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Abstract

We provide a general analytic formula to construct all existing starting odd numbers that obey our desired finite arbitrarily long Collatz trajectory, meaning
that these starting odd numbers obey our pre-designated maximum factors of 2 at each iteration of the reduced Collatz map. We also provide another general
analytic formula for finding the resulting odd numbers after N iterations of the reduced Collatz map. These formulas shed light on the structure of Collatz
trajectories and other properties. We can also use this information to find in finite steps all existing Collatz trajectories that become 1 after any finite N iterations.
We also will see that the ”location” of all of the 1’s in Collatz Conjecture can be found by solving a special case of the discrete log problem.

1 Introduction

Collatz Conjecture is the hypothesis that for any positive integer n, by repeated applications of the Collatz map (shown below), this sequence of numbers will
eventually reach 1.

Collatz map:

n −→

{
n/2 if n is even

3n+ 1 if n is odd

In this paper we will provide some new theorems on finite arbitrarily long Collatz trajectories.

We will provide a general analytic formula for finding all starting odd numbers for any desired Collatz trajectory dynamic.

We then show for any desired dynamics of a finite arbitrarily long collatz trajectory, there exist infinite many starting numbers that satisfy this particular
dynamic. Also that the difference in value between all such subsequent starting numbers for any given desired dynamic is a constant.

1



We also show how to construct all existing Collatz trajectories that result in 1 after N iterations.

2 Definitions

In this paper we will only talk about the reduced Collatz map which we will just simply refer to as ”Collatz map” (shown below) . The reduced Collatz map
simplifies the Collatz map by combining all the consecutive ’n is even’ steps into a single step. Therefore this map takes a positive odd number to another positive
odd number by the following operations:

Also in this paper, we will only discuss the cases where N ≥ 2. For the case N=1 it is a simple exercise but will not be discussed here.

Definition: Collatz map

2n+ 1 −→ (2n+1)3+1
2k

, where k denotes the maximum number of factors of 2 that (2n+ 1)3 + 1 contains. Hence the results is another positive odd number.

Definition: Iteration N

Iteration N means that a starting odd number 2n0+1 (which is also synonymous with ”iteration 0’s odd number”) has had the Collatz map (reduced) applied
to it N times with the resulting odd number now belonging to iteration N and is now labeled 2nN + 1. Starting odd numbers are labeled as 2n0 + 1 to designate
that it belongs to iteration 0 by definition i.e. has not had the collatz map applied to it yet. The k in this map is also labeled as k1 to denote it belongs also to
iteration 1. This is further clarified in the below Collatz map:

2n0 + 1 −→ (2n0+1)3+1
2k1

which is now equal to 2n1 + 1, which is an odd number in iteration 1 for some natural number n1.

Definition: We will also use the following nomenclature interchangeably: VN , 2nN + 1, value at iteration N.

Definition: Reverse Collatz Map: Is simply the reverse process of the Collatz Map (i.e. reduced Collatz Map) i.e.

2n1 + 1 −→ (2n1+1)2k1−1
3 , which now goes back to 2n0 + 1, which is an odd number in iteration 0 for some natural number n0.

Definition: Collatz Trajectory:

A sequence of odd numbers as the result of repeated applications of the Collatz map.

——————————————————————————————–
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3 Proposition 1:

2nN+1 =

(2n0+1)·3+1

2k1
·3+1

2k2
·3+1

2k3
·3+1

. . .
2kN

=
3Nn0 + 2 · 3N−1 + 3N−22k1−1 + 3N−32k1+k2−1 + 3N−42k1+k2+k3−1 + 3N−52k1+k2+k3+k4−1 + ...+ 3N−N2k1+k2+k3+...+kN−1−1

2k1+k2+k3+...+kN−1

, for N ≥ 2, ki ≥ 1

Proof by Induction:

Base case: N=2: 2n2 + 1 =

(
(2n0+1)·3+1

2k1

)
·3+1

2k2
=

(
6n0+4

2k1

)
·3+1

2k2
=

18n0+12

2k1
+1

2k2
=

18n0+12

2k1
+ 2k1

2k1

2k2
=

18n0+12+2k1

2k1

2k2
= 18n0+12+2k1

2k1+k2
= 9n0+6+2k1−1

2k1+k2−1 = 32n0+2·32−1+32−2·2k1−1

2k1+k2−1

QED

Induction Step:

Assume Nth case is true, then show that if follows that the N+1th case is also true:
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2nN+1 =

(2n0+1)·3+1

2k1
·3+1

2k2
·3+1

2k3
·3+1

. . .
2kN

=
3Nn0 + 2 · 3N−1 + 3N−22k1−1 + 3N−32k1+k2−1 + 3N−42k1+k2+k3−1 + 3N−52k1+k2+k3+k4−1 + ...+ 3N−N2k1+k2+k3+...+kN−1−1

2k1+k2+k3+...+kN−1

2nN+1 + 1 =



(2n0+1)·3+1

2k1
·3+1

2k2
·3+1

2k3
·3+1

...
2kN


3 + 1

2kN+1
=

(
3Nn0+2·3N−1+3N−22k1−1+3N−32k1+k2−1+3N−42k1+k2+k3−1+3N−52k1+k2+k3+k4−1+...+3N−N2k1+k2+k3+...+kN−1−1

2k1+k2+k3+...+kN−1

)
· 3 + 1

2kN+1

=

(
3N+1n0+2·3N+3N−12k1−1+3N−22k1+k2−1+3N−32k1+k2+k3−1+3N−42k1+k2+k3+k4−1+...+3N−N+12

k1+k2+k3+...+kN−1−1

2k1+k2+k3+...+kN−1

)
+1

2kN+1

=

(
3N+1n0+2·3N+3N−12k1−1+3N−22k1+k2−1+3N−32k1+k2+k3−1+3N−42k1+k2+k3+k4−1+...+3N−N+12

k1+k2+k3+...+kN−1−1

2k1+k2+k3+...+kN−1

)
+ 2k1+k2+k3+...+kN−1

2k1+k2+k3+...+kN−1

2kN+1
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=

(
3N+1n0+2·3N+3N−12k1−1+3N−22k1+k2−1+3N−32k1+k2+k3−1+3N−42k1+k2+k3+k4−1+...+3N−N+12

k1+k2+k3+...+kN−1−1
+2k1+k2+k3+...+kN−1

2k1+k2+k3+...+kN−1

)
2kN+1

= 3N+1n0+2·3N+3N−12k1−1+3N−22k1+k2−1+3N−32k1+k2+k3−1+3N−42k1+k2+k3+k4−1+...+3N−N+12k1+k2+k3+...+kN−1−1+302k1+k2+k3+...+kN−1

2k1+k2+k3+...+kN+1−1

= 3(N+1)n0+2·3(N+1)−1+3(N+1)−22k1−1+3(N+1)−32k1+k2−1+3(N+1)−42k1+k2+k3−1+3(N+1)−52k1+k2+k3+k4−1+...+3(N+1)−N2
k1+k2+k3+...+k(N+1)−2−1

+3(N+1)−(N+1)2
k1+k2+k3+...+k(N+1)−1−1

2k1+k2+k3+...+kN+1−1

= 3(N+1)n0+2·3(N+1)−1+3(N+1)−22k1−1+3(N+1)−32k1+k2−1+3(N+1)−42k1+k2+k3−1+3(N+1)−52k1+k2+k3+k4−1+...+3(N+1)−(N+1)2
k1+k2+k3+...+k(N+1)−1−1

2k1+k2+k3+...+kN+1−1

QED

4 Proposition 2:

3J · 2k ≡ 3J · 2k mod 2·3N−J−1

mod 3N , where J and N are positive integers and J < N
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Proof:

3J · 2k ≡ 3J · 2k+rmod 3N , for some positive integer r since gcd(2, 3) = 1

We now divide both sides by 3J

2k ≡ 2k+rmod 3N−J

By the properties of Carmichael’s λ function:

ak ≡ ak+λ(n)mod n, given gcd(a,n)=1, where λ(n) is the smallest positive integer such that this expression is true.

Therefore for our specific values of a and n, i.e. a=2 and n = 3N−J , and since gcd (2,3) = 1, we have

2k ≡ 2k+λ(3N−J )mod 3N−J

We see that our original r can be set to λ(3N−J)

We also know that λ(3N−J) = 2 · 3N−J−1 by the properties of Carmichael’s λ function: i.e. λ
(
pk
)
= pk − pk−1 = pk

(
1− 1

p

)
Hence our equation becomes:

2k ≡ 2k+2·3N−J−1

mod 3N−J

Hence we see that 2k ≡ 2k+2·3N−J−1 ≡ 2k+2·3N−J−1+2·3N−J−1

... and so on in mod 3N−J

Hence we can write 2k ≡ 2k mod 2·3N−J−1

mod 3N−J

We now multiple both sides by 3J including the mod number:

3J · 2k ≡ 3J · 2k mod 2·3N−J−1

mod 3N

QED
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5 Theorem 1:

nN ≡ 2(2·3
N−1+1−k1−k2−k3−...−kN ) mod 2·303N−1 + 3N−22(2·3

N−1−k2−k3−k4−...−kN−1) mod 2·31

+3N−32(2·3
N−1−k3−k4−k5−...−kN−1) mod 2·32 + 3N−42(2·3

N−1−k4−k5−k6−...−kN−1) mod 2·33

+3N−52(2·3
N−1−k5−k6−k7−...−kN−1) mod 2·34 + ...+ 302(2·3

N−1−kN−1) mod 2·3N−1

−2(2·3
N−1−1) mod 2·3N−1

(mod 3N )

(1)

, for N ≥ 2, ki ≥ 1

Proof: We start with the result from Proposition 1:

3Nn0+2·3N−1+3N−22k1−1+3N−32k1+k2−1+3N−42k1+k2+k3−1+3N−52k1+k2+k3+k4−1+...+3N−N2k1+k2+k3+...+kN−1−1

2k1+k2+k3+...+kN−1 = 2nN + 1

, for N ≥ 2, ki ≥ 1
Now we will isolate n0 to one side:

3Nn0 +2 · 3N−1 +3N−22k1−1 +3N−32k1+k2−1 +3N−42k1+k2+k3−1 +3N−52k1+k2+k3+k4−1 + ...+3N−N2k1+k2+k3+...+kN−1−1 =
(
2k1+k2+k3+...+kN−1

)
(2nN + 1)

3Nn0 = −2 ·3N−1−3N−22k1−1−3N−32k1+k2−1−3N−42k1+k2+k3−1−3N−52k1+k2+k3+k4−1− ...−3N−N2k1+k2+k3+...+kN−1−1+
(
2k1+k2+k3+...+kN−1

)
(2nN + 1)
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n0 =
−2·3N−1−3N−22k1−1−3N−32k1+k2−1−3N−42k1+k2+k3−1−3N−52k1+k2+k3+k4−1−...−3N−N2k1+k2+k3+...+kN−1−1+(2k1+k2+k3+...+kN−1)(2nN+1)

3N

Since n0 must be an integer, this means that the numerator must be divisible by the denominator, in other words the numerator must be congruent to 0
modulo the denominator. Hence, we have:

−2 · 3N−1 − 3N−22k1−1 − 3N−32k1+k2−1 − 3N−42k1+k2+k3−1 − 3N−52k1+k2+k3+k4−1 − ... − 3N−N2k1+k2+k3+...+kN−1−1 +
(
2k1+k2+k3+...+kN−1

)
(2nN + 1) ≡

0 (mod 3N )

−2·3N−1−3N−22k1−1−3N−32k1+k2−1−3N−42k1+k2+k3−1−3N−52k1+k2+k3+k4−1−...−3N−N2k1+k2+k3+...+kN−1−1+2k1+k2+k3+...+kNnN+2k1+k2+k3+...+kN−1 ≡
0 (mod 3N )

2k1+k2+k3+...+kNnN ≡ 2·3N−1+3N−22k1−1+3N−32k1+k2−1+3N−42k1+k2+k3−1+3N−52k1+k2+k3+k4−1+...+3N−N2k1+k2+k3+...+kN−1−1−2k1+k2+k3+...+kN−1 (mod 3N )
(2)

Now using the theorem 22·3
N−1 ≡ 1 mod 3N , hence the inverse of 2m in mod 3N is 22·3

N−1−m. We now apply this inverse to cancel the 2k1+k2+k3+...+kN on
the left side to isolate nN . Hence, we have:
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(
22·3

N−1−k1−k2−k3−...−kN

)
2k1+k2+k3+...+kNnN ≡

(
22·3

N−1−k1−k2−k3−...−kN

) (
2 · 3N−1 + 3N−22k1−1 + 3N−32k1+k2−1 + 3N−42k1+k2+k3−1+

3N−52k1+k2+k3+k4−1 + ...+ 3N−N2k1+k2+k3+...+kN−1−1 − 2k1+k2+k3+...+kN−1) (mod 3N )
(3)

nN ≡
(
22·3

N−1−k1−k2−k3−...−kN

) (
2 · 3N−1 + 3N−22k1−1 + 3N−32k1+k2−1 + 3N−42k1+k2+k3−1 + 3N−52k1+k2+k3+k4−1 + ...

+3N−N2k1+k2+k3+...+kN−1−1 − 2k1+k2+k3+...+kN−1 (mod 3N )
(4)

nN ≡ 22·3
N−1−k1−k2−...−kN+1 · 3N−1 + 3N−222·3

N−1−k2−k3−...−kN−1 + 3N−322·3
N−1−k3−k4−...−kN−1+

3N−422·3
N−1−k4−k5−...−kN−1 + 3N−522·3

N−1−k5−k6−...−kN−1 + ...+ 3N−N22·3
N−1−kN−1 − 22·3

N−1−1 (mod 3N )
(5)

Now apply proposition 2 to each term:

nN ≡ 22·3
N−1−k1−k2−...−kN+1 (mod 2·3N−(N−0))3N−1 + 3N−222·3

N−1−k2−k3−...−kN−1 (mod 2·3N−(N−1))

+3N−322·3
N−1−k3−k4−...−kN−1 (mod 2·3N−(N−2)) + 3N−422·3

N−1−k4−k5−...−kN−1 (mod 2·3N−(N−3))

+3N−522·3
N−1−k5−k6−...−kN−1 (mod 2·3N−(N−4)) + ...+ 3N−N22·3

N−1−kN−1 (mod 2·3N−(N−(N−1)))

−22·3
N−1−1 (mod 2·3N−(N−(N−1))) (mod 3N )

(6)
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Which simplifies to:

nN ≡ 2(2·3
N−1+1−k1−k2−k3−...−kN ) mod 2·303N−1 + 3N−22(2·3

N−1−k2−k3−k4−...−kN−1) mod 2·31

+3N−32(2·3
N−1−k3−k4−k5−...−kN−1) mod 2·32 + 3N−42(2·3

N−1−k4−k5−k6−...−kN−1) mod 2·33

+3N−52(2·3
N−1−k5−k6−k7−...−kN−1) mod 2·34 + ...+ 302(2·3

N−1−kN−1) mod 2·3N−1

−2(2·3
N−1−1) mod 2·3N−1

(mod 3N )

(7)

QED

6 Corollary 1.1:

When the value of nN is found given the desired values of k1, k2, ...., kN , for N ≥ 2, ki ≥ 1 using the equation in Theorem 1, then

1. nN mod 3N + 3N t for all non-negative integer values of t, form the complete set of solutions for nN given these particular values of k1, k2, ...., kN .

2. Given the above solutions, represented in the form (nN mod 3N , k1 mod 2, k2 mod 6, ......, kN mod 2 · 3N−1), then (nN + 3N t, k1 mod 2 + 2j1, k2 mod 6 +
6j2, k3 mod 18 + 18j3, ..., kN mod 2 · 3N−1 + 2 · 3N−1jN ) for all non-negative integer values of t, j1, j2, j3, ..., jN are also valid Collatz trajectories.

Proof of 1.:

Since nN in Theorem 1’s equation is already in modulo 3N , it represents the smallest positive solution. Also for this reason, all numbers added to nN that
are multiples of 3N are also solutions.

QED

Proof of 2.:
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Start with the equation from Theorem 1

nN ≡ 2(2·3
N−1+1−k1−k2−k3−...−kN ) mod 2·303N−1 + 3N−22(2·3

N−1−k2−k3−k4−...−kN−1) mod 2·31

+3N−32(2·3
N−1−k3−k4−k5−...−kN−1) mod 2·32 + 3N−42(2·3

N−1−k4−k5−k6−...−kN−1) mod 2·33

+3N−52(2·3
N−1−k5−k6−k7−...−kN−1) mod 2·34 + ...+ 302(2·3

N−1−kN−1) mod 2·3N−1

−2(2·3
N−1−1) mod 2·3N−1

(mod 3N )

(8)

, for N ≥ 2, ki ≥ 1

Observations:

1. The only place that k1 appears in the equation is in the first term’s exponent and is modulo 2. Hence we can change the value of k1 to any other positive
integer by adding or subtracting any multiple of 2 without changing the resultant value of nN .

2. The only places that k2 appears in the equation is in the first two terms’s exponents with the first term’s exponent being mod 2 and the second term’s
exponent being mod 6. We also see that 6 is divisible by 2. Hence we can change the value of k2 to any other positive integer by adding or subtracting any
multiple of 6 without changing the resultant value of nN .

3. The only places that k3 appears in the equation is in the first three terms’s exponents with the first term’s exponent being mod 2 and the second term’s
exponent being mod 6 and the third term’s exponent being mod 18. We also see that 18 is divisible by 6 and 2. Hence we can change the value of k3 to
any other positive integer by adding or subtracting any multiple of 18 without changing the resultant value of nN .

4. Generally, the only places that kN appears in the equation is in the first N terms’s exponents with the first term’s exponent being mod 2, the second terms
exponent being mod 6, ......, with the Nth term’s exponent being mod 2 · 3N−1. Hence we can change the value of kN to any other positive integer by
adding or subtracting 2 · 3N−1 without changing the resultant value of nN .

QED

Example 1.1

Find the resultant odd number after 5 iterations of the Collatz map such that k1 = 10, k2 = 9, k3 = 8, k4 = 7, k5 = 6

Solution:
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Start with nN equation from Theorem 1 and plug in N=5, with k1 = 10, k2 = 9, k3 = 8, k4 = 7, k5 = 6

n5 ≡ 2161−k5(mod 162) + 3 · 2161−k5−k4(mod 54) + 9 · 2161−k5−k4−k3(mod 18) + 27 · 2161−k5−k4−k3−k2(mod 6) + 81 · 2161+2−k5−k4−k3−k2−k1(mod 2) − 2161 (mod 243)

n5 ≡ 2161−6(mod 162) + 3 · 2161−6−7(mod 54) + 9 · 2161−6−7−8(mod 18) + 27 · 2161−6−7−8−9(mod 6) + 81 · 2161+2−6−7−8−9−10(mod 2) − 2161 (mod 243)

n5 ≡ 2155(mod 162) + 3 · 2148(mod 54) + 9 · 2140(mod 18) + 27 · 2131(mod 6) + 81 · 2123(mod 2) − 2161 (mod 243)

Now simplify the mod exponents:

n5 ≡ 2155(mod 162) + 3 · 240(mod 54) + 9 · 214(mod 18) + 27 · 25(mod 6) + 81 · 21(mod 2) − 2161 (mod 243)

n5 ≡ 45671926166590716193865151022383844364247891968+3298534883328+147456+864+162−2923003274661805836407369665432566039311865085952 (mod 243)

n5 ≡ −2877331348495215120213504514410182191649082162174 (mod 243)

n5 ≡ 228 (mod 243)

Hence the full solutions for n5 for the given ki is

n5 = 228 + 243j, with j=0,1,2,3,4,5. . . .

228 is also the smallest solution since all other solutions are adding multiples of 243 hence can only get larger.
Our desired odd number is 2n5 + 1 by definition, which equals (228 + 243j)x2 + 1, and we get 457 + 486j.
To obtain the starting odd number, we simply apply the reverse Collatz map 5 times.

(457+486j)·2k5−1
3 = (457+486j)·26−1

3 = 9749 + 10368j

(9749+10368j)·2k4−1
3 = (9749+10368j)·27−1

3 = 415957 + 442368j

(415957+442368j)·2k3−1
3 = (415957+442368j)·28−1

3 = 35494997 + 37748736j

(35494997+37748736j)·2k2−1
3 = (35494997+37748736j)·29−1

3 = 6057812821 + 6442450944j

(6057812821+6442450944j)·2k1−1
3 = (6057812821+6442450944j)·210−1

3 = 2067733442901 + 2199023255552j

Hence our starting odd numbers are 2067733442901 + 2199023255552j. We see that 2067733442901 is the smallest starting number here as all other ones are
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adding 2199023255552j

Also notice that 2199023255552 is 241. We will see in Theorem 2 that all starting numbers will differ in their subsequent solutions by 2
∑

ki

Also recall the above resultant solution i.e. n5 = 228 + 243j, with j=0,1,2,3,4,5. . . .

From Corollary 1.1, we see that we can easily find infinite other valid Collatz trajectories and their starting numbers by changing the ki’s into other posi-
tive integers (recall by definition, each ki is greater than or equal to 1) via the following:

k1 ± 2a1,∀a1 ∈ N
k2 ± 6a2,∀a2 ∈ N
k3 ± 18a3,∀a3 ∈ N
k4 ± 54a4,∀a4 ∈ N
k5 ± 162a5,∀a5 ∈ N

and then apply the reverse Collatz map 5 times from n5 = 228 + 243j, with j = 0, 1, 2, 3, 4, 5. . . ., using these new ki values.

7 Theorem 2:

n0 ≡ (32
k1+k2+k3+...+kN−1−1 (mod 2k1+k2+...+kN−1))N · (2k1+k2+k3+...+kN−1 − 2 · 3N−1 (mod 2k1+k2+...+kN−1) − 3N−2 (mod 2k1+k2+...+kN−1)2k1−1

−3N−3 (mod 2k1+k2+...+kN−1)2k1+k2−1 − 3N−4 (mod 2k1+k2+...+kN−1)2k1+k2+k3−1 − 3N−5 (mod 2k1+k2+...+kN−1)2k1+k2+k3+k4−1 − ...

−3N−N (mod 2k1+k2+...+kN−1)2k1+k2+k3+...+kN−1−1) mod 2k1+k2+k3+...+kN

(9)

, for N ≥ 2, ki ≥ 1

Proof: We start with the result from Proposition 1:

3Nn0+2·3N−1+3N−22k1−1+3N−32k1+k2−1+3N−42k1+k2+k3−1+3N−52k1+k2+k3+k4−1+...+3N−N2k1+k2+k3+...+kN−1−1

2k1+k2+k3+...+kN−1 = 2nN + 1 , for N ≥ 2, ki ≥ 1

Then isolate nN to one side:

nN =
3Nn0+2·3N−1+3N−22k1−1+3N−32k1+k2−1+3N−42k1+k2+k3−1+3N−52k1+k2+k3+k4−1+...+3N−N 2

k1+k2+k3+...+kN−1−1

2k1+k2+k3+...+kN−1 −1

2

nN =
3Nn0+2·3N−1+3N−22k1−1+3N−32k1+k2−1+3N−42k1+k2+k3−1+3N−52k1+k2+k3+k4−1+...+3N−N 2

k1+k2+k3+...+kN−1−1

2k1+k2+k3+...+kN−1 − 2k1+k2+k3+...+kN−1

2k1+k2+k3+...+kN−1

2
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nN =
3Nn0+2·3N−1+3N−22k1−1+3N−32k1+k2−1+3N−42k1+k2+k3−1+3N−52k1+k2+k3+k4−1+...+3N−N 2

k1+k2+k3+...+kN−1−1−2k1+k2+k3+...+kN−1

2k1+k2+k3+...+kN−1

2

nN = 3Nn0+2·3N−1+3N−22k1−1+3N−32k1+k2−1+3N−42k1+k2+k3−1+3N−52k1+k2+k3+k4−1+...+3N−N2k1+k2+k3+...+kN−1−1−2k1+k2+k3+...+kN−1

2k1+k2+k3+...+kN

Since nN must be an integer, this means that the numerator must be divisible by the denominator, in other words the numerator must be congruent to 0
modulo the denominator. Hence, we have:

3Nn0+2·3N−1+3N−22k1−1+3N−32k1+k2−1+3N−42k1+k2+k3−1+3N−52k1+k2+k3+k4−1+...+3N−N2k1+k2+k3+...+kN−1−1−2k1+k2+k3+...+kN−1 ≡ 0mod 2k1+k2+k3+...+kN

Now isolate 3Nn0 to one side:

3Nn0 ≡ 2k1+k2+k3+...+kN−1−2·3N−1−3N−22k1−1−3N−32k1+k2−1−3N−42k1+k2+k3−1−3N−52k1+k2+k3+k4−1−...−3N−N2k1+k2+k3+...+kN−1−1 (mod 2k1+k2+k3+...+kN )

Now using theorem 32
N−1 ≡ 1 mod 2N , hence the inverse of 3 in mod 2N is 32

N−1−1. We now apply this inverse N times to cancel the 3N on the left side to
isolate n0.

(32
k1+k2+k3+...+kN−1−1)N · 3Nn0 ≡ (32

k1+k2+k3+...+kN−1−1)N · (2k1+k2+k3+...+kN−1 − 2 · 3N−1

−3N−22k1−1 − 3N−32k1+k2−1 − 3N−42k1+k2+k3−1 − 3N−52k1+k2+k3+k4−1 − ...

−3N−N2k1+k2+k3+...+kN−1−1) (mod 2k1+k2+k3+...+kN )

(10)

n0 ≡ (32
k1+k2+k3+...+kN−1−1)N · (2k1+k2+k3+...+kN−1 − 2 · 3N−1 − 3N−22k1−1 − 3N−32k1+k2−1

−3N−42k1+k2+k3−1 − 3N−52k1+k2+k3+k4−1 − ...

−3N−N2k1+k2+k3+...+kN−1−1) (mod 2k1+k2+k3+...+kN )

(11)

Now use the same fact that 32
N−1 ≡ 1 mod 2N and apply this to all terms that contain 3 raised to an exponent:

n0 ≡ (32
k1+k2+k3+...+kN−1−1 (mod 2k1+k2+...+kN−1))N · (2k1+k2+k3+...+kN−1 − 2 · 3N−1 (mod 2k1+k2+...+kN−1)

−3N−2 (mod 2k1+k2+...+kN−1)2k1−1 − 3N−3 (mod 2k1+k2+...+kN−1)2k1+k2−1

−3N−4 (mod 2k1+k2+...+kN−1)2k1+k2+k3−1 − 3N−5 (mod 2k1+k2+...+kN−1)2k1+k2+k3+k4−1 − ...

−3N−N (mod 2k1+k2+...+kN−1)2k1+k2+k3+...+kN−1−1) (mod 2k1+k2+k3+...+kN )

(12)
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QED

From Corollary 1.1, we also see here that when the value of n0 is found given the desired values of k1, k2, ...., kN , for N ≥ 2, ki ≥ 1 using the equation in
Theorem 1, then

n0 mod 2k1+k2+k3+...+kN + (2k1+k2+k3+...+kN )t for all non-negative integer values of t, form the complete set of solutions for n0 given these particular values
of k1, k2, ...., kN .

Example 2.1

Find the starting odd numbers such that for 5 iterations of the Collatz map, k1 = 10, k2 = 9, k3 = 8, k4 = 7, k5 = 6

Solution:

We start with the n0 equation from Theorem 1, and plug in N = 5, k1 = 10, k2 = 9, k3 = 8, k4 = 7, k5 = 6

n0 ≡ 35(2
k1+k2+k3+k4+k5−1−1) (mod (2k1+k2+k3+k4+k5−1)) · (2k1+k2+k3+k4+k5−1 − 2 · 34 (mod (2k1+k2+k3+k4+k5−1))

−30 (mod (2k1+k2+k3+k4+k5−1)) · 2k1+k2+k3+k4−1 − 31 (mod (2k1+k2+k3+k4+k5−1)) · 2k1+k2+k3−1

−32 (mod (2k1+k2+k3+k4+k5−1)) · 2k1+k2−1 − 33 (mod (2k1+k2+k3+k4+k5−1)) · 2k1−1) (mod 2k1+k2+k3+k4+k5)

(13)

≡ 35(2
10+9+8+7+6−1−1) (mod (210+9+8+7+6−1)) · (210+9+8+7+6−1 − 2 · 34 (mod (210+9+8+7+6−1)) − 30 (mod (210+9+8+7+6−1)) · 210+9+8+7−1 − 31 (mod (210+9+8+7+6−1)) · 210+9+8−1

−32 (mod (210+9+8+7+6−1)) · 210+9−1 − 33 (mod (210+9+8+7+6−1)) · 210−1) (mod 210+9+8+7+6)

(14)

≡ 35(2
39−1) (mod (239)) ·

(
239 − 2 · 34 (mod (239)) − 30 (mod (239)) · 233 − 31 (mod (239)) · 226 − 32 (mod (239)) · 218 − 33 (mod (239)) · 29

)
(mod 240)

≡ 32748779069435 (mod (239)) ·
(
239 − 2 · 34 (mod (239)) − 30 (mod (239)) · 233 − 31 (mod (239)) · 226 − 32 (mod (239)) · 218 − 33 (mod (239)) · 29

)
(mod 240)

≡ 3549755813883 ·
(
239 − 2 · 34 − 30 · 233 − 31 · 226 − 32 · 218 − 33 · 29

)
(mod 240)
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≡ 999, 967, 365, 179 · (549, 755, 813, 888− 162− 8, 589, 934, 592− 201, 326, 592− 2, 359, 296− 13, 824) (mod 240)

≡ 999, 967, 365, 179 · (540, 962, 179, 422) (mod 240)

≡ 540, 944, 525, 218, 106, 793, 146, 538 (mod 240)

≡ 1, 033, 866, 721, 450 (mod 240)

n0 = 1, 033, 866, 721, 450 + 240j, for j = 0, 1, 2, 3.....

Hence our starting odd number by definition is 2n0 + 1 = 2(1, 033, 866, 721, 450 + 240j, for j = 0, 1, 2, 3.....)) + 1 = 2067733442901 + 241j

We in fact see that the desired trajectory:

2067733442901x3 + 1 = 6203200328704

6203200328704/210 = 6057812821

6057812821x3 + 1 = 18173438464

18173438464/29 = 35494997

35494997x3 + 1 = 106484992

106484992/28 = 415957

415957x3 + 1 = 1247872

1247872/27 = 9749

9749x3 + 1 = 29248

29248/26 = 457

Notice that 457 is also the ending number of our nN equation example.

16



Also we in fact see that 4266756698453 behaves the same way since 4266756698453 = 2(2067733442901) + 241(1)

4266756698453x3 + 1 = 12800270095360

12800270095360/210 = 12500263765

12500263765x3 + 1 = 37500791296

37500791296/29 = 73243733

73243733x3 + 1 = 219731200

219731200/28 = 858325

858325x3 + 1 = 2574976

2574976/27 = 20117

20117x3 + 1 = 60352

60352/26 = 943

Notice that 943 = 457 + 486(1). Recall that the full solution of the equation nN in Example 1.1 is 457 + 486j.

Notice that the value of j in the n0 equation matches the value of j in the nN equation given that the ki are kept the same, i.e. the mth starting number from
the n0 equation results in the mth ending number from nN equation when ki are kept the same.

8 Theorem 3:

We show that for any k1, k2, k3, . . . , kN−1, there always exist one and only one kN mod 2 · 3N−1 such that these ki corresponds to a valid Collatz trajectory that
results in 1 after N iterations. In fact once we know this kN , we now know ALL other kN values that correspond to a valid Collatz trajectories with these same
k1, k2, k3, . . . , kN−1, since the general solution is kN mod 2 · 3N−1 + 2 · 3N−1j, for all j = 0,1,2,.....

Proof:
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Start with the equation from Theorem 1

nN ≡ 2(2·3
N−1+1−k1−k2−k3−...−kN ) mod 2·303N−1 + 3N−22(2·3

N−1−k2−k3−k4−...−kN−1) mod 2·31

+3N−32(2·3
N−1−k3−k4−k5−...−kN−1) mod 2·32 + 3N−42(2·3

N−1−k4−k5−k6−...−kN−1) mod 2·33

+3N−52(2·3
N−1−k5−k6−k7−...−kN−1) mod 2·34 + ...+ 302(2·3

N−1−kN−1) mod 2·3N−1

−2(2·3
N−1−1) mod 2·3N−1

(mod 3N )

(15)

, for N ≥ 2, ki ≥ 1

Now we set this equation equal to 0 (recall we set VN = 1 and since VN = 2nN + 1 by definition, hence 2nN + 1 = 1, hence nN = 0) which is our desired
outcome of Collatz trajectory ending at 1 after N iterations.

nN ≡ 2(2·3
N−1+1−k1−k2−k3−...−kN ) mod 2·303N−1 + 3N−22(2·3

N−1−k2−k3−k4−...−kN−1) mod 2·31

+3N−32(2·3
N−1−k3−k4−k5−...−kN−1) mod 2·32 + 3N−42(2·3

N−1−k4−k5−k6−...−kN−1) mod 2·33

+3N−52(2·3
N−1−k5−k6−k7−...−kN−1) mod 2·34 + ...+ 302(2·3

N−1−kN−1) mod 2·3N−1

−2(2·3
N−1−1) mod 2·3N−1

≡ 0 mod 3N

(16)

We now move the last term on the left side of the equivalence relations to the right side:

2(2·3
N−1+1−k1−k2−k3−...−kN ) mod 2·303N−1 + 3N−22(2·3

N−1−k2−k3−k4−...−kN−1) mod 2·31

+3N−32(2·3
N−1−k3−k4−k5−...−kN−1) mod 2·32 + 3N−42(2·3

N−1−k4−k5−k6−...−kN−1) mod 2·33

+3N−52(2·3
N−1−k5−k6−k7−...−kN−1) mod 2·34 + ...+ 302(2·3

N−1−kN−1) mod 2·3N−1

≡ 2(2·3
N−1−1) mod 2·3N−1

mod 3N

(17)

We now factor out the 2−kN :

18



2−kN [2(2·3
N−1+1−k1−k2−k3−...−kN−1) mod 2·303N−1 + 3N−22(2·3

N−1−k2−k3−k4−...−kN−1−1) mod 2·31

+3N−32(2·3
N−1−k3−k4−k5−...−kN−1−1) mod 2·32 + 3N−42(2·3

N−1−k4−k5−k6−...−kN−1−1) mod 2·33

+3N−52(2·3
N−1−k5−k6−k7−...−kN−1−1) mod 2·34 + ...+ 302(2·3

N−1−kN−1−1) mod 2·3N−1

] ≡ 2(2·3
N−1−1) mod 2·3N−1

mod 3N

(18)

We now multiply both sides by 2:

2−kN [2(2·3
N−1+2−k1−k2−k3−...−kN−1) mod 2·303N−1 + 3N−22(2·3

N−1−k2−k3−k4−...−kN−1) mod 2·31

+3N−32(2·3
N−1−k3−k4−k5−...−kN−1) mod 2·32 + 3N−42(2·3

N−1−k4−k5−k6−...−kN−1) mod 2·33

+3N−52(2·3
N−1−k5−k6−k7−...−kN−1) mod 2·34 + ...+ 302(2·3

N−1−kN−1) mod 2·3N−1

] ≡ 2(2·3
N−1) mod 2·3N−1

mod 3N

(19)

We now simplify via the mod in the exponents:

2−kN [2(−k1−k2−k3−...−kN−1) mod 2·303N−1 + 3N−22(−k2−k3−k4−...−kN−1) mod 2·31

+3N−32(−k3−k4−k5−...−kN−1) mod 2·32 + 3N−42(−k4−k5−k6−...−kN−1) mod 2·33

+3N−52(−k5−k6−k7−...−kN−1) mod 2·34 + ...+ 302(−kN−1) mod 2·3N−1

] ≡ 1 mod 3N

(20)

Now notice that the expression inside the brackets belongs to the 3x+1 partition, hence the equation can now be rewritten as:

2−kN [3x+ 1] ≡ 20 mod 3N , for some x ϵ N

Since [3x+1] is coprime to 3N , we know there exists an m mod (2 · 3N−1) s.t. 3x + 1 = 2m mod 3N . We also know that 2−kN and 20 ’s exponents are also
mod 2 · 3N−1, hence we have:

2−kN (mod 2·3N−1)
[
2m (mod 2·3N−1)

]
≡ 20 (mod 2·3N−1) mod 3N

2m−kN (mod 2·3N−1) ≡ 20 (mod 2·3N−1) mod 3N
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m− kN ≡ 0 (mod 2 · 3N−1)

m ≡ kN (mod 2 · 3N−1)

We now use the result from Corollary 1.1 and get the following as our full solution set:

(nN +3N t, k1 mod 2+ 2j1, k2 mod 6+ 6j2, k3 mod 18+ 18j3, ..., kN mod 2 · 3N−1 +2 · 3N−1jN ) for all non-negative integer values of t, j1, j2, j3, ..., jN are also
valid Collatz trajectories.

QED

OBSERVATION:

NOTE THAT THE MAIN UNPREDICTABLE STEP IN THIS METHOD IS SOLVING FOR m IN THE FOLLOWING SPECIAL CASE OF THE DIS-
CRETE LOG PROBLEM:

3x+ 1 = 2m mod 3N

THEREFORE IF WE HAVE A BETTER WAY TO SOLVE THIS SPECIAL CASE OF THE DISCRETE LOG EQUATION, WE WOULD KNOW THE
”LOCATION” OF ALL THE 1’s IN COLLATZ CONJECTURE I.E. WEWOULDKNOWALL OF THE ki’s AND THEREFORE ALL THE CORRESPONDING
STARTING ODD NUMBERS THAT EVENTUALLY BECOME 1 UNDER THE COLLATZ MAP. THEN SOLVING THE COLLATZ CONJECTURE BOILS
DOWN TO A TILING PROBLEM, I.E. WHETHER THESE STARTING ODD NUMBERS COVER THE ENTIRE SET OF ODD NATURAL NUMBERS.

9 Corollary 3.1:

We can solve a finite number of equations to find every starting odd number that becomes 1 after N iterations of the Collatz map.

Proof: Given Theorem 3, we know given any k1 mod 2, k2 mod 6, k3 mod 18, .......kN−1 mod 2 · 3N−2, we can solve for kN to obtain all existing Collatz
trajectories that meet this criteria of ki’s.

Since k1 mod 2 only has possible 2 values, k2 mod 6 only has 6 possible values, k3 mod 18 has 18 possible values,......,kN−1 mod 2 · 3N−2 has 2 · 3N−2 possible
values, the number of equations needed to solve to find the starting odd numbers that become 1 in the following number of iterations is as follows:

1 iteration: 1 ( The proof is simple for iteration 1 but not contained in this paper since we only touch on iterations N ≥ 2 )
2 iterations: 2
3 iterations: 2x6
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4 iterations: 2x6x18
N iterations: 2x6x18x.........x 2 · 3N−2

Which are all finite numbers.

QED
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