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Abstract

This paper is an improvement on my previous work and proves the Legendre, Oppermann,
Brocard, and Andrica conjectures using basic analytical methods.

Keywords
Legendre conjecture, Oppermann conjecture, Brocard conjecture, Andrica conjecture
prime gaps, prime number distribution

1. Introduction

In this paper, we will use basic algebraic methods to analyze the binomial coefficients (’Z‘)
where A and n are positive integers, to prove the Legendre conjecture, the Oppermann
conjecture, the Brocard conjecture, and the Andrica conjecture [1], [2], [3], [4], [5].
Definition: Fazp>b{(/1:)} denotes the prime number factorization operator of the integer

expression (’Z‘) It is the product of the prime numbers in the decomposition of (’11?) in the
range of a = p > b . Inthis operator, p is a prime number, a and b are real numbers, and
a=>p>b=1.

It has some properties:
It is always true that Fa2p>b{(/1:)} > 1. (1.1)

If there is no prime number in (A:) within the range of a > p > b, then Fa2p>b{(/1:)} =1,

or vice versa, if Fa2p>b{(l:)} = 1, then there is no prime number in (’Zl) within the range of
a=p>b. (1.2)
For example, when A = 5and n = 4, F162p>10{(240)} =13%.11°% = 1. No prime number 13 or
11isin (240) in the range of 16 > p > 10.

If there is at least one prime number in (’111”) in the range of a > p > b, then Fa2p>b{()l7:l)} >1,
or vice versa, if Fa2p>b{(’1;)} > 1, then there is at least one prime number in (’:1) within the
range of a > p > b. (1.3)
For example, when A = 5and n = 4, F182p>16{(240)} =17 > 1. Prime number 17 is in (240)
within the range of 18 > p > 16.
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Let v,(n) be the p-adic valuation of n, the exponent of the highest power of p that divides n.

We define R(p) by the inequalities pR® < An < pR®P)*1, and determine v, (n) of (’1").
A-Dn

v () = v (D) = 5 (A= DD = vy () = EED (1] - |22 - |5]) < Raw)

because for any real numbers a and b, the expression of |a + b| — |a] — |b] isOor 1.

Thus, if p divides ( ™), then v, ((ln)) < R(p) < log,(an), orp’ (( )) < pR® < An (1.4)
ifAn 2 p > |Van|, then 0 < v, (('")) < R@) < 1. (1.5)

Let T (n) be the number of distinct prime numbers less than or equal to n. Among the first six
consecutive natural numbers are three prime numbers 2, 3 and 5. Then, for each additional
six consecutive natural numbers, at most one can add two prime numbers, p = 1 (MOD 6)

and p = 5 (MOD 6). Thus, 7T(n) < EJ +2< g + 2. (1.6)

Let the primordial function n# = anpp where the product is taken over all distinct prime
numbers p less than or equal to the integer n.

Since (Znn_l) is an integer and all the primesintherangeof (n+ 1)< p<(2n—1)
appear in its numerator but not in its denominator, we have

(2n 1)# (Zn 1) _ ((Zn 1)+(2n 1)) <L (1+1)2n 1 p2n-2

The proof proceeds by induction on n.

Ifn =3, thenn#t =6 < 8 = 2273,

If n =4, thenn# = 6 < 32 = 2273,

lfn=(2m—1)isoddand n =5, thenm = 3 and then

n# = 2m — D# < m# - 22M72 < 22m=3 . p2m=2 — p4m=5 _ p2n-3
Ifn=2misevenand n = 6,thenm = 3 and then

n# = 2m)# = 2m — 1D# < m#t - 22M72 < 22M=3 . 22m=2 — 24m=5 L p4m=3 _ 2n-3
Thus, whenn = 3, n# = [[,,5, p < 2273, (1.7)

From the prime number decomposition, when n > [\/ﬁ],
() = Tanapon (et} Do i) Tt (i
n/ T fanzp>n -y e [Van] L a-nn)! Nvanlzp (o (A-Dn)!

n (an)! (An)!
Whenn < [Vin], (%) < Tinzpsn {n!~((/1—1)n)!} Tivafzp {n!~((/1—1)n)! }
n (An)! } ) { (An)! } { (An)! }
Thus, (%) < Dinspsn {n!-((l—l)n)! LnspsWan) G ) VAL Gaicamnymy
T { an)! } N { an)!
/1n>p>n nl- ((A 1)n)| - /1n2p>n ((A—l)n)'
range of An > p >n.

Referring to (1.5) and (1.7), whenn > (1 — 2) = 13, then [Vln] >13

} since all prime numbers in n! do not appear in the
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(An)! anp 1% 22n-3 _ 22n—4
Lzps|vam] {n!-((/l—l)n)! } < =

13%# ~— 2-3-5.7-11-13 15015
. (An)! } Vin o
Referring to (1.4) and (1.6), F[x/ﬁjzp {—n!((/l—l)n)! < (An)3 ™.
_ an (an)! } o T,
Thus, whenn > (A =2) 213, (™) < Tjpapon {(( o e O (1.8)
2. Lemmas
_ X
Lemma 1: If a real number x > 3, then Z(Zi D > (ﬁ) . (2.1)
Proof:
2(2x 1) 2(x—1)(2x—1) —22x—1)(x—1)’ -2
Let fi(x) = ; then, f,'(x) = iy =z <0
Thus, fi(x)isa strlctly decreasing function for x > 1.
Since f;(3) =5, and hm fl(x) =4, forx = 3, wehave 5> f;(x) = z(lel) > 4,
X x \* 1
Let f,() = (), then £;/(x) = ( ) ) (x ) (Z"E_ =) (2.1.1)
1 1 1
Whenx =3, — = —+—+—+ + + i
x—1 x  x2  x3
6
Using the formula: In(1+x) = x — 7 + ? - T + ? - x— + -
1 -1 1 1 1 1
ln—1 = In 1+71 = —ln(1+—) = ;+2_xz+§+4_x4+5x5 + 6x6+
Thus, for x = 3, ln—l— %1 <0.
X
Since (ﬁ) is a positive number for x > 3, £, (x) = (ﬁ) . (lnﬁ - ﬁ) <0.
Thus f5(x) is a strictly decreasing function when x > 3.
Since f,(3) = 3.375 and lim fz(x) =e ~ 2.718,
X
when x > 3, 3.375 = f,(x) = (;) > e. (2.1.2)
Since for x = 3, f;(x) has alower bound of 4 and f,(x) has an upper bound of 3.375,
2(2 1 X
filx) =—= ( x—1) > fo(x )—( ) is proven. (2.1.3)
in Aln—/1+1
Lemma2:For n > 2and 4 =3, (n) > n(A—1)- Dn=a+1 - (2.2)
Proof:
_ Any _ (22 _ 21(2A-1)(2A-2)! _
When 123 andn=2, (") = (%) = TR (2.2.1)
An—-2A+1 22—-A+1 _ A
2 MG p) " =’1(’11).(L) (2.2.2)
n(A—l)(A 1n—-A+1 2(/1_1)2(1 1)-A+1 2 1-1
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_ yl
Referring to (2.1), when x = 1 > 3, we have % > (ﬁ) . (2.2.3)
A(A-1 A(A-1
(A1) is a positive number for A > 3, referring to (2.2.1) and (2.2.2), when (4-1)

Since

multiplies both sides of (2.2.3), we have
A(A-1)\ (2(22-1)\ _ 7 A(A-1) A _ JAn-2A+1
( 2 ) ( -1 ) =A(2A-1) = (7111) > ( 2 )(A 1) T n(A-1)@A-Dn-2a+1”

Thus’ ();:l) S aAN—2+1

when A>3 and n=2. (2.2.4)
A/ln—l+1

n(A-1)A-Dn-1+1

By induction onn, when A > 3, if (’1;;) >

nO_1)0—Dn-a+1 1S true for n, then forn + 1,

(A(n+1)) _ (An+,1 _ (An+A)(An+A-1)--(An+2)(An+1) . (M)
n+l n+1 An+1-n—-1)(An+A-n-2)--An-n+1)(n+1)
A(n+1) An+)(An+A-1)--(An+2)(An+1) A=A+l
n+1 (An+l—n—1)(/1n+l—n—2)---(An—n+1)(n+1) n(l_l)(/l—l)n—/Hl
A(n+1) (An+A)(An+1-1)--(An+2) an+1 1 A=At
n+1 (An+l—n—1)(/1n+l—n—2)---(An—n+1) n o (n+1) (—1ADnA+l
. An+1 (An+2)(An+21-1)--(An+2) ( 2 )(/1—1)
Notice >4, and (An+A-n-1)(An+A-n-2)---(An—-n+1) A-1
b An+A A _ An+i-1 A _ An+2 A Th
G i A—n—1 A1’ Anti-n—2  a—1’  An—m+1 o a—1 U
A(n+1) A1 A1 A=A+l _ JAM+1)-2+1 2.25)
n+1 (1_1)(1—1) 1 (n+1) (A_l)(l—l)n—ﬂ-Fl - (n+1)(A—1)(A—1)(n+1)—l+1 L.
AAn—A+1

From (2.2.4) and (2.2.5), we have forn = 2 and 1 = 3, (Ar?) > Gy Dr
n(l—

Thus, Lemma 2 is proven.

3. A Prime Number between (4 - 1)nand Anwhenn > (4- 2) > 13

Proposition:
Forn > A -2 > 13, there exists at least a prime number p suchthat (1- I)n<p < An. (3.1)

Proof:

Applying (2.2) to (1.8), whenn > (1 - 2) > 13,

AAn-2+1 ) 22n—4 Vin
o < (M) < T fo b 2y s 2.
n(A-1)A-1n-1+1 n n=p>n ((A-1n)!) 15015
Because (An) 3 >0and >0,
15015
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(n-1)
(n)! } pranss! 600602™: ((141) (ﬁy)

(A-Dn)! Van - >0.

2n—4 Van
n) 3 +2 i5015 (/1_1)(1—1)n—l+1 (M)TH

l—‘)Lan>n {

2
Referring to (2.1.2), when 1 = 3, (ﬁ) >e.Thus, whenn > (1- 2) > 13,

11 (n-1)
1 } N 6006012 ((T) : e)

Canzpon {
Anzp>n ((A—Dn)! (An)@ﬁ

Letx > 13 and y = 15, where x and y are both real numbers.

= £,(n 1) > 0. (3:2)

Whenx =y -2,
1 \*D 21y (&P
60060y2- ((y ) e) 60060(x+2)2- ((T) : e)
f3(x' y) = @4_3 = Jx (X+2)
(yx) 3 ((x+2)-x)
(x—1
60060(x+2)2- ((%) e) )
> fa(x) = 1, >0. (3.3)
((x+2)x) 3
"(x) = 2 x+1y 4 2 1 _ o _
@ =A0(H+n(F)+3- - 5n(G+2 0 - - 555) = A® -G
x+1 4 2 8
where fs(x) ——+l ( )+;—m——ln((x+ 2) - x) —;—3(”2)
1 2 1 1 10 8
fs'(x) = (x+2)2 T T e 3 3ern T3 T3z
—2x2—4x-2 2x%+8x+8 3x%+6x x%+3x+2 x%+x 10 8

T D (2422 | (D)2 (x42)? | 3x(xeAD)(x42)  3x(xA1)(x42)  3x(x+D)(x+2) | 3x% | 3(x42)?

£ (x) = 4x+6 x24+2x-2 10 8
5 (x+1)2-(x+2)2 = 3x(x+1)(x+2) = 3x2 = 3(x+2)2

> 0 when x = 3.

Thus, f5(x) is a strictly increasing function for x > 3.

When x = 13, fi(x) = —— + In (13“) pr_2 Wm0y Ay 108 53840,
1342 4 3 13+1 3 3 39 45

Thus, forx > 13, fs(x) > 0. Then, f;'(x) = fo(x) - fs(x) > 0, and f,(x) is a strictly
increasing function for x = 13.

Referring to (3.3), as long as x = (y -2) = 13, f53(x,y) is an increasing function respect to
both x and y, because f5(x,y) > f,(x).

Thus, when x = (y-2) > 13, fs(x+1,y+ 1) > f3(x, y). (3.4)
B - ooy (I (5 +1- 2 inGm) - L -2) = £003) filry)  (35)

whereff,(xy)—ln( )+1 6\/_ -In(yx) — ?_3_

When x =y -2, then f¢(x,y) = f-(x) = In (x+1)
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’ _1__\/x+2. 1 1 In(x+2)+in(x)+2 3 _ 1 1 In(x+2)+In(x)
' () = R e ( ) e B

- 4+ ==
x+2 X 624/ x(x+2) x2

T x+1 6vx x+1 3/x(x+2)
1 1 3/x(x+2)—(x+1) 3 /x(x+2)+(x+1) 8x%+16x—1
—_ — . = > 0whenx>1.
X+l 3x(x+2) 3+ /x(x+2)  3/x(x+2)+(x+1) 9(x+1)1/—x(x+2)(1/—x(x+2)+(x+1))
’ _ 1 1 In(x+2)+In(x) 3 . .
When x =3, f; (x) = (x—+1 . x(x+2)) Yy +5> 0, then f;(x) is a strictly

increasing function.

When x = (y -2) = 3, because f¢(x,y) = f7(x), fs(x,y) is an increasing function respect to

both x and y. (3.6)
6f6(x,y) vy 3

oy ln(yx)+ >0 when x >3andy > 3.
Thus, whenx = (y -2) = 3, fs(x,y) is an increasing function respect to x. (3.7)
Whenx = (y-2) = 13, fy(x,y) = In(22) + 1—% In(195) —ﬂvi—% ~ 0.720 > 0.

Referring to (3.6), when x = (y -2) = 13, f¢(x,y) > 0.

Referring to (3.7), when x > (y-2) > 13, fs(x,y) > 0.

6f3 (ny)

Referring to (3.5), when x > (y -2) = 13, since f3(x,y) > 0 and fg(x,y) > 0, ™

> 0,

and f3(x,y) is an increasing function respect to x.
Thus, when x > (y —2) =13, fz5(x+1,y) > fz(x,y). (3.8)

When x = (y - 2) = 13,
60060y*: ((yT_l) ' “’)(x_l) 60060 -157- ((%) e 7.432E+18

xX,y) = = ~
fs(xy NG 1513, 3.386E+17
(xy) 3 (15-13) 3

)(13—1)

Referring to (3.4), when x = (y -2) > 13, f3(x,y) > 1.
Referring to (3.8), when x > (y -2) > 13, f3(x,y) > 1.
Letx =nandy=4,thenwhen n > (1-2) > 13, f3(n,4) > 1. (3.9)

(An)!
((A—l)n)!} > f,(n,2) > 1.
(Am)!

(A-1)m)!

Referring to (3.2), whenn > 1-2 > 13, F/‘anp>n {

Let integerm > n. Whenm >n > 1-2 > 13, F/lmzp>m{

}> fi(m,2) >1. (3.10)

(An)! }
(A-Dn)t )’

then p>n+1=/(n+2)n+1>+An.From(1.5), 0 < vp (FAanm {((ﬁ:));l)'}) <R(p) <1

Referring to (1.8), whenn > (4 - 2) > 13, if there is a prime number p in F/lnzp>n {

(An)!

—((A—l)n)! } andin

Thus, whenm = n > A-2 > 13, every distinct prime number in F)anpm{

(Am)!
Dimspsm {m} has a power of O or 1.
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(Am)! _
DGimzpsm {((,1 1)m)'} -

-T { am)! } F { am)! } T { (Am)! }

g 1o i+1
In (l"(a 1)m>p Am {%}), for every distinct prime number p in these ranges, the
numerator (Am)! has the product of p - 2p - 3p -+ ip = (i)! - p*. The denominator ((1 — 1)m)!
also has the same product of (i)! - p’. Thus, they cancel each other in _mr .
((A-1)m)!

Referring to (1.2), ‘ ’1 2 (F(z vm {%}) =1.

l+1

am)! _ (Am)! =1-2 (Am)!
Thus, Gimapsm {((A—l)m)!} = Dimzp>-1ym {((A—l)m)!} =1 (Fﬂ2p>m {((/1—1)m)!})

i+1 i+1
(Am)! } _ [i=a-1 { (am)! })
i— 71— Am)! . . .
i;i‘ 1 (FATTnEIb(/l—il)m {ﬁ}) is the product of (A —1) sectors fromi=1toi=(1-1).
Each of these sectors is the prime number factorization of the product of the consecutive
integers between @ and ATm

. !
From (3.10) and (3.11), when m>n=>1-2 = 13, HE;{‘l (F},Tm s ps o 1)m {%}) > 1.
Referring to (1.1), [im___@-vym 1)m {&} > 1.Thus,whenm >n > 1-2 > 13, atleastone
==zp> (A-1ym)!
(Am)!

i=1-1 S A
of the sectors in [[;Z] (FATm >p> =i {((,1 Hm)!

}) is greater than one.

(Am)!

G=Dm)! } > 1 be such asectorandletm = ni where(1-1)=>i=>1.

Let Fz_im op> A- 1)m{
Thus,when m=ni=>n=>1-2=>= 13,

(Am)! _ _ _ (Ani)! }_ { (Ani)! }
FAT’">p>—“‘i1)m {((1—1)m)!}_Fﬂzw—w;)m {((A—l)ni)! = Danzp>@-1yn G—onp) ~ L (3.12)

- i

nd)! _ (And)-(ni—1) - @Ani—i) - (Ani—2i)-(Ani—(n—1)i) - (Ani—ni+1)-(A—1Dni)!
(A-Dni)! ((A=Dni)!
Gni)!_ i-(An)-(Ani—1) -i-(An—1) -i-(An—2)-i-(An—n+1) - (Ani—ni+1)-(A—1)ni)!
(A-Dni)! ((A—1)ni)!
Thus % contains all the factors of (An), (An - 1), (An-2),.. (An-n+1) m%.
These factors make up all the consecutive integers in the rangeof in>p > (1-1)n in
(An)! (Ani)! (An)!
————— . Thus, ———— contains ————.
((A-1)n)! ((A=1)nd)! ((A-1)n)!
Referring to the definition, all prime numbers in % in the ranges of Ani > p > An and
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(Ani)!
(A-1D)ni)!
(Ani)!
((A-D)ni)!

(4-1)n > p do not contribute to I[},5p.1-1)n { } nor doesifor(A-1) >i>1.0nly

the prime numbers in the prime factorization of intherangeof An>p> (A-1)n

(And)! } i (4n) is the product of all the consecutive

presentin [3,50.(1-1)n {—((1—1)111')! nce o hmr
. . - (Ani)! (/’ln_)!

integers in this range, [},5p.(1-1)n {—((/1—1)111')!} = Dinsps(-1n {((/1—1)71)1} .
(Ani)!

—((/1—1)ni)!} > 1. Thus,

Referring to (3.12), when m=ni>n=>1-2 > 13, F1n2p>(,1_1)n{
(An)!
(A-Dn)!
prime number p such that (1 - I)n <p < An.

when n > 1-2 > 13, F1n2p>(/1—1)n{ } > 1. Referring to (1.3), there exists at least a

Thus, Proposition (3.1) is proven. It becomes a theorem: Theorem (3.1).

4. Proof of Legendre’s Conjecture

Legendre’s conjecture states that there is a prime number between n? and (n + 1)? for every

positive integer n. (4.1)
Proof:

Referring to Theorem (3.1), for integers j = k — 2 > 13, there exists at least a prime number p
suchthat j(k— 1) <p < jk. (4.2)

When k=j+ 1215, then j =k — 1> 14.
Applying k =j + 1 into (4.2), then j2<p <j(+1) < (+ 1)?2.
Let n = j > 14, then we have n* <p < (n+ 1)2. (4.3)

For1 <n <13, we have a table, Table 1, that shows Legendre’s conjecture valid. (4.4)

Table 1: For 1 < n < 13, there is a prime number between n? and (n + 1)2.

n 1 2 3 4 5 6 7 8 9 10 11 12 13
n? 1 4 9 16 25 36 49 64 81 100 | 121 | 144 | 169
p 3 5 11 19 29 41 53 67 83 103 | 127 | 149 | 173
(n + 1)? 4 9 16 25 36 49 64 81 100 | 121 | 144 | 169 | 196

Combining (4.3) and (4.4), we have proven Legendre’s conjecture.

Extension of Legendre’s conjecture

There are at least two prime numbers, p,, and p,,, , between j? and (j + 1)? for every positive
integer j such that j2 <p, <j(j+1)and jj+1) < P, < (+ 1)* where p,, is the n" prime
number, p,, is the mt" prime number,and m>n +1. (4.5)
Proof:

Referring to Theorem (3.1), for integers j = k — 2 > 13, there exists at least a prime number p
suchthat j(k—1) <p < jk.
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When k—1=j>14,then j(k— 1) =j? <p, < jk=j({ + 1).Thus, there is at least a
prime number p,, suchthat j2 <p, <j(j+1) when j= k—12> 14.

When j=k—-—22>14,then k=j+2.

jlk= 1D =j+D<p,<jk=jG+2)<(+1) 2 Thus, there is at least another prime
number p,, suchthat j(j+1) <p < (j+1)*when j=k—2>14.

Thus, when j > 14, there are at least two prime numbers p,, and p,, between j2 and (j + 1)?
suchthat j2 <p, <j(+1) < p, < (+1)*>wherem=n+1forp,>p, . (4.6)

For1 < j <13, we have a table, Table 2, that shows that (4.5) is valid. (4.7)

Table 2: For 1 < j < 18, there are 2 primes such that j2 <p, < j(i+1) <p, < (j + 1)2.

J) 1 2 3 4 5 6 7 8 9 10 11 12 13

j? 1 4 9 16 25 36 49 64 81 | 100 | 121 | 144 | 169
Dn 2 5 11 19 29 41 53 67 83 103 | 127 | 149 | 173
j(j+1) 2 6 12 20 30 42 56 72 90 | 110 | 132 | 156 | 182
Pm 3 7 13 23 31 43 59 73 97 | 113 | 137 | 163 | 191
(+1)? 4 9 16 25 36 49 64 81 100 | 121 | 144 | 169 | 196

Combining (4.6) and (4.7), we have proven (4.5). It becomes a theorem: Theorem (4.5).

5. The Proofs of Three Related Conjectures

Oppermann’s conjecture states that for every integer x > 1, there is at least one prime
number between x(x — 1) and x2, and at least another prime number between x? and
x(x + 1). (5.1)

Proof:
Theorem (4.5) states that there are at least two prime numbers, p,, and p,,, , between j2 and

(j + 1) for every positive integer j such that j% <p, <j(j+1) <p, < (j+ 1) * where
mz=n+1for p, >p, .

j(j + 1) is a composite number except j = 1. Since j2 < p, < j(j + 1) is valid for every
positive integer j, when we replace j with j + 1, we have (j + 1)? <p, < (j+ 1)(j + 2).

Thus,we have j(j+1)<p < (G+1D?*<p, <G+ 1 +2). (5.2)
When x > 1, then (x -1) > 1. Substituting j with (x - 1) in (5.2), we have
x(x-1)<p <x*<p <x(x+1) (5.3)

Thus, we have proven Oppermann’s conjecture.

Brocard's conjecture states that there are at least 4 prime numbers between (p,,)? and
(Pns1)?, where p,, is the nt" prime number, for every n > 1. (5.4)

Proof:

Page 9




Theorem (4.5) states that there are at least two prime numbers, p,, and p,,, , between j2 and
(+1)% suchthat j2 <p, <j(G+1) and j(j+1) <p, < (j+ 1) ?for every positive
integer j , where m =n+1 for p,, >p, . Whenj>1, j(j + 1) isa composite number. Then
Theorem (4.5) can be written as j* <p, <j(j+1) and jG+1)<p < ({+1)2

In the prime number series: p; =2, p, =3, p3 =5, p, =7, ps = 11, ... Except p,, all prime
numbers are odd numbers. Their intervals are 2 or more. Thus, when n > 1, (P41 — Pn) = 2.
Thus, we have p, < (P, + 1) < (pr +2) < Ppyq When n > 1. (5.5)
Applying Theorem (4.5) to (5.5), when n > 1, we have at least two prime numbers p_ ., and
Pmz in between (p,)? and (p, + 1)? such that (p,)? < P1 < Pa(Prn+ 1) < Pz < (Pn +1)2,
and at least two more prime numbers pp,3, Pma in between (p, + 1)% and (p, + 2)? such

that (py + 1) < Pz < (Pn + D(Pr + 2) < Ppa < (n + 2)* < (Pns1)?.
Thus, there are at least 4 prime numbers between (p,,)? and (p,+1)? for n > 1 such that

(pn)z <Pm1 < Pn(Pn+1) <Pmz <(pn+ 1)2 <Pm3 < (Pn+ D(Pp + 2) < ppma < (pn+1)2
(5.6)
Thus, Brocard's conjecture is proven.

Andrica’s conjecture is named after Dorin Andrica. It is a conjecture regarding the gaps
between prime numbers. The conjecture states that the inequality \/ pp+1 —+/ Pn < 1 holds
for all n where p,, is the nt* prime number. If g,, = p,+1 — Pn denotes the nt* prime gap,

then Andrica’s conjecture can also be rewrittenas g, < 2,/ p, + 1. (5.7)

Proof:

From Theorem (4.5), for every positive integer j, there are at least two prime numbers p,,

and p,, between j2 and (j + 1)? such that j% <p, <j(j+1) <p, < (j+ 1) ? where
m=n+1 for p,, >p, .Since m =2n+1, wehave pp, = ppiq -

Thus, we have j2 < p, (5.8)
and Py S pm < (G + 1)2. (5.9)
Since j, Pn , Pns1, and (j + 1) are positive integers,

j<Pn (5.10)

and /o1 <j+1. (5.11)
Applying (5.10) to (5.11), we have / Ppy1 </ Pn+ 1. (5.12)

Thus, / Pny1 — +/ Pn < 1 holds for all n since in Theorem (4.5), j holds for all positive integers.
Using the prime gap to prove this conjecture, from (5.8) and (5.9), we have

Gn= Pnt1 —Pn<(+1)?—j2=2j+1. From(5.10), j </ p, .
Thus, gn = Pps1 —Pn <2 pn+1. (5.13)

Thus, Andrica’s conjecture is proven.
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