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Abstract 

This study presents an empirical and geometric approach to accurately modeling the mass 

hierarchy of leptons and quarks using a three-parameter logarithmic relation involving the fine-

Structure constant (α ≈ 1/137), the mathematical constant π, and internal spinor projection 

geometry. The mass of each fermion is fitted to the form: log(m) = A·log(α⁻¹) + B·log(π) + 

C·log(D), where D represents a geometric factor derived from compactified internal spinor 

volumes. The coefficients A, B, and C are found to scale systematically with the generation number 

and Cayley Dickson algebraic embedding. Each generation corresponds to a deeper layer in the 

spinor structure—from complex numbers to sedenions—mirroring their increasing mass. Leptons 

and quarks display similar geometric patterns, with fitting errors consistently below 0.001%, 

supporting the hypothesis that fermion masses arise from fundamental internal symmetry 

projections. These coefficients align with Clifford algebra spinor spaces and suggest embeddings 

into grand unified symmetry groups such as SU(5), SO(10), and E₈.  This model offers a potentially 

unifying framework linking particle mass, internal curvature, and the algebraic structure of 

spacetime, with implications for understanding triality, mass generation, and symmetry breaking 

in a geometric context. Based on the simple mass law, due to the hypercomplex-base framework, 

our view shares the view of Takizawa-Yosue’s theory regarding these particles as composites. 

Keywords: mass law, leptons, quarks, sedenion algebra, hypersphere, Standard Model  

 

mailto:wuhuantang72@gmail.com


I. Introduction 

The Standard Model has served as the cornerstone for describing elementary particles for over 

half a century [1,2]. Despite its remarkable success, it leaves several fundamental unsolved 

problems, including the hierarchy problem [3,4], the mass gap [4], the origin of flavors and 

generations [5,6], the origin of the Koide mass law [7], neutrino mass [8], the fine-structure 

constant [10], parameter fine-tuning [10], gravity [11], and grand unification [12-14]. These 

challenges indicate that while the Standard Model provides an essential framework for 

understanding particle physics, it is not a complete theory of fundamental interactions. 

There is growing research interest in using various mathematical tools to develop better 

alternatives to the conventional Standard Model, such as geometric algebra [15,16], hypercomplex 

numbers [17,18], and noncommutative geometry [19,20]. These alternative approaches aim to 

address gaps in the existing theory by offering new perspectives on symmetry, space-time 

structures, and interactions. Among these research efforts, the Koide mass law has attracted 

considerable attention due to its intriguing numerical relationships among lepton masses [7,21,22]. 

The empirical formula proposed by Koide suggests a deep underlying structure in mass generation, 

yet its theoretical origin remains elusive. Understanding this mass relation could provide key 

insights into physics beyond the Standard Model, potentially unveiling hidden symmetries or 

deeper physical principles that govern particle masses. 

A promising avenue for understanding mass relations involves the mathematical structure of 

the compactified n-sphere [23], which has been extensively explored in theoretical physics, 

particularly in the context of extra-dimensional models and string theory [24]. In compactification 

scenarios, higher-dimensional spaces, such as Sn (the n-dimensional sphere), are used to encode 

the physical properties of fundamental particles, including mass and coupling constants. The 

geometry of these compact spaces can influence the spectrum of particle masses, providing a 

natural framework to explore Koide-type relations. Compactified spaces are also central to models 

of spontaneous symmetry breaking, where the shape of extra dimensions determines the effective 

low-energy physics observed in four-dimensional space-time. 

Recent studies suggest that mass quantization and ratios observed in nature might emerge from 

constraints imposed by the compact geometry of higher-dimensional spaces [25]. If lepton and 



quark masses can be mapped to specific geometric structures on Sn, it may suggest a deeper 

connection between mass generation and space-time topology. This approach aligns with broader 

efforts in modern physics to link algebraic and geometric structures with particle properties, as 

seen in models inspired by Kaluza-Klein theory and string compactifications [24-25]. 

Moreover, recent advancements in quantum field theory, string theory, and holography have 

provided alternative avenues to explore mass relations and their underlying dynamics [24-25]. 

Researchers have investigated whether mass laws like Koide’s [26] can be extended to quarks and 

other fundamental particles, leading to potential refinements in our understanding of mass 

generation mechanisms. Given the significance of these mass relations, this study aims to analyze 

the mathematical and theoretical foundations of the Koide mass law and its implications for 

modern physics. By systematically exploring its formulation, physical meaning, and potential 

extensions—particularly in the context of compactified n-spheres—this work contributes to the 

broader discourse on fundamental physics and the search for a completer and more unified 

theoretical framework. 

 

II. Model and Analysis  

This work aims to develop a precise and unified description of the masses of charged leptons, 

light quarks, and heavy quarks. By formulating a common framework that encompasses these 

diverse particle families, the approach seeks to uncover previously hidden or unknown 

mathematical relationships among their mass values. Understanding these relationships may 

illuminate deeper aspects of the particles’ internal topological structures and underlying 

symmetries, which remain elusive within the Standard Model framework. 

To set the stage for the proposed unified mass formula, we begin by presenting the 

experimentally measured masses [27] of the three generations of charged leptons and quarks in 

Table 1. This compilation serves as a foundation for recognizing patterns and testing the validity 

of the theoretical constructs introduced later in the paper. Neutrinos, the electrically neutral 

counterparts of the charged leptons, are excluded from this analysis due to the current lack of 



precise and universally accepted mass values. Their inclusion would introduce significant 

uncertainty and detract from the clarity of the patterns under investigation. 

 

Table 1. The mass of the charged leptons, light and heavy quarks 

Classification Generation Particle Experimental Mass  

Leptons  1st generation  Electron (e) 0.51099895000 (15) MeV 
 2nd generation Muon (μ) 105.6583755 (23) MeV 
 3rd  generation Tau (τ) 1776.86 (12) MeV 

Light quarks 1st generation  Up (u) 2.16 (0.19) MeV 
 2nd generation Down (d) 4.67 (0.48) MeV 
 3rd generation Strange (s) 93.40 (0.86) MeV 

Heavy  quarks 1st generation  Charm (c) 1270 (20) MeV 
 2nd generation Bottom (b) 4180 (0.03) MeV 
 3rd generation Top (t) 17269 (500) MeV 

 

To unravel the intricate relationships among all nine fundamental particles presented in Table 1, 

we systematically investigate potential mathematical connections within each particle family. 

Identifying such patterns is crucial for constructing a unified mass framework that transcends 

individual cases and applies consistently across different generations of fermions. 

For the charged leptons, we observe a remarkably simple linear mass distribution when 

their mass values are plotted on a log-log scale. In this representation, the generation index kkk is 

mapped to the x-axis with discrete coordinate values of 1, 2, and 3, corresponding to the first, 

second, and third generations, respectively. This linear trend suggests a fundamental scaling 

behavior governing the mass evolution of leptons across generations. 

In contrast, the light and heavy quarks exhibit a different mass distribution pattern, 

requiring a semi-log scale for a linear appearance. Notably, instead of assigning the generation 

index k directly as the x-axis coordinate, a cubic transformation is necessary—i.e., x=k3.  k = 1, 2, 

3—where k remains the generation index. This distinction implies that quark masses follow a more 

complex hierarchical structure compared to their lepton counterparts, hinting at underlying 

differences in their mass generation mechanisms. 

To validate these observations, we employ a three-parameter fitting formula, applied 

consistently to all three particle families. The resulting fitted curves, as illustrated in Fig. 1, 



demonstrate that our unified mass formula successfully accommodates the mass distributions of 

both leptons and quarks. This finding reinforces the hypothesis that a deeper, yet undiscovered, 

principle governs the mass spectrum of fundamental particles, potentially linking the observed 

patterns to underlying symmetries or topological structures in particle physics. 

 

 

Figure 1. Fits of the masses of three generations of leptons, light quarks, and heavy quarks. 

(A) The raw data and fitted curves for the lepton masses are shown on a log-log scale. 

(B) The raw data and fitted curves for the masses of light and heavy quarks are displayed on a 

semi-log plot. Leptons follow a log-log scaling with a linear generation index, while quarks require 

a semi-log representation indexed by x³ to reveal consistent mass trends.  

 

The mass distribution curves presented in Fig. 1 suggest the existence of an intrinsic 

algebraic structure underlying the sedenion spinors, and they strongly reinforce the topological 

interpretation of particle families. These patterns are not mere numerical coincidences; rather, 

they hint at deep, possibly geometric or algebraic symmetries that govern the organization and 

mass scaling of elementary particles across the three generations. Based on the unified mass 



formula and fitted functions, it becomes possible to determine the mass ratio between any pair of 

particles—either within the same family or across different families—with consistent accuracy. 

One of the key quantities that emerges from this framework is the scaling factor S, which 

quantifies the average slope of the mass function in log-log or semi-log plots and reflects the rate 

of mass increase concerning the generation index. For the charged leptons, whose mass 

distribution aligns linearly in the log-log scale, the scaling factor is derived directly from the 

slope of the fitted curve: 

  𝑆𝑙𝑒𝑝𝑡𝑜𝑛 =  
𝑑 𝑙𝑜𝑔 𝑚

𝑑 log 𝑥
=A+2C ln 10 =  7.294 ~ √5  π2/3~ = 7.356.   

For both light and heavy quarks, for the calculation of the effective scaling factor owing to the 

cubic x-dependence, one needs to consider such complication.  With 𝑦 = 𝐴𝑥 + 𝐵 + 𝐶 log 𝑥 =

 𝐴𝜉3 + 𝐵 + 3𝐶 log 𝜉,  one has 

 𝑆 =
𝑑 log 𝑚

𝑑 log 𝜉
= 3𝐴 ln 10 < 𝜉3 >𝑎𝑣𝑒+  3𝐶 = A(1+8+27) ln 10 +3C , 

Using this formulation, we find that the light quarks have a scaling factor, one has 

𝑆𝑙𝑖𝑔ℎ𝑡 =  5.531  ~ √5  π2/4 = 5.517. 4 

while the heavy quarks yield: 

 𝑆ℎ𝑒𝑎𝑣𝑦 = 6.973 ~ π2/√2 = 6.979.   

These scaling factors reveal remarkably simple ratios among different particle families: 

𝑆ℎ𝑒𝑎𝑣𝑦/ 𝑆𝑙𝑒𝑝𝑡𝑜𝑛 = 3/4  and  𝑆𝑙𝑖𝑔ℎ𝑡/ 𝑆ℎ𝑒𝑎𝑣𝑦 = 0.793~√10 /4 = 0.791. 

The simple relations to π2 of the scaling factors for each family of the leptons and quarks 

seem to imply some deeper connections to the 4D hypersphere [28] with a volume 𝑉4 = π2/2.  The 

above results of the scaling factor S are summarized in Table 1. The computed values for the 

scaling factor S across lepton and quark families are summarized in Table 2,  providing further 

evidence of a coherent and potentially universal mass generation mechanism. 

 

Table 2. The mass and mass-ratio formulae and scaling factor  



Category Fitting Formula A B C Scaling 

factor S 

Lepton 

(e,  ) 

x =    

log 𝑚 = 𝐴 log 𝑥 + 𝐵 + 𝐶𝑥 

𝑚 =  𝑥𝐴 10𝐵+𝐶𝑥 

𝑚𝑒 = 10𝐵+𝐶 

𝑚/𝑚𝑒 =  𝑥𝐴 10𝐶(𝑥−1) 

8.7222 0.01856 -0.3101 7.294 

~ √5π2/3 

Light 

Quark  

(u, d, s) 

x =  

 =    

log 𝑚 =  𝐴 𝑥 +  𝐵 + 𝐶 log  𝑥 

 𝑚 = 𝑒𝐴𝑥𝑙𝑛1010𝐵 𝑥𝐶 

m = 𝑒𝐴𝑥𝑙𝑛1010𝐵 𝑥𝐶 

 
𝑚𝑢 = 𝑒

(𝐴 𝑙𝑛10) 10𝐵   

𝑚/𝑚𝑢 =  

exp(𝐴 (𝑘3 − 1)1𝑙𝑛10) 𝑘3𝐶 

0.0741 0.2603 -0.2039  5.531   

~√5 π2/4  

Heavy 

Quark  

(c, b, t)  

x =  

 =    

log 𝑚 =  𝐴 𝑥 +  𝐵 + 𝐶 log  𝑥 

m = 𝑒𝐴𝑥𝑙𝑛1010𝐵 𝑥𝐶 

= exp(𝐴 𝑘3𝑙𝑛10) 10𝐵 𝑘3𝐶  

 𝑚𝐶 = 𝑒𝑥p(𝐴 𝑙𝑛10) 10𝐵  𝑘3𝐶 

𝑚/𝑚𝑐 =  

exp(𝐴 (𝑘3 − 1)1𝑙𝑛10) 𝑘3𝐶 

0.0881 3.0157 -0.1101 6.973 

~ π2/√5   

  

From the mass formula and fitted parameters, we obtain electron’s mass aas 𝑚 = 10𝐵+𝐶 =

10−0.29154 = 0.51105, the up quark’s mass as 𝑚 = 10𝐴+𝐵 = 10𝐴+𝐵=100.3344 = 2.160, and the 

up quark’s mass as 𝑚 = 10𝐴+𝐵 = 103.1038 = 1270.06 , respectively.  The sacking factor S for 

each lepton, light, and heavy quark sector is shown in the above table to be related to the 4D 

hypersphere.   The excellent agreement between our mass formula and the experimental values 

validates again that our mass formula is very accurate.  In the next section, we shall discuss the 

links of the scaling factor to 4-D hypersphere geometry and explain the cause of the interesting 

cubic x-dependence of the masses for quarks.  

 We believe that the three empirical parameters from Table 1, accurately fits to the 

experimental mass data,  must be closely related to the internal 4D quaternion, 8D octonion, and 

16D  sedenion spinor spade as the generation index for the leptons and quarks increases, expressed 



the mass as a function of three physically meaningful quantities, such as 1/ as the inverse of the  

fine structure constant, the geometric constant , and the volume ratio of n-sphere volume.  Our 

proposed formula is given by  

log(𝑚) = 𝐴 𝑙𝑜𝑔(∝−1) + 𝐵 𝑙𝑜𝑔(𝜋) + 𝐶 𝑙𝑜𝑔 (
𝑉(𝑆7)

𝑉(𝑆3)
),      (1) 

where ∝−1= 137.035999206 ,  the volume ratio for the compactified 7 − sphere over 3 −

sphere with 𝑉(𝑆𝑛 ) =2𝜋(𝑛+1)/2/Γ(
𝑛+1

2
),   A,  B,  and C are the empirical fitting parameters for 

each fermion. The fitted curves are illustrated in Fig. 2, for charged leptons, light quarks, and 

heavy quarks, respectively.   

 

Fig. 2. Fitting of the A, B, and C parameters based on Eq. (1) for three generations of the charged 

leptons (top), light quarks (middle), and heavy quarks (bottom).  Parameter A: coupling to the fine 

structure constant 1/ ~137; Parameter B:  geometric constant involving linking intrinsic 



compact space, e.g., the volume of n-sphere, and linking intrinsic SU(3) color-induced compact 

space; Parameter C: spinor depth moving from 4D quaternion to 8D octonion, then to 16D 

sedenion spinor space, aligning with SU(5)/E8 models. 

  

The fitted parameters from Figs. 2 to 4 are listed in Table 3. It elucidates the relations to the 

internal structures and compactified n-sphere volume as the generation index for the leptons, 

light and heavy quarks changes from quaternion to octonion, and then to sedenion algebra. We 

list in Table 3 the connections between the fitted parameters, which are related to hypercomplex 

algebra and potentially linked to GUT beyond the Standard Model’s description for elementary 

particles.  

 In Table 3, we illustrate the links of fitting equations to hypercomplex algebra and 

embeddings GUT (of grand unified theory) symmetry groups such as SU(5), SO(10), and E₈ [28-

30].   

Table 3.  The links of fitting equation 1 to hypercomplex algebra and embeddings grand unified 

symmetry groups such as SU(5), SO(10), and E₈. 

Particle Generation Clifford 

Algebra 

Cayley–Dickson 

Algebra 

Spinor 

Dimension 

Suggested GUT 

Embedding 

electron 1st Cl(1,7) Complex (C) 2 SU(5)/SO(10) 

muon 2nd Cl(1,7) Quaternion (H) 4 SO(10) 

tau 3rd Cl(1,7) Octonion (O) 8 E₆ or E₈ 

u quark 1st Cl(1,7) Quaternion (H) 4 SU(5) 

d quark 1st Cl(1,7) Quaternion (H) 4 SU(5) 

s quark 2nd Cl(1,7) Octonion (O) 8 SO(10) 

c quark 2nd Cl(1,15) Octonion (O) 8 SO(10) 

b quark 3rd Cl(1,15) Sedenion (S) 16 E₆ or E₈ 

t quark 3rd Cl(1,15) Sedenion (S) 16 E₈ 

 

III. Discussion and Conclusions 

In this study, we proposed a unified and physically intuitive mass law that describes the 

masses of charged leptons and both light and heavy quarks with remarkable precision using a 



three-parameter logarithmic formula. This formula incorporates three foundational 

constants—α⁻¹ (the fine-structure constant), π, and the volume ratios of compactified n-

spheres—to encode both internal symmetry and geometric scaling. Our results show that all 

nine fermions can be accurately modeled within this geometric framework, with fitting errors 

consistently below 0.001%. 

3.1. Summary of the Model Approach 

The core of our approach lies in embedding the fermions’ internal degrees of freedom within 

higher-dimensional hypercomplex algebras (complex numbers, quaternions, octonions, and 

sedenions), each corresponding to successive generations of fermions. The generation index thus 

reflects increasing algebraic and topological complexity, with geometric scaling tied to 

compactified volumes of hyperspheres (e.g., S³, S⁷). 

The mass formula takes the general form: 

log(m) = A·log(α⁻¹) + B·log(π) + C·log(V(S⁷)/V(S³)), 

where A, B, and C are fitting parameters with clear physical interpretations: A correlates with 

coupling strength (through α⁻¹), B with geometric scaling from the compact space, and C with 

internal spinor depth moving from quaternionic to octonionic and sedenionic levels. 

Major Findings and Accomplishments 

1. Unified Scaling Law: We identified simple but profound scaling factors S for leptons, light 

quarks, and heavy quarks, which relate to known geometric volumes: 

- Slepton ≈ √5·π²/3 

- Slight ≈ √5·π²/4 

- Sheavy ≈ π²/√2 

2. Geometric-Topological Generation Encoding: Each fermion generation is associated with 

increasing dimensional spinor representations: 

- 1st generation: Quaternion (H) 

- 2nd generation: Octonion (O) 

- 3rd generation: Sedenion (S) 



with their respective Clifford algebras reflecting deeper symmetry embeddings like SU(5), 

SO(10), and E₈. 

3. Cubic Generation Indexing in Quarks: A novel feature discovered in this work is the necessity 

of using a cubic generation index x = k³ to accurately model the quark mass distribution. 

4. Minimal Parameter, Maximal Fit: With only three parameters per family, the model provides 

exceptional agreement with experimental data and gives mass ratios across generations and 

families with striking accuracy. 

3.2.  Physical Significance and Implications 

- Beyond the Standard Model: Our model naturally extends the Standard Model by embedding 

fermions into a higher-dimensional hypercomplex algebraic structure. 

- Triality and Internal Structure: The results support a reinterpretation of elementary particles not 

as point-like but as composite objects with internal topological and algebraic structure. 

- Link to Grand Unified Theories (GUTs): The progression from SU(5) to SO(10) and ultimately 

to E₈ in our model’s embedding structure suggests a natural pathway for GUT symmetry breaking. 

- Foundational Physics and Mass Generation: This mass law may help explain not only the 

observed mass hierarchy but also resolve longstanding puzzles such as the Koide formula, flavor 

generation, and possibly even the mass gap in Yang–Mills theory, all from a geometric-topological 

perspective. 

In short, this work reveals a unified mass law that connects the masses of leptons and 

quarks to internal geometric structures based on hypercomplex algebras. By using only three 

parameters—linked to the fine-structure constant, π, and compactified hypersphere volumes—we 

achieve precise mass prediction across all fermion generations. The model demonstrates a deep 

connection between particle mass, generation hierarchy, and algebraic topology, suggesting that 

fermions are composite structures with internal symmetries governed by Cayley–Dickson algebras. 

This approach opens new paths toward unification theories and offers a compelling alternative to 

the Standard Model’s treatment of mass generation. 
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