  is a proportionality constant, this gives us an equation of state,

(67)

Let’s use a standard cosmological form for energy density/impedance evolution

(68)

Where  is the spacetime impedance just before the Big Bang, then

(69)

Substitute this into our equation of state

(70)

this yields

(71)

So  the  equation  of  state  evolves  in  time,  approaching  zero  as  ,  but 
diverging at early times. This gives us a time-dependent equation of state that 
behaves sensibly:

- At early times,  : high pressure from high impedance — matching early 
inflationary behaviour.
- As time increases, : matter-dominated era.
- If we instead modelled , we'd get    — constant , like for 
dark energy.

This  allows  for  a  testable  prediction.  If  spacetime  impedance  Z(t)  is 
fundamentally tied to energy density, then in cosmic voids, where  , we 



should see signatures of low-impedance spacetime.

The following would be possible candidates in Cosmic Voids:

 1. Refracted Gravitational Waves
- Gravitational waves entering low-density voids should refract, analogous to 
light bending through media with changing refractive index.
- Prediction: Apparent “lensing” or angular displacement of gravitational wave 
sources not matched by optical data.

 2. Anomalous Time Dilation or Redshift
- As light or matter moves through regions of low impedance, propagation may 
accelerate or shift.
-  Prediction:  Slight  deviations  in  cosmic  chronometers  or  redshift-distance 
relations in low density regions.

 3. Differential Cosmic Expansion
- In ultra-low-density zones, spacetime might “stretch” more easily due to near-
zero impedance.
- Prediction: Voids may appear to expand faster than higher-density regions — 
an anisotropic Hubble parameter.

 4. Directional Changes in Galaxy Motions
-  If  spacetime has  varying impedance,  gravitational  accelerations  may bend 
subtly through these “softer” regions.
-  Prediction:  Non-linear  peculiar  velocities  of  galaxies  near  large  voids, 
deviating from predictions of ΛCDM.

- CMB Lensing Maps (Planck, ACT, SPT) for subtle shifts or distortions.
-  Gravitational  Wave  Interferometers  (LIGO/Virgo/KAGRA)  for  phase/time 
anomalies in different sky directions.
-  Cosmic Voids Catalogues (e.g.,  from DESI,  Euclid)  to correlate spacetime 
"softness" with redshift distortions.
- Deep-field Surveys (JWST, Hubble) to track dimming or distortion through 
vast low density regions.

In other words this suggests a testable hypothesis where in regions as  , 
then  spacetime  impedance  ,  permitting  accelerated  expansion, 
gravitational  wave  refraction,  and  potentially  contributing  to  the  observed 



effects of dark energy.

Conclusions

1. The Spacetime Impedance  was derived as a tensor from the Einstein-
Hilbert action S

(72)

It was shown there is a deep connection to the Einstein Tensor and Energy-
Momentum Tensor,

(73)

we find

(74)

2.  The  scalar  impedance  of  spacetime  Z was  derived  by  contracting  the 
Spacetime Impedance  with the metric tensor, 

(75)

and then applying the Friedmann equation

(76)

we  find  the  remarkable  result  implying  the  Z is  the  energy  density  of 
spacetime,

(77)

3.  The  characteristic  impedance  of  free  space   was  derived  from  the 
Spacetime Impedance  by assuming a plane wave  in ,

(78)



4.  Values  of  Spacetime  Impedance  were  given  in  the  Euclidean   and 
Lorentzian  domains were approximated as,

(79)

5.  Possible  tests  are  given  for  this  model  in  the  form  of  searching  for 
gravitational wave refraction; gravitational wave interferometry; anisotropy for 
Hubble  parameter,  deviations  in  cosmic  chronometers  or  redshift-distance 
relations; or acceleration of light (red-shifting) or matter through regions of low 
impedance regions as  in the voids between galaxies.

Thus  the  use  of   for  both   and   as  a  definition  of  Spacetime 
Impedance  is  justified  from  first  principles;  it  is  suggested  that  Spacetime 
Impedance may give mechanisms for the Big Bang, Inflation, and Dark Energy, 
however, as to what these mechanisms a definitive explanation is not given; and 
predictions in the form of looking for accelerated expansion and gravitational 
wave  refraction  in  regions   by  considering  the  effect  of  spacetime 
impedance upon the cosmic equation of state.
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