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1. Introduction 
 

In this paper, we will use basic algebraic methods to analyze the binomial coefficients (𝜆𝑛
𝑛

), 

where 𝜆 and 𝑛 are positive integers, to prove the Legendre conjecture, the Oppermann 
conjecture, the Brocard conjecture, and the Andrica conjecture [1], [2], [3], [4], [5]. 

Definition:  Γ𝑎≥𝑝˃𝑏{(𝜆𝑛

𝑛
)} denotes the prime number factorization operator of the integer 

expression (𝜆𝑛
𝑛

). It is the product of the prime numbers in the decomposition of (𝜆𝑛
𝑛

) in the  

range of  𝑎 ≥ 𝑝 > 𝑏 .  In this operator,  𝑝 is a prime number,  𝑎 and 𝑏 are real numbers, and  
𝑎 ≥ 𝑝 > 𝑏 ≥ 1.   

It has some properties:  

It is always true that  Γ𝑎≥𝑝˃𝑏{(𝜆𝑛

𝑛
)} ≥ 1.                        (1.1) 

If there is no prime number in (𝜆𝑛
𝑛

) within the range of 𝑎 ≥ 𝑝 > 𝑏, then  Γ𝑎≥𝑝˃𝑏{(𝜆𝑛

𝑛
)} = 1, 

or vice versa, if  Γ𝑎≥𝑝˃𝑏{(𝜆𝑛

𝑛
)} = 1, then there is no prime number in (𝜆𝑛

𝑛
) within the range of 

𝑎 ≥ 𝑝 > 𝑏.                            (1.2) 

For example, when 𝜆 = 5 and 𝑛 = 4,  Γ16≥𝑝˃10{(20
4

)} = 130 · 110 = 1. No prime number 13 or 

11 is in (20
4

) in the range of 16 ≥ 𝑝 > 10. 

If there is at least one prime number in (𝜆𝑛
𝑛

) in the range of 𝑎 ≥ 𝑝 > 𝑏, then Γ𝑎≥𝑝˃𝑏{(𝜆𝑛
𝑛

)} > 1,  

or vice versa, if Γ𝑎≥𝑝˃𝑏{(𝜆𝑛
𝑛

)} > 1,  then there is at least one prime number in (𝜆𝑛
𝑛

) within the 

range of  𝑎 ≥ 𝑝 > 𝑏.                         (1.3) 

For example, when 𝜆 = 5 and 𝑛 = 4,  Γ18≥𝑝˃16{(20
4

)} = 17 > 1.  Prime number 17 is in (20
4

) 

within the range of 18 ≥ 𝑝 > 16. 
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Let 𝑣𝑝(𝑛) be the 𝑝-𝑎𝑑𝑖𝑐 𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 of 𝑛, the exponent of the highest power of 𝑝 that divides 𝑛. 

We define R(𝑝) by the inequalities  𝑝𝑅(𝑝) ≤ 𝜆𝑛 <  𝑝𝑅(𝑝)+1, and determine 𝑣𝑝(𝑛) of (𝜆𝑛
𝑛

). 

𝑣𝑝 ((𝜆𝑛
𝑛

)) = 𝑣𝑝((𝜆𝑛)!) − 𝑣𝑝(((𝜆 − 1)𝑛)!) − 𝑣𝑝(𝑛!) = ∑ (⌊
𝜆𝑛

𝑝𝑖 ⌋ − ⌊
(𝜆−1)𝑛

𝑝𝑖 ⌋ − ⌊
𝑛

𝑝𝑖⌋)
𝑅(𝑝)
𝑖=1 ≤ 𝑅(𝑝)  

because for any real numbers 𝑎 and b, the expression of  ⌊𝑎 + 𝑏⌋ − ⌊𝑎⌋ − ⌊𝑏⌋  is 0 or 1.  

Thus, if 𝑝 divides (𝜆𝑛
𝑛

), then 𝑣𝑝 ((𝜆𝑛
𝑛

)) ≤ 𝑅(𝑝) ≤ log𝑝(𝜆𝑛), or 𝑝
𝑣𝑝((𝜆𝑛

𝑛 ))
≤ 𝑝𝑅(𝑝) ≤ 𝜆𝑛         (1.4) 

If 𝜆𝑛 ≥ 𝑝 > ⌊√𝜆𝑛⌋ ,  then  0 ≤ 𝑣𝑝 ((𝜆𝑛
𝑛

)) ≤ 𝑅(𝑝) ≤ 1.                             (1.5) 

Let 𝜋(𝑛) be the number of distinct prime numbers less than or equal to 𝑛. Among the first six 

consecutive natural numbers are three prime numbers 2, 3 and 5. Then, for each additional  

six consecutive natural numbers, at most one can add two prime numbers,  𝑝 ≡ 1 (MOD 6)  

and 𝑝 ≡ 5 (MOD 6). Thus,  𝜋(𝑛) ≤ ⌊
𝑛

3
⌋ + 2 ≤

𝑛

3
+ 2.                      (1.6) 

Let the primordial function 𝑛# = ∏ 𝑝𝑛≥𝑝  where the product is taken over all distinct prime 

numbers 𝑝 less than or equal to the integer 𝑛. 

Since (2𝑛−1
𝑛

) is an integer and all the primes in the range of (𝑛 + 1) ≤  𝑝 ≤ (2𝑛 − 1) 

appear in its numerator but not in its denominator, we have  
(2𝑛−1)#

𝑛# 
≤ (2𝑛−1

𝑛
) =

1

2
((2𝑛−1

𝑛−1
) + (2𝑛−1

𝑛
)) <

1

2
(1 + 1)2𝑛−1 = 22𝑛−2 . 

The proof proceeds by induction on 𝑛. 

If 𝑛 = 3, then 𝑛# = 6 < 8 = 22𝑛−3. 

If 𝑛 = 4, then 𝑛# = 6 < 32 = 22𝑛−3. 

If 𝑛 = (2𝑚 − 1) is odd and  𝑛 ≥ 5 , then 𝑚 ≥ 3 and then  

𝑛# = (2𝑚 − 1)# < 𝑚# · 22𝑚−2 < 22𝑚−3 · 22𝑚−2 = 24𝑚−5 = 22𝑛−3 . 

If 𝑛 = 2𝑚 is even and  𝑛 ≥ 6 , then 𝑚 ≥ 3 and then  

𝑛# = (2𝑚)# = (2𝑚 − 1)# < 𝑚# · 22𝑚−2 < 22𝑚−3 · 22𝑚−2 = 24𝑚−5 < 24𝑚−3 = 22𝑛−3 . 

Thus, when 𝑛 ≥ 3, 𝑛# = ∏ 𝑝𝑛≥𝑝 < 22𝑛−3.                    (1.7) 

From the prime number decomposition, when  𝑛 > ⌊√𝜆𝑛⌋, 

 (𝜆𝑛
𝑛

) = Γ𝜆𝑛≥𝑝˃𝑛 {
(𝜆𝑛)!

𝑛!·((𝜆−1)𝑛)! 
} · Γ𝑛≥𝑝˃⌊√𝜆𝑛⌋ {

(𝜆𝑛)!

𝑛!·((𝜆−1)𝑛)! 
} · Γ⌊√𝜆𝑛⌋≥𝑝 {

(𝜆𝑛)!

𝑛!·((𝜆−1)𝑛)! 
}. 

 When 𝑛 ≤ ⌊√𝜆𝑛⌋,  (𝜆𝑛
𝑛

) ≤ Γ𝜆𝑛≥𝑝˃𝑛 {
(𝜆𝑛)!

𝑛!·((𝜆−1)𝑛)! 
} · Γ⌊√𝜆𝑛⌋≥𝑝 {

(𝜆𝑛)!

𝑛!·((𝜆−1)𝑛)! 
}. 

Thus, (𝜆𝑛
𝑛

) ≤ Γ𝜆𝑛≥𝑝˃𝑛 {
(𝜆𝑛)!

𝑛!·((𝜆−1)𝑛)! 
} · Γ𝑛≥𝑝˃⌊√𝜆𝑛⌋ {

(𝜆𝑛)!

𝑛!·((𝜆−1)𝑛)! 
} · Γ⌊√𝜆𝑛⌋≥𝑝 {

(𝜆𝑛)!

𝑛!·((𝜆−1)𝑛)! 
}  

Γ𝜆𝑛≥𝑝˃𝑛 {
(𝜆𝑛)!

𝑛!·((𝜆−1)𝑛)! 
} = Γ𝜆𝑛≥𝑝˃𝑛 {

(𝜆𝑛)!

((𝜆−1)𝑛)! 
} since all prime numbers in 𝑛! do not appear in the 

range of  𝜆𝑛 ≥ 𝑝 ˃ 𝑛. 

Referring to (1.5) and (1.7), when 𝑛 ≥ (𝜆 − 2) ≥ 13, then ⌊√𝜆𝑛⌋ ≥ 13. 
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Γ𝑛≥𝑝˃⌊√𝜆𝑛⌋ {
(𝜆𝑛)!

𝑛!·((𝜆−1)𝑛)! 
} ≤

∏ 𝑝𝑛≥𝑝

13# 
 ≤

22𝑛−3

2 · 3 · 5 · 7 · 11 · 13 
 = 

22𝑛−4

15015 
 . 

Referring to (1.4) and (1.6),  Γ⌊√𝜆𝑛⌋≥𝑝 {
(𝜆𝑛)!

𝑛!·((𝜆−1)𝑛)! 
}  ≤  (𝜆𝑛)

√𝜆𝑛

3
 +2

.  

Thus, when 𝑛 ≥ (𝜆 − 2) ≥ 13,    (𝜆𝑛
𝑛

) < Γ𝜆𝑛≥𝑝˃𝑛 {
(𝜆𝑛)!

((𝜆−1)𝑛)! 
} ·

22𝑛−4

15015 
· (𝜆𝑛)

√𝜆𝑛

3
 +2 .    (1.8) 

  

2. Lemmas 

 

Lemma 1: If a real number 𝑥 ≥ 3, then  
2(2𝑥−1)

𝑥−1
> (

𝑥

𝑥−1
)

𝑥

 .                      (2.1) 

Proof:  

Let  𝑓1(𝑥) =
2(2𝑥−1)

𝑥−1
 ;  then,  𝑓1

′(𝑥) =
2(𝑥−1)(2𝑥−1)′−2(2𝑥−1)(𝑥−1)′

(𝑥−1)2 =
−2

(𝑥−1)2  ˂ 0. 

Thus, 𝑓1(𝑥) is a strictly decreasing function for 𝑥 > 1. 

Since 𝑓1(3) = 5,  and  lim
𝑥→∞

𝑓1(𝑥) = 4,  for 𝑥 ≥ 3,  we have  5 ≥ 𝑓1(𝑥) =
2(2𝑥−1)

𝑥−1
≥ 4.  

Let  𝑓2(𝑥) = (
𝑥

𝑥−1
)

𝑥

, then  𝑓2
′(𝑥) = ((

𝑥

𝑥−1
)

𝑥

)
′

= (
𝑥

𝑥−1
)

𝑥

· (𝑙𝑛
𝑥

𝑥−1
−  

1

𝑥−1
)          (2.1.1)  

When 𝑥 ≥ 3,   
1

𝑥−1
=  

1

𝑥
+

1

𝑥2
+

1

𝑥3
+

1

𝑥4
+

1

𝑥5
+

1

𝑥6
+ · · ·  

Using the formula:   𝑙𝑛(1 + 𝑥) =  𝑥 −  
𝑥2

2
 + 

𝑥3

3
 −  

𝑥4

4
 + 

𝑥5

5
 −  

𝑥6

6
 + ··· ,  

𝑙𝑛
𝑥

𝑥−1
 =  𝑙𝑛 

1

1+ 
−1
𝑥

 = − 𝑙𝑛 (1 +
−1

𝑥
) =  

1

𝑥
+

1

2𝑥2 +
1

3𝑥3 +
1

4𝑥4 +
1

5𝑥5  + 
1

6𝑥6 + · · ·     

Thus, for  𝑥 ≥ 3,  𝑙𝑛
𝑥

𝑥−1
−  

1

𝑥−1
  ˂ 0 . 

Since (
𝑥

𝑥−1
)

𝑥

is a positive number for 𝑥 ≥ 3,  𝑓2
′(𝑥) = (

𝑥

𝑥−1
)

𝑥

·  (𝑙𝑛
𝑥

𝑥−1
−  

1

𝑥−1
)  ˂ 0 . 

Thus 𝑓2(𝑥) is a strictly decreasing function when 𝑥 ≥ 3. 

Since 𝑓2(3) = 3.375 and lim
𝑥→∞

𝑓2(𝑥) = 𝑒 ≈ 2.718,   

when 𝑥 ≥ 3,  3.375 ≥ 𝑓2(𝑥) = (
𝑥

𝑥−1
)

𝑥

≥ 𝑒.                     (2.1.2) 

Since for 𝑥 ≥ 3,   𝑓1(𝑥) has a lower bound of 4 and 𝑓2(𝑥) has an upper bound of 3.375,   

 𝑓1(𝑥) =
2(2𝑥−1)

𝑥−1
 ˃ 𝑓2(𝑥) = (

𝑥

𝑥−1
)

𝑥
  is proven.                  (2.1.3) 

Lemma 2: For  𝑛 ≥ 2 and  𝜆 ≥ 3 ,  (𝜆𝑛
𝑛

) >
𝜆𝜆𝑛−𝜆+1

𝑛(𝜆−1)
(𝜆−1)𝑛−𝜆+1 .                   (2.2) 

Proof:  

When  𝜆 ≥ 3  and 𝑛 = 2,  (𝜆𝑛
𝑛

) = (2𝜆
2

) =
2𝜆(2𝜆−1)(2𝜆−2)!

2(2𝜆−2)!
= 𝜆(2𝜆 − 1).              (2.2.1) 

𝜆𝜆𝑛−𝜆+1

𝑛(𝜆−1)(𝜆−1)𝑛−𝜆+1
=

𝜆2𝜆−𝜆+1

2(𝜆−1)2(𝜆−1)−𝜆+1
=

𝜆(𝜆−1)

2
· (

𝜆

𝜆−1
)

𝜆

 .                  (2.2.2) 
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Referring to (2.1), when  𝑥 = 𝜆 ≥ 3 ,  we have  
2(2𝜆−1)

𝜆−1
 ˃ (

𝜆

𝜆−1
)

𝜆

 .                  (2.2.3) 

Since  
𝜆(𝜆−1)

2
  is a positive number for 𝜆 ≥ 3 , referring to (2.2.1) and (2.2.2), when 

𝜆(𝜆−1)

2
 

multiplies both sides of (2.2.3), we have  

(
𝜆(𝜆−1)

2
) (

2(2𝜆−1)

𝜆−1
) = 𝜆(2𝜆 − 1) = (𝜆𝑛

𝑛
) > (

𝜆(𝜆−1)

2
) (

𝜆

𝜆−1
)

𝜆

=
𝜆𝜆𝑛−𝜆+1

𝑛(𝜆−1)(𝜆−1)𝑛−𝜆+1
 .   

Thus, (𝜆𝑛
𝑛

) >
𝜆𝜆𝑛−𝜆+1

𝑛(𝜆−1)(𝜆−1)𝑛−𝜆+1
  when  𝜆 ≥ 3  and  𝑛 = 2 .                  (2.2.4) 

By induction on 𝑛, when  𝜆 ≥ 3 ,  if (𝜆𝑛
𝑛

) >
𝜆𝜆𝑛−𝜆+1

𝑛(𝜆−1)(𝜆−1)𝑛−𝜆+1
  is true for 𝑛, then for 𝑛 + 1,  

(𝜆(𝑛+1)
𝑛+1

) = (𝜆𝑛+𝜆
𝑛+1

) =
(𝜆𝑛+𝜆)(𝜆𝑛+𝜆−1)···(𝜆𝑛+2)(𝜆𝑛+1)

(𝜆𝑛+𝜆−𝑛−1)(𝜆𝑛+𝜆−𝑛−2)···(𝜆𝑛−𝑛+1)(𝑛+1)
· (𝜆𝑛

𝑛
)  

(𝜆(𝑛+1)
𝑛+1

) >
(𝜆𝑛+𝜆)(𝜆𝑛+𝜆−1)···(𝜆𝑛+2)(𝜆𝑛+1)

(𝜆𝑛+𝜆−𝑛−1)(𝜆𝑛+𝜆−𝑛−2)···(𝜆𝑛−𝑛+1)(𝑛+1)
·

𝜆𝜆𝑛−𝜆+1

𝑛(𝜆−1)
(𝜆−1)𝑛−𝜆+1  

(𝜆(𝑛+1)
𝑛+1

) >
(𝜆𝑛+𝜆)(𝜆𝑛+𝜆−1)···(𝜆𝑛+2)

(𝜆𝑛+𝜆−𝑛−1)(𝜆𝑛+𝜆−𝑛−2)···(𝜆𝑛−𝑛+1)
·

𝜆𝑛+1

𝑛
·

1

(𝑛+1)
·

𝜆𝜆𝑛−𝜆+1

(𝜆−1)
(𝜆−1)𝑛−𝜆+1   

Notice 
𝜆𝑛+1

𝑛
˃ 𝜆, and  

(𝜆𝑛+𝜆)(𝜆𝑛+𝜆−1)···(𝜆𝑛+2)

(𝜆𝑛+𝜆−𝑛−1)(𝜆𝑛+𝜆−𝑛−2)···(𝜆𝑛−𝑛+1)
> (

𝜆

𝜆−1
)

(𝜆−1)

 

because  
𝜆𝑛+𝜆

𝜆𝑛+𝜆−𝑛−1
=

𝜆

𝜆−1
 ;   

𝜆𝑛+𝜆−1

𝜆𝑛+𝜆−𝑛−2
 ˃ 

𝜆

𝜆−1
 ; ···  

𝜆𝑛+2

𝜆𝑛−𝑛+1
 ˃ 

𝜆

𝜆−1
 .   Thus, 

(𝜆(𝑛+1)
𝑛+1

) >
𝜆𝜆−1

(𝜆−1)(𝜆−1) ·
𝜆

1
·

1

(𝑛+1)
·

𝜆𝜆𝑛−𝜆+1

(𝜆−1)
(𝜆−1)𝑛−𝜆+1 =

𝜆𝜆(𝑛+1)−𝜆+1

(𝑛+1)(𝜆−1)(𝜆−1)(𝑛+1)−𝜆+1
            (2.2.5) 

From (2.2.4) and (2.2.5), we have for 𝑛 ≥ 2  and  𝜆 ≥ 3,  (𝜆𝑛
𝑛

) >
𝜆𝜆𝑛−𝜆+1

𝑛(𝜆−1)
(𝜆−1)𝑛−𝜆+1 

Thus, Lemma 2 is proven.  

 

3. A Prime Number between (𝝀 –  𝟏)𝒏 and 𝝀𝒏 when 𝒏 ≥ (𝝀 –  𝟐) ≥ 𝟏𝟑 
 

Proposition:  

For 𝑛 ≥ 𝜆 – 2 ≥ 13, there exists at least a prime number 𝑝 such that (𝜆 –  1)𝑛 < 𝑝 ≤ 𝜆𝑛.    (3.1) 

Proof:  

Applying (2.2) to (1.8), when 𝑛 ≥ (𝜆 –  2) ≥ 13,  

𝜆𝜆𝑛−𝜆+1

𝑛(𝜆−1)(𝜆−1)𝑛−𝜆+1
< (𝜆𝑛

𝑛
) < Γ𝜆𝑛≥𝑝˃𝑛 {

(𝜆𝑛)!

((𝜆−1)𝑛)! 
} ·

22𝑛−4

15015 
· (𝜆𝑛)

√𝜆𝑛

3
 +2

 . 

Because (𝜆𝑛)
√𝜆𝑛

3
 +2 ˃ 0 and 

22𝑛−4

15015 
 ˃ 0, 
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Γ𝜆𝑛≥𝑝˃𝑛 {
(𝜆𝑛)!

((𝜆−1)𝑛)! 
} >

𝜆𝜆𝑛−𝜆+1

(𝜆𝑛)
√𝜆𝑛

3
 +2

· 
22𝑛−4

15015 
 · 𝑛(𝜆−1)

(𝜆−1)𝑛−𝜆+1
=

60060𝜆2· ((
𝜆−1

4
) ·(

𝜆

𝜆−1
)

𝜆
)

(𝑛−1)

(𝜆𝑛)
√𝜆𝑛

3
+3

 > 0 . 

Referring to (2.1.2), when 𝜆 ≥ 3,  (
𝜆

𝜆−1
)

𝜆
≥ 𝑒 . Thus, when 𝑛 ≥ (𝜆 –  2) ≥ 13 , 

Γ𝜆𝑛≥𝑝˃𝑛 {
(𝜆𝑛)!

((𝜆−1)𝑛)! 
} >

60060𝜆2· ((
𝜆−1

4
) · 𝑒)

(𝑛−1)

(𝜆𝑛)
√𝜆𝑛

3
+3

= 𝑓
3
(𝑛, 𝜆) > 0 .       (3.2) 

Let 𝑥 ≥ 13 and 𝑦 ≥ 15, where 𝑥 and 𝑦 are both real numbers.  

When 𝑥 = 𝑦 – 2,  

𝑓3(𝑥, 𝑦) =
60060𝑦2· ((

𝑦−1
4

) · 𝑒)
(𝑥−1)

(𝑦𝑥)
√𝑦𝑥

3 +3

=
60060(𝑥+2)2· ((

𝑥+1
4

) · 𝑒)
(𝑥−1)

((𝑥+2)·𝑥)
√𝑥·(𝑥+2)

3 +3

  

> 𝑓4(𝑥) =
60060(𝑥+2)2· ((

𝑥+1
4

) · 𝑒)
(𝑥−1)

((𝑥+2)·𝑥)
𝑥+1

3 +3
> 0 .            (3.3) 

𝑓4
′(𝑥) = 𝑓4(𝑥) · ( 

2

𝑥+2
+ 𝑙𝑛 (

𝑥+1

4
) +

4 

3
−

2

𝑥+1
−

1 

3
𝑙𝑛((𝑥 + 2) · 𝑥) −

10 

3𝑥
−

8 

3(𝑥+2)
) = 𝑓4(𝑥) · 𝑓5(𝑥)   

where   𝑓5(𝑥) =
2

𝑥+2
+ 𝑙𝑛 (

𝑥+1

4
) +

4 

3
−

2

𝑥+1
−

1 

3
𝑙𝑛((𝑥 + 2) · 𝑥) −

10 

3𝑥
−

8 

3(𝑥+2)
  

𝑓5
′(𝑥) =  

−2

(𝑥+2)2 +
1 

𝑥+1
+

2

(𝑥+1)2 −
1 

3𝑥
−

1 

3(𝑥+2)
+

10

3𝑥2 +
8

3(𝑥+2)2   

=  
−2𝑥2−4𝑥−2

(𝑥+1)2·(𝑥+2)2 +
2𝑥2+8𝑥+8

(𝑥+1)2·(𝑥+2)2 +
3𝑥2+6𝑥 

3𝑥(𝑥+1)(𝑥+2)
−

𝑥2+3𝑥+2 

3𝑥(𝑥+1)(𝑥+2)
−

𝑥2+𝑥 

3𝑥(𝑥+1)(𝑥+2)
+

10

3𝑥2 +
8

3(𝑥+2)2  

 𝑓5
′(𝑥) =

4𝑥+6

(𝑥+1)2·(𝑥+2)2 +
𝑥2+2𝑥−2 

3𝑥(𝑥+1)(𝑥+2)
+

10

3𝑥2 +
8

3(𝑥+2)2 > 0 when 𝑥 ≥ 3. 

Thus, 𝑓5(𝑥) is a strictly increasing function for 𝑥 ≥ 3.  

When 𝑥 = 13,  𝑓5(𝑥) =
2

13+2
+ 𝑙𝑛 (

13+1

4
) +

4 

3
−

2

13+1
−

𝑙𝑛(15) 

3
−

𝑙𝑛(13) 

3
−

10 

39
−

8 

45
≈ 0.384 > 0.  

Thus, for 𝑥 ≥ 13,   𝑓5(𝑥) > 0.  Then,  𝑓4
′(𝑥) = 𝑓4(𝑥) · 𝑓5(𝑥) > 0, and 𝑓4(𝑥) is a strictly 

increasing function for  𝑥 ≥ 13.  

Referring to (3.3), as long as 𝑥 = (𝑦 – 2) ≥ 13,  𝑓3(𝑥, 𝑦) is an increasing function respect to 

both 𝑥 and 𝑦, because 𝑓3(𝑥, 𝑦) > 𝑓4(𝑥).  

Thus, when  𝑥 = (𝑦 – 2) ≥ 13,  𝑓3(𝑥 + 1, 𝑦 + 1) > 𝑓3(𝑥, 𝑦).          (3.4) 

∂𝑓3(𝑥,𝑦)

∂𝑥
= 𝑓3(𝑥, 𝑦) · ( 𝑙𝑛 (

𝑦−1

4
) + 1 − √𝑦

6√𝑥
· 𝑙𝑛(𝑦𝑥) − √𝑦

3√𝑥
−

3 

𝑥
) = 𝑓3(𝑥, 𝑦) · 𝑓6(𝑥, 𝑦)      (3.5) 

where 𝑓6(𝑥, 𝑦) = 𝑙𝑛 (
𝑦−1

4
) + 1 − √𝑦

6√𝑥
· 𝑙𝑛(𝑦𝑥) − √𝑦

3√𝑥
−

3 

𝑥
 

When  𝑥 = 𝑦 – 2, then 𝑓6(𝑥, 𝑦) = 𝑓7(𝑥) = 𝑙𝑛 (
𝑥+1

4
) + 1 −

√𝑥+2

6√𝑥
· (𝑙𝑛(𝑥 + 2) + 𝑙𝑛(𝑥) + 2) −  

3 

𝑥
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𝑓7
′(𝑥) =

1 

𝑥+1
−

√𝑥+2

6√𝑥
· (

1

𝑥+2
+

1

𝑥
) +

𝑙𝑛(𝑥+2)+𝑙𝑛(𝑥)+2

6𝑥√𝑥(𝑥+2)
+

3 

𝑥2 = ( 
1 

𝑥+1
−

1

3√𝑥(𝑥+2)
) +

𝑙𝑛(𝑥+2)+𝑙𝑛(𝑥)

6𝑥√𝑥(𝑥+2)
+

3 

𝑥2 . 

1 

𝑥+1
−

1

3√𝑥(𝑥+2)
=

3√𝑥(𝑥+2)−(𝑥+1)

3(𝑥+1)√𝑥(𝑥+2)
· 

3√𝑥(𝑥+2)+(𝑥+1)

3√𝑥(𝑥+2)+(𝑥+1)
=

8𝑥2+16𝑥−1

9(𝑥+1)√𝑥(𝑥+2)(√𝑥(𝑥+2)+(𝑥+1))
 > 0 when 𝑥 > 1. 

When  𝑥 ≥ 3,   𝑓7
′(𝑥) = ( 

1 

𝑥+1
−

1

3√𝑥(𝑥+2)
) +

𝑙𝑛(𝑥+2)+𝑙𝑛(𝑥)

6𝑥√𝑥(𝑥+2)
+

3 

𝑥2 > 0, then  𝑓7(𝑥) is a strictly 

increasing function. 

When 𝑥 = (𝑦 – 2) ≥ 3, because 𝑓6(𝑥, 𝑦) = 𝑓7(𝑥),  𝑓6(𝑥, 𝑦) is an increasing function respect to 

both 𝑥 and 𝑦.                 (3.6) 

∂𝑓6
(𝑥,𝑦)

∂𝑥
= √𝑦

12𝑥√𝑥
· 𝑙𝑛(𝑦𝑥) +

3 

𝑥2
 > 0  when  𝑥 ≥ 3 and 𝑦 ≥ 3.   

Thus, when 𝑥 = (𝑦 – 2) ≥ 3,   𝑓6(𝑥, 𝑦) is an increasing function respect to 𝑥.         (3.7) 

When 𝑥 = (𝑦 – 2) = 13,  𝑓6(𝑥, 𝑦) = 𝑙𝑛 (
15−1

4
) + 1 −

√15

6√13
· 𝑙𝑛(195) −

√15

3√13
−

3 

13
 ≈ 0.720 > 0.  

Referring to (3.6), when  𝑥 = (𝑦 – 2) ≥ 13,  𝑓6(𝑥, 𝑦) > 0.   

Referring to (3.7), when  𝑥 ≥ (𝑦 – 2) ≥ 13,  𝑓6(𝑥, 𝑦) > 0.   

Referring to (3.5), when  𝑥 ≥ (𝑦 – 2) ≥ 13, since 𝑓3(𝑥, 𝑦) > 0 and 𝑓6(𝑥, 𝑦) > 0,  
∂𝑓3(𝑥,𝑦)

∂𝑥
> 0,  

and 𝑓3(𝑥, 𝑦) is an increasing function respect to 𝑥.    

Thus, when  𝑥 ≥ (𝑦 – 2) = 13,  𝑓3(𝑥 + 1, 𝑦) > 𝑓3(𝑥, 𝑦).           (3.8) 

When 𝑥 = (𝑦 – 2) = 13, 

 𝑓3(𝑥, 𝑦) =
60060𝑦2· ((

𝑦−1

4
) · 𝑒)

(𝑥−1)

(𝑥𝑦)
√𝑥𝑦

3
+3

=
60060 ·152· ((

15−1

4
) · 𝑒)

(13−1)

(15 · 13)
√15 · 13

3
+3

≈
7.432E+18

3.386E+17
 > 1.  

Referring to (3.4), when 𝑥 = (𝑦 – 2) ≥ 13,   𝑓3(𝑥, 𝑦) > 1. 

Referring to (3.8), when 𝑥 ≥ (𝑦 – 2) ≥ 13,   𝑓3(𝑥, 𝑦) > 1. 

Let 𝑥 = 𝑛 and 𝑦 = 𝜆, then when  𝑛 ≥ (𝜆 – 2) ≥ 13,  𝑓3(𝑛, 𝜆) > 1.          (3.9) 

Referring to (3.2), when 𝑛 ≥ 𝜆– 2 ≥ 13,   Γ𝜆𝑛≥𝑝˃𝑛 {
(𝜆𝑛)!

((𝜆−1)𝑛)! 
} > 𝑓

3
(𝑛, 𝜆) > 1. 

Let integer 𝑚 ≥ 𝑛. When 𝑚 ≥ 𝑛 ≥ 𝜆– 2 ≥ 13, Γ𝜆𝑚≥𝑝˃𝑚 {
(𝜆𝑚)!

((𝜆−1)𝑚)! 
} > 𝑓

3
(𝑚 , 𝜆) > 1.      (3.10) 

Referring to (1.8), when 𝑛 ≥ (𝜆 –  2) ≥ 13,  if there is a prime number 𝑝 in Γ𝜆𝑛≥𝑝˃𝑛 {
(𝜆𝑛)!

((𝜆−1)𝑛)! 
}, 

then  𝑝 ≥ 𝑛 + 1 = √(𝑛 + 2)𝑛 + 1 > √𝜆𝑛 . From (1.5),  0 ≤ 𝑣𝑝 (Γ𝜆𝑛≥𝑝˃𝑛 {
(𝜆𝑛)!

((𝜆−1)𝑛)! 
}) ≤ 𝑅(𝑝) ≤ 1. 

Thus, when 𝑚 ≥ 𝑛 ≥ 𝜆– 2 ≥ 13,  every distinct prime number in Γ𝜆𝑛≥𝑝˃𝑛{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
} and in 

Γ𝜆𝑚≥𝑝˃𝑚 {
(𝜆𝑚)!

((𝜆−1)𝑚)! 
} has a power of 0 or 1.  
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Γ𝜆𝑚≥𝑝˃𝑚 {
(𝜆𝑚)!

((𝜆−1)𝑚)! 
} =   

= Γ𝜆𝑚≥𝑝˃(𝜆−1)𝑚 {
(𝜆𝑚)!

((𝜆−1)𝑚)! 
} ·  ∏ (Γ(𝜆−1)𝑚

𝑖
≥𝑝˃

𝜆𝑚

𝑖+1

{
(𝜆𝑚)!

((𝜆−1)𝑚)! 
} · Γ𝜆𝑚

𝑖+1
≥𝑝˃

(𝜆−1)𝑚

𝑖+1

{
(𝜆𝑚)!

((𝜆−1)𝑚)! 
})𝑖=𝜆−2

𝑖=1    

In ∏ (Γ(𝜆−1)𝑚

𝑖
≥𝑝˃

𝜆𝑚

𝑖+1

{
(𝜆𝑚)!

((𝜆−1)𝑚)! 
})𝑖=𝜆−2

𝑖=1 ,  for every distinct prime number 𝑝 in these ranges, the  

numerator (𝜆𝑚)! has the product of 𝑝 · 2𝑝 · 3𝑝 ··· 𝑖𝑝 = (𝑖)! · 𝑝𝑖. The denominator ((𝜆 − 1)𝑚)!   

also has the same product of (𝑖)! · 𝑝𝑖. Thus, they cancel each other in 
(𝜆𝑚)!

((𝜆−1)𝑚)! 
 . 

Referring to (1.2),  ∏ (Γ(𝜆−1)𝑚

𝑖
≥𝑝˃

𝜆𝑚

𝑖+1

{
(𝜆𝑚)!

((𝜆−1)𝑚)! 
})𝑖=𝜆−2

𝑖=1 = 1. 

Thus, Γ𝜆𝑚≥𝑝˃𝑚 {
(𝜆𝑚)!

((𝜆−1)𝑚)! 
} = Γ𝜆𝑚≥𝑝˃(𝜆−1)𝑚 {

(𝜆𝑚)!

((𝜆−1)𝑚)! 
} · ∏ (Γ𝜆𝑚

𝑖+1
≥𝑝˃

(𝜆−1)𝑚

𝑖+1

{
(𝜆𝑚)!

((𝜆−1)𝑚)! 
})𝑖=𝜆−2

𝑖=1   

Γ𝜆𝑚≥𝑝˃𝑚 {
(𝜆𝑚)!

((𝜆−1)𝑚)! 
} = ∏ (Γ𝜆𝑚

𝑖
≥𝑝˃

(𝜆−1)𝑚

𝑖

{
(𝜆𝑚)!

((𝜆−1)𝑚)! 
})𝑖=𝜆−1

𝑖=1 .                   (3.11) 

∏ (Γ𝜆𝑚

𝑖
≥𝑝˃

(𝜆−1)𝑚

𝑖

{
(𝜆𝑚)!

((𝜆−1)𝑚)! 
})𝑖=𝜆−1

𝑖=1  is the product of (𝜆 –1) sectors from 𝑖 = 1 to 𝑖 = (𝜆 – 1).  

Each of these sectors is the prime number factorization of the product of the consecutive 

integers between  
(𝜆 –1)𝑚

𝑖
  and  

𝜆𝑚

𝑖
 .  

From (3.10) and (3.11), when  𝑚 ≥ 𝑛 ≥ 𝜆 – 2 ≥ 13,   ∏ (Γ𝜆𝑚

𝑖
≥𝑝˃

(𝜆−1)𝑚

𝑖

{
(𝜆𝑚)!

((𝜆−1)𝑚)! 
})𝑖=𝜆−1

𝑖=1 > 1. 

Referring to (1.1), Γ𝜆𝑚

𝑖
≥𝑝˃

(𝜆−1)𝑚

𝑖

{
(𝜆𝑚)!

((𝜆−1)𝑚)! 
} ≥ 1 . Thus, when 𝑚 ≥ 𝑛 ≥ 𝜆– 2 ≥ 13,  at least one 

of the sectors in ∏ (Γ𝜆𝑚

𝑖
≥𝑝˃

(𝜆−1)𝑚

𝑖

{
(𝜆𝑚)!

((𝜆−1)𝑚)! 
})𝑖=𝜆−1

𝑖=1  is greater than one.  

Let  Γ𝜆𝑚

𝑖
≥𝑝˃

(𝜆−1)𝑚

𝑖

{
(𝜆𝑚)!

((𝜆−1)𝑚)! 
} > 1  be such a sector and let 𝑚 = 𝑛𝑖  where (𝜆 – 1) ≥ 𝑖 ≥ 1.  

Thus, when  𝑚 = 𝑛𝑖 ≥ 𝑛 ≥ 𝜆 – 2 ≥ 13,   

Γ𝜆𝑚

𝑖
≥𝑝˃

(𝜆−1)𝑚

𝑖

{
(𝜆𝑚)!

((𝜆−1)𝑚)! 
} = Γ𝜆𝑛𝑖

𝑖
≥𝑝˃

(𝜆−1)𝑛𝑖

𝑖

{
(𝜆𝑛𝑖)!

((𝜆−1)𝑛𝑖)! 
} = Γ𝜆𝑛≥𝑝˃(𝜆−1)𝑛 {

(𝜆𝑛𝑖)!

((𝜆−1)𝑛𝑖)! 
} > 1.     (3.12) 

(𝜆𝑛𝑖)!

((𝜆−1)𝑛𝑖)! 
=

(𝝀𝒏𝒊)·(𝜆𝑛𝑖−1) ···(𝝀𝒏𝒊−𝒊) ···(𝝀𝒏𝒊−𝟐𝒊)···(𝝀𝒏𝒊−(𝒏−𝟏)𝒊) ··· (𝜆𝑛𝑖−𝑛𝑖+1)·((𝜆−1)𝑛𝑖)!

 ((𝜆−1)𝑛𝑖)!
   

(𝜆𝑛𝑖)!

((𝜆−1)𝑛𝑖)! 
=

𝒊·(𝝀𝒏)·(𝜆𝑛𝑖−1) ···𝒊·(𝝀𝒏−𝟏) ···𝒊·(𝝀𝒏−𝟐)···𝒊·(𝝀𝒏−𝒏+𝟏) ··· (𝜆𝑛𝑖−𝑛𝑖+1)·((𝜆−1)𝑛𝑖)!

 ((𝜆−1)𝑛𝑖)!
  

Thus, 
(𝜆𝑛𝑖)!

((𝜆−1)𝑛𝑖)! 
 contains all the factors of (𝜆𝑛), (𝜆𝑛 – 1), (𝜆𝑛 – 2),… (𝜆𝑛 – 𝑛 + 1) in 

(𝜆𝑛)!

((𝜆−1)𝑛)! 
 .  

These factors make up all the consecutive integers in the range of  𝜆𝑛 ≥ 𝑝 > (𝜆 – 1)𝑛  in  

(𝜆𝑛)!

((𝜆−1)𝑛)! 
 . Thus, 

(𝜆𝑛𝑖)!

((𝜆−1)𝑛𝑖)! 
 contains 

(𝜆𝑛)!

((𝜆−1)𝑛)! 
 .   

Referring to the definition, all prime numbers in 
(𝜆𝑛𝑖)!

((𝜆−1)𝑛𝑖)!
 in the ranges of 𝜆𝑛𝑖 ≥ 𝑝 > 𝜆𝑛  and  
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(𝜆 – 1)𝑛 > 𝑝 do not contribute to Γ𝜆𝑛≥𝑝˃(𝜆−1)𝑛 {
(𝜆𝑛𝑖)!

((𝜆−1)𝑛𝑖)!
}, nor does 𝑖 for (𝜆 – 1) ≥ 𝑖 ≥ 1. Only 

the prime numbers in the prime factorization of  
(𝜆𝑛𝑖)!

((𝜆−1)𝑛𝑖)!
 in the range of  𝜆𝑛 ≥ 𝑝 > (𝜆 – 1)𝑛   

present in Γ𝜆𝑛≥𝑝˃(𝜆−1)𝑛 {
(𝜆𝑛𝑖)!

((𝜆−1)𝑛𝑖)!
}. Since  

(𝜆𝑛)!

((𝜆−1)𝑛)! 
 is the product of all the consecutive  

integers in this range, Γ𝜆𝑛≥𝑝˃(𝜆−1)𝑛 {
(𝜆𝑛𝑖)!

((𝜆−1)𝑛𝑖)!
} = Γ𝜆𝑛≥𝑝˃(𝜆−1)𝑛 {

(𝜆𝑛)!

((𝜆−1)𝑛)! 
} . 

Referring to (3.12), when  𝑚 = 𝑛𝑖 ≥ 𝑛 ≥ 𝜆 – 2 ≥ 13,  Γ𝜆𝑛≥𝑝˃(𝜆−1)𝑛 {
(𝜆𝑛𝑖)!

((𝜆−1)𝑛𝑖)! 
} > 1. Thus, 

when  𝑛 ≥ 𝜆 – 2 ≥ 13,  Γ𝜆𝑛≥𝑝˃(𝜆−1)𝑛 {
(𝜆𝑛)!

((𝜆−1)𝑛)! 
} > 1.  Referring to (1.3), there exists at least a  

prime number 𝑝 such that (𝜆 –  1)𝑛 < 𝑝 ≤ 𝜆𝑛.  

Thus, Proposition (3.1) is proven. It becomes a theorem: Theorem (3.1).  

 

4. Proof of Legendre’s Conjecture 

 
Legendre’s conjecture states that there is a prime number between 𝑛2 and (𝑛 + 1)2  for every 
positive integer 𝑛.                           (4.1) 

Proof: 

Referring to Theorem (3.1), for integers  𝑗 ≥ 𝑘 − 2 ≥ 13, there exists at least a prime number 𝑝 

such that  𝑗(𝑘 −  1) < 𝑝 ≤ 𝑗𝑘.                         (4.2) 

When  𝑘 = 𝑗 +  1 ≥ 15,  then  𝑗 = 𝑘 − 1 ≥ 14. 

Applying  𝑘 = 𝑗 + 1  into (4.2), then  𝑗2 < 𝑝 ≤ 𝑗(𝑗 + 1) < (𝑗 + 1)2 . 

Let  𝑛 = 𝑗 ≥ 14,  then we have  𝑛2 < 𝑝 < (𝑛 + 1)2.                      (4.3) 

For 1 ≤ 𝑛 ≤ 13 ,  we have a table, Table 1, that shows Legendre’s conjecture valid.                (4.4) 

Table 1: For 1 ≤ 𝑛 ≤ 13,  there is a prime number between 𝑛2 and (𝑛 + 1)2. 

𝑛 1 2 3 4 5 6 7 8 9 10 11 12 13 

𝑛2 1 4 9 16 25 36 49 64 81 100 121 144 169 

𝑝 3 5 11 19 29 41 53 67 83 103 127 149 173 

(𝑛 + 1)2 4 9 16 25 36 49 64 81 100 121 144 169 196 

Combining (4.3) and (4.4), we have proven Legendre’s conjecture. 

Extension of Legendre’s conjecture 

There are at least two prime numbers, 𝑝𝑛 and 𝑝𝑚 , between 𝑗2 and (𝑗 + 1)2  for every positive 

integer 𝑗 such that  𝑗2 < 𝑝𝑛 ≤ 𝑗(𝑗 + 1) and 𝑗(𝑗 + 1) < 𝑝
𝑚

< (𝑗 + 1)2 where 𝑝𝑛 is the 𝑛𝑡ℎ prime 

number, 𝑝𝑚 is the 𝑚𝑡ℎ prime number, and  𝑚 ≥ 𝑛 + 1 .                       (4.5) 

Proof: 

Referring to Theorem (3.1), for integers  𝑗 ≥ 𝑘 − 2 ≥ 13, there exists at least a prime number 𝑝 
such that  𝑗(𝑘 − 1) < 𝑝 ≤ 𝑗𝑘. 
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When 𝑘 − 1 = 𝑗 ≥ 14 , then  𝑗(𝑘 −  1) = 𝑗2 < 𝑝𝑛 ≤  𝑗𝑘 = 𝑗(𝑗 + 1) . Thus, there is at least a  

prime number 𝑝𝑛  such that  𝑗2 < 𝑝𝑛 ≤ 𝑗(𝑗 + 1)  when  𝑗 =  𝑘 − 1 ≥  14. 

When  𝑗 = 𝑘 − 2 ≥ 14 , then  𝑘 = 𝑗 + 2 .   

 𝑗(𝑘 −  1) = 𝑗(𝑗 + 1) < 𝑝
𝑚

≤ 𝑗𝑘 = 𝑗(𝑗 + 2) < (𝑗 + 1) 2. Thus, there is at least another prime 

number 𝑝𝑚 such that  𝑗(𝑗 + 1) < 𝑝
𝑚

< (𝑗 + 1) 2 when  𝑗 = 𝑘 − 2 ≥ 14.  

Thus, when 𝑗 ≥ 14, there are at least two prime numbers  𝑝𝑛 and 𝑝𝑚 between 𝑗2 and (𝑗 + 1)2 

such that  𝑗2 < 𝑝𝑛 ≤ 𝑗(𝑗 + 1) <  𝑝
𝑚

< (𝑗 + 1) 2 where 𝑚 ≥ 𝑛 + 1 for 𝑝𝑚 > 𝑝𝑛 .       (4.6) 

For 1 ≤  𝑗 ≤ 13,  we have a table, Table 2, that shows that (4.5) is valid.                     (4.7) 

Table 2: For 1 ≤  𝑗 ≤ 18,  there are 2 primes such that  𝑗2 < 𝑝𝑛 ≤  𝑗(𝑗 + 1) < 𝑝𝑚 < (𝑗 + 1)2. 

𝑗 1 2 3 4 5 6 7 8 9 10 11 12 13 

𝑗2 1 4 9 16 25 36 49 64 81 100 121 144 169 

𝑝𝑛 2 5 11 19 29 41 53 67 83 103 127 149 173 

𝑗(𝑗+1) 2 6 12 20 30 42 56 72 90 110 132 156 182 

𝑝𝑚 3 7 13 23 31 43 59 73 97 113 137 163 191 

(𝑗 + 1)2 4 9 16 25 36 49 64 81 100 121 144 169 196 

Combining (4.6) and (4.7), we have proven (4.5). It becomes a theorem: Theorem (4.5). 

 

5. The Proofs of Three Related Conjectures 
 

Oppermann’s conjecture states that for every integer 𝑥 > 1, there is at least one prime 

number between 𝑥(𝑥 − 1) and 𝑥2, and at least another prime number between 𝑥2 and  

𝑥(𝑥 + 1).                (5.1) 

Proof: 

Theorem (4.5) states that there are at least two prime numbers, 𝑝𝑛 and 𝑝𝑚 , between 𝑗2 and  

(𝑗 + 1)2  for every positive integer 𝑗 such that  𝑗2 < 𝑝𝑛 ≤ 𝑗(𝑗 + 1) < 𝑝
𝑚

< (𝑗 + 1) 2 where 

𝑚 ≥ 𝑛 + 1 for  𝑝𝑚 > 𝑝𝑛 .  

𝑗(𝑗 + 1) is a composite number except  𝑗 = 1. Since  𝑗2 < 𝑝𝑛 ≤ 𝑗(𝑗 + 1) is valid for every  

positive integer 𝑗, when we replace 𝑗 with  𝑗 + 1, we have (𝑗 + 1)2 < 𝑝𝑣 < (𝑗 + 1)(𝑗 + 2).   

Thus, we have  𝑗(𝑗 + 1) < 𝑝
𝑚

< (𝑗 + 1) 2 < 𝑝
𝑣

< (𝑗 + 1)(𝑗 + 2).                     (5.2) 

When  𝑥 > 1,  then  (𝑥 – 1) ≥ 1.  Substituting 𝑗 with (𝑥 – 1) in (5.2), we have 

𝑥(𝑥 – 1) < 𝑝
𝑚

< 𝑥2 < 𝑝
𝑣

< 𝑥(𝑥 + 1)                        (5.3) 

Thus, we have proven Oppermann’s conjecture. 

Brocard's conjecture states that there are at least 4 prime numbers between (𝑝𝑛)2 and 

(𝑝𝑛+1)2, where 𝑝𝑛 is the 𝑛𝑡ℎ prime number, for every 𝑛 > 1.                                  (5.4) 

Proof: 
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Theorem (4.5) states that there are at least two prime numbers, 𝑝𝑛 and 𝑝𝑚 , between 𝑗2 and  

(𝑗 + 1)2  such that  𝑗2 < 𝑝𝑛 ≤ 𝑗(𝑗 + 1)  and  𝑗(𝑗 + 1) < 𝑝
𝑚

< (𝑗 + 1) 2 for every positive  

integer 𝑗 , where  𝑚 ≥ 𝑛 + 1  for  𝑝𝑚 > 𝑝𝑛 . When 𝑗 > 1,  𝑗(𝑗 + 1) is a composite number. Then 

Theorem (4.5) can be written as  𝑗2 < 𝑝𝑛 < 𝑗(𝑗 + 1)   and  𝑗(𝑗 + 1) < 𝑝
𝑚

< (𝑗 + 1) 2. 

In the prime number series:  𝑝1 = 2,  𝑝2 = 3,  𝑝3 = 5,  𝑝4 = 7,  𝑝5 = 11, ... Except 𝑝1, all prime 
numbers are odd numbers. Their intervals are 2 or more. Thus, when  𝑛 > 1, (𝑝𝑛+1 − 𝑝𝑛) ≥ 2. 
Thus, we have  𝑝𝑛 < (𝑝𝑛 + 1) < (𝑝𝑛 + 2) ≤  𝑝𝑛+1 when  𝑛 > 1.            (5.5) 

Applying Theorem (4.5) to (5.5), when 𝑛 > 1,  we have at least two prime numbers  𝑝
𝑚1

 , and  

𝑝𝑚2 in between  (𝑝𝑛)2 and (𝑝𝑛 + 1)2 such that (𝑝𝑛)2 < 𝑝𝑚1 <  𝑝𝑛( 𝑝𝑛 + 1) <  𝑝𝑚2 <  ( 𝑝𝑛 + 1)2, 

and at least two more prime numbers  𝑝𝑚3 ,  𝑝𝑚4 in between  (𝑝𝑛 + 1)2 and  (𝑝𝑛 + 2)2 such 

that ( 𝑝𝑛 + 1)2 < 𝑝𝑚3 < ( 𝑝𝑛 + 1)( 𝑝𝑛 + 2) < 𝑝𝑚4 < (𝑝𝑛 + 2)2 ≤ ( 𝑝𝑛+1)2.  

Thus, there are at least 4 prime numbers between (𝑝𝑛)2 and (𝑝𝑛+1)2 for  𝑛 > 1 such that 

(𝑝𝑛)2 < 𝑝𝑚1 <  𝑝𝑛( 𝑝𝑛 + 1) < 𝑝𝑚2 < ( 𝑝𝑛 + 1)2 < 𝑝𝑚3 < ( 𝑝𝑛 + 1)( 𝑝𝑛 + 2) < 𝑝𝑚4 < ( 𝑝𝑛+1)2  

    (5.6) 
Thus, Brocard's conjecture is proven. 
 
Andrica’s conjecture is named after Dorin Andrica. It is a conjecture regarding the gaps 

between prime numbers. The conjecture states that the inequality √ 𝑝𝑛+1 − √ 𝑝𝑛 < 1  holds  

for all 𝑛 where  𝑝𝑛 is the 𝑛𝑡ℎ prime number. If  𝑔𝑛 =  𝑝𝑛+1 − 𝑝𝑛  denotes the 𝑛𝑡ℎ prime gap,  

then Andrica’s conjecture can also be rewritten as  𝑔𝑛 < 2√ 𝑝𝑛 + 1 .                    (5.7)  

Proof: 

From Theorem (4.5), for every positive integer 𝑗, there are at least two prime numbers 𝑝𝑛  

and 𝑝𝑚 between 𝑗2 and (𝑗 + 1)2 such that  𝑗2 < 𝑝𝑛 ≤ 𝑗(𝑗 + 1) < 𝑝
𝑚

< (𝑗 + 1) 2 where 

𝑚 ≥ 𝑛 + 1  for  𝑝𝑚 > 𝑝𝑛 . Since  𝑚 ≥ 𝑛 + 1 , we have  𝑝𝑚 ≥ 𝑝𝑛+1 .   

Thus, we have 𝑗2 < 𝑝𝑛                         (5.8) 

and  𝑝𝑛+1 ≤ 𝑝𝑚 < (𝑗 + 1)2 .                          (5.9) 

Since 𝑗, 𝑝𝑛 , 𝑝𝑛+1, and (𝑗 + 1) are positive integers,  

𝑗 < √ 𝑝𝑛                          (5.10) 

and  √ 𝑝𝑛+1 < 𝑗 + 1 .                        (5.11)  

Applying (5.10) to (5.11), we have √ 𝑝𝑛+1 < √ 𝑝𝑛 + 1 .                   (5.12) 

Thus, √ 𝑝𝑛+1 − √ 𝑝𝑛 < 1 holds for all 𝑛 since in Theorem (4.5), 𝑗 holds for all positive integers. 

Using the prime gap to prove this conjecture, from (5.8) and (5.9), we have 

 𝑔𝑛 =  𝑝𝑛+1 − 𝑝𝑛 < (𝑗 + 1)2 − 𝑗2 = 2𝑗 + 1 .  From (5.10),  𝑗 < √ 𝑝𝑛 . 

Thus,  𝑔𝑛 =  𝑝𝑛+1 − 𝑝𝑛 < 2√ 𝑝𝑛 + 1 .                     (5.13) 

Thus, Andrica’s conjecture is proven.   
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