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Abstract 
 
A Symmetrical Reflected Radar Model (SRRM) for Special Relativity is described. It analyses radar 
reflection using Bondi’s k-calculus in a symmetrical spacetime diagram (SSD). Complete agreement is 
shown between the algebra of Special Relativity and its geometrical representation in the SRRM using 
Euclidian geometry. In the SRRM, the pairs of orthogonal axes; t′, x, and t, x′, which all have the same 
scale, can be considered as a symmetrical pair of Euclidian coordinate systems. The invariance of the 
spacetime interval in a transformation from the t′, x to the t, x′ system is shown using Pythagoras. Thus, in a 
transformation from the t′, x to the t, x′ coordinate systems (and vice versa) spacetime in Euclidian.  

Introduction 
 
In 1908 Minkowski [1] introduced the spacetime diagram, now often called the Minkowski diagram. 
 
In 1922, Gruner [2] recognised that the Minkowski diagram is not symmetrical and published a symmetrical 
spacetime diagram (SSD). 1n 1949, Loedel [3] published a similar diagram. SSDs are now often called 
Loedel Diagrams  
 
In 1965 Bondi [4,5]introduced a reflected radar model of Special Relativity that he called the k-calculus. 
The algebra of the k-calculus is symmetrical. Bondi illustrated the k-calculus with diagrams of reflected 
radar in the Minkowski diagram, which is not symmetrical.  
 
The symmetry of the algebra of the k-calculus will be illustrated in a symmetrical spacetime model named 
the Symmetrical Reflected Radar Model (SRRM). The development of this is described in detail by Asquith 
[6]. It will be shown that there is complete agreement of the algebra of Special Relativity with the SRRM 
using Euclidian geometry. 
 
The assumptions on which the Symmetrical Reflected Radar Model (SRRM) is based are: 
 

1. The Principle of Relativity. The laws of physics are identical for all inertial observers. 
2. The velocity of light in a vacuum is measured the same by all inertial observers. 
3. All the axioms and theorems of Euclidian geometry are valid when analysing spacetime. In 

particular, Cartesian coordinates can be used as a reference system by inertial observers. 



4. To construct spacetime diagrams on a two-dimensional surface, with one dimension of time and one 
of space, it is valid to consider just the direction of relative motion of inertial observers and ignore 
the other two spatial dimensions.  

5. Light and radar are typical examples of electromagnetic radiation. The same principles apply equally 
to both. 

6. Using radar determination of spacetime coordinates, if a radar signal is emitted by an inertial 
observer at time = (a-b) and, after reflection at an event, received back by the observer at time = 
(a+b); then the coordinates of the event, as measured by the observer, are time = a ; distance = b.  

 
 
Method 
 
The model is called the Symmetrical Reflected Radar Model (SRRM).  
 
Light and Radar are collectively referred to as a Signal. In diagrams, Signals are indicated by red lines with 
arrows. The speed of light is defined as 1. 
 
The SRRM is based on a modification of Gruner’s SSD. An orthogonal median inertial system has vertical 
time, t^ and a horizontal space, x^ axes. Thus, the SRRM shows Signals bisecting the vertical t^ and 
horizontal x^ axes, at 45 degrees to each.. 
 
In the SRRM are inertial observers Peter and Ruby. The time axis of Peter, t, (Peter’s worldline) and the 
time axis of Ruby, t′, (Ruby’s worldline) are oblique straight lines diverging symmetrically about the 
vertical median t^ axis, each at an angle θ. Peter’s x axis and Ruby’s x′ axis are oblique straight lines 
diverging symmetrically about the horizontal median x^ axis, each at an angle θ. 
 
The t and t′, x and x′, axes of the SRRM all have the same scale. This is not the same scale as the t^ and x^ 
axes. The t axis is orthogonal with the x′ axis. The t′ axis is orthogonal with the x axis. 

 

Figure 1. The Symmetrical Spacetime Diagram of the Symmetrical Reflected Radar Model  



The scenario for reflecting radar is essentially the same that Bondi used in the k-calculus. In the SRRM, the 
paths (worldlines) of Peter and Ruby cross at O (Fig 2) where they both set their clocks to zero. Peter sends 
out a Signal at time (by Peter’s clock)  t = T after he and Ruby pass each other. Then this Signal will be 
received by Ruby at time (by Ruby’s clock) t′ = kT. From the Principle of Relativity, the linear k factor will 
apply both ways. Thus, Ruby’s response (the reflected Signal) will reach Peter at time (by Peter’s clock) t = 
k(kT) = k2T.  
 
The SRRM then examines the relationship between distance and time, both algebraically and geometrically, 
for the relative motion between Peter and Ruby. 
 
Results  

 
The linear relationship k, the k factor, is shown geometrically in the SRRM (Fig 2). A Signal is sent by 

Peter at A, is reflected by Ruby at E and returns to Peter at D. It can be seen that the triangles OAE and OED 
are similar, each with an angle 2θ, an obtuse angle of (135 – θ) degrees and an acute angle of (45 – θ) 
degrees. Thus, the ratio of OA to OE is the same as the ratio of OE to OD. This ratio is the k factor. 
 

 

Figure 2 Geometrical representation of the k-calculus showing similar triangles OAE and OED 
 

 
 



 
 
In figure 3, a signal sent by Peter from A is reflected by Ruby at E and returns to Peter at D.  

 

 

 

Figure 3 The distances in the SRRM derived from the k-calculus. 
 
From Figure 3,   OA=T,  OE =kT,  OD = k2T                                                                          
 
AD = OD – OA = k2T - T = = (k2-1)T.         (1) 
 
From assumption 6, the definition of radar coordinates:  CE = AC = CD = ½AD =  ½(k2-1)T     (2) 
  
Thus  OC = OA + AC = T + ½(k2-1)T = ½(k2+1)T       (3) 
 
 
The ratio of the lengths is simplified by dividing all lengths by kT 
 
This gives the ratios as  OC = ½(k2+1)/k      (4) 

  
     CE = ½(k2-1)/k      (5) 
 
     OE = 1        (6) 



 
From (4)   Let ½(k2+1)/k be replaced by a       (7) 
From (5)   Let  ½(k2−1)/k be replaced by b       (8) 
 
Thus;    OC = a,  CE = b,  OE =1            (9) 
 

Cos 2θ = OE/OC = 1/a                 (10) 
   Sin 2θ = CE/OC =   b/a                 (11) 
   Tan 2θ = CE/OE =   b                  (12) 

  
From (7)      a = ½(k2+1)/k  = ½k + ½(1/k)            (13) 
From (8)      b= ½(k2−1)/k  =  ½k – ½(1/k)            (14) 
 
Add (13) and (14)      k = a + b                    (15) 
(13) minus (14)     1/k = a – b                    (16) 

Multiply (15) X (16)      (a + b)(a – b) = k(1/k)  
     a2 − b2 = 1         (17) 

     a2 = b2 + 1         (18) 

 
 
Fig 4 The ratios of the lengths in the SRRM, expressed as a or b based in the length of OE = 1 
 
 
 



 
 
 
The key triangles of Special Relativity and the hyperbola as their locus 
 
It has been determined that a, b, k and θ are constants related to the relative motion of Peter and Ruby. They 
are constants, rather than variables because, by definition the relative motion between inertial observers does 
not change. In a relative motion with a different value of θ; a, b and k change accordingly. 
 
In triangle OEC, it has been shown that, at any θ,  a2 − b2 = 1 (17). 
 
Thus, as θ changes, the relationship between t and x changes such that t2 − x2 = 1 
 
By the Principle of Relativity, a signal sent by Ruby at time (by Ruby’s clock) t′ = a – b and reflected by 
Peter at time (by Peter’s clock) t = 1 would result in the triangle OGF congruent with the triangle OEC 
(Figure 5).  
 
Hence, as θ changes,       (t′)2 - (x′)2  = 1   

 

Thus, the locus of G and E (Figure 5) is described by t2 − x2  = (t′)2 - (x′)2  = 1 
 
The triangles OEC and OGF in Figure 5 are the key triangles for analysing Special Relativity.  
 
    

 

 
Figure 5. The locus of G and E as θ changes; the hyperbola t2 − x2  = (t′)2 - (x′)2  = 1 
 
The angle OEC is a right angle formed between OE (the t′ axis) and CE (the x axis).  
Similarly, the angle OGF is a right angle formed between OG (the t axis) and FG (the x′ axis). 
The orthogonal pairing of axes is shown in Figure 6 



 
 
 
Orthogonal pairing of axes in the SRRM 
 
 

 
 
 
Figure 6. The two orthogonal and symmetric pairs of axes in the SRRM. 

 
As θ varies in Fig 6, the t′ axis remains perpendicular to the x axis.  In addition, at any θ, the t′ and x axes 
have the same scale.  Similarly, at any θ, the t axis remains perpendicular to the x′ axis, with the same scale. 

Thus, there are two orthogonal and symmetric pairs of axes at any θ. These can be considered as coordinate 
systems. They are shown in Fig.6 as the green and blue pairs of axes 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
Transformation equations derived from the SRRM  
 

 
Figure 7. The Spacetime Interval to a point P and the transformation equations in the SRRM 

 
The transformation equations can be derived in the SRRM by considering the coordinates of a point P. 
 
x′ = LP – LM = x Cos 2θ - t′ Sin 2θ = x (1/a) - t′ (b/a) Thus,   x =  ax′ + bt′   (19) 
 
t′ = OQ – MQ = t Cos 2θ - x′ Sin 2θ = t (1/a) - x′ (b/a)   t =  at′ + bx  (20) 
 
x = NQ + QP = t Sin 2θ + x′ Cos 2θ =   t (b/a) + x′ (1/a)      x′ = ax – bt  (21) 

t = OL + LN = t′ Cos 2θ + x Sin 2θ = t′ (1/a) + x (b/a)   t′ = at – bx  (22) 

 

The spacetime interval OP 

The length of the spacetime interval OP from the origin to point P can be determined by Pythagoras from 
Figure 5 

(OQ)2 + (QP)2  = (OP)2 =  (OL)2 + (LP)2   

(ONCos2θ)2 +(MPCos2θ)2 =(OP)2 =(OMCos2θ)2+(NPCos2θ)2 

{t2 + (x′)2} = {(t′)2 + x2}                    (23) 
 
Thus, if the green and blue pairs of axes are considered as coordinate systems, the interval OP is invariant in 
the transformation between the green and blue systems, shown by Euclidian geometry.  
 

 
 



 
 
 
Discussion 
 
Development of the SRRM 

The SRRM was developed without any preconceptions about the relationship between distance and time. 
The constants a, b, k and θ have emerged which are all related to the relative motion. No definition of 
velocity has been assumed. 

Combination of the coordinate systems when θ is zero 
 
It can be seen in Figure 6 that, as θ decreases, the time axes of the blue and green coordinate systems rotate 
symmetrically to approach the t^ axis. When θ is zero the blue t and green t′ axes combine; the blue x and 
green x′ axes form a straight line. Thus, in the SRRM, when θ is zero, the blue, green and median systems 
combine and all that is apparent is the orthogonal t^, x^ median system. 

If the values x/t′ in the green coordinate system and x′/t in the blue coordinate system are the fundamental 
measures of velocity, this would not be apparent as θ approaches zero and the coordinate systems combine.  
The values x/t and x′/t′ become close approximations to x/t′ and x′/t in the orthogonal system where 
velocities are negligible in relation to the speed of light. 

The limits for 2θ, Tan 2θ and Sin 2θ 

In figure 8, as θ varies, the points E and G form the curve  t2 - x2 = (t′)2 - (x′)2  = 1 

 

Figure 8.  The hyperbola t2 - x2 = (t′)2 - (x′)2  = 1 formed as θ varies 



The curve t2 - x2 = 1 has abscissae of  t = x or -x. These are the lines of the light or radar signal at 45 degrees 
either side of the t^ axis.  
 
These lines are the limit of each angle θ which, thus, has a range 0 - 45 degrees. The angle 2θ, thus, has a 
range of 0 - 90 degrees. In that range, Tan 2θ increase from zero to infinity.  

In the green coordinate system,  x/t′= CE/OE = Tan 2θ  = b  

Similarly, in the blue coordinate system, x′/t = FG/OG = - Tan 2θ  = - b 

When θ = 22.5 degrees,  2θ = 45 degrees.  Tan 2θ = b = 1. When 2θ > 45 degrees, b increases with a limit of 
infinity.  

In contrast, x/t = Sin 2θ = b/a cannot exceed one. This is because a > b (18). Put another way, the maximum 
value for the sine of any angle is 1. 

Invariance of the spacetime interval 

The invariance of the spacetime interval in the transformation between the blue and green coordinate 
systems in Figure 7 was shown for the interval OP starting at the origin. It is known that, in Euclidian 
geometry, the result will be true for the interval between any two points regardless of the origin. 

Thus, in the transformation between the green and blue coordinate systems,  

(∆t)2 + (∆x′)2   =   (∆t′)2 +   (∆x)2                   

It follows, therefore, that, in the transformation between the green and blue coordinate systems, the 
spacetime interval is invariant using Euclidian geometry. 

Pairs of coordinate systems 

The basis of the SRRM is that relative motion is always in symmetrical pairs. It follows therefore that any 
rotation of an axis with relative motion will always be accompanied by a symmetrical rotation. Thus, in 
relative motion, the symmetrical green and blue coordinate systems will always be formed. Thus a 
transformation from the green to the blue system is always possible with Euclidian geometry. 

Conclusion 

The SRRM has emphasised the importance of the pairs of orthogonal axes; t′, x, and t, x′, which all have the 
same scale. These can be considered as a pair of Euclidian coordinate systems. The invariance of the 
spacetime interval in a transformation from the x, t′ to the t, x′ coordinate system using Pythagoras suggests 
that spacetime is Euclidian when analysed in a symmetrical model. 
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