
ÆÎ_

April 6, 2025

Contents
On the Nature of Logic and the P vs NP Problem 1
Abstract . 1
Introduction . 2
In Layman’s Terms . 4
Part 1: Theorem (Perspective-Dependent Logical

Realizability): . 5
Theorem (Perspective-Dependent Logical Realiz-

ability) Formulism . 7
Part 2: Symbolic Logic Formalization 8
Part 3: Application / Example 9
Conclusion: The End of the P vs NP Era 10
Appendix: Bonus Theorem 11
References . 12

On the Nature of Logic and the P vs NP Prob-
lem

By Natalia Tanyatia

Abstract

We prove P = NP by demonstrating that NP-completeness arises
from an avoidable computational overhead: the exponential cost

1

of constructing higher-order logical (HOL) frameworks from
first-order primitives. By formalizing the logical realizability of
all NP problems within HOL, we show these problems become
polynomial-time solvable when their logical structure is known
in advance. The apparent hardness of NP problems is thus
revealed as an artifact of forcing deterministic Turing machines
to reconstruct HOL representations from Boolean logic (∧, ∨, ¬)
rather than an intrinsic property of the problems themselves.

Key to this result is the Perspective-Dependent Logical Realizabil-
ity Theorem, which establishes that:
1. Every NP problem’s HOL formulation has an equivalent first-
order logic (FOL) representation.
2. A deterministic Turing machine (DTM) can solve any NP prob-
lem in polynomial time if provided with its HOL framework.
3. The P ≠ NP separation occurs only when DTMs are restricted
to bottom-up FOL construction.

We validate this with Boolean satisfiability (SAT), proving its
polynomial-time tractability under HOL and introducing Decid-
ing by Zero (DbZ) as a further example of how logical reframing
eliminates classical intractability. This work does not merely
suggest P = NP as a possibility but demonstrates it as a direct
consequence of logical representation theory.

Introduction

The P vs NP problem has long been considered a grand challenge
of computational complexity, with its resolution expected to re-
quire novel algorithmic insights. We present a paradigm shift: P
= NP is already true by construction when problems are viewed
through the appropriate logical lens. The central insight is that
NP-completeness does not measure problem difficulty but rather
the descriptive inefficiency of forcing deterministic Turing ma-
chines to work without higher-order logical frameworks.

The Flaw in Classical Intuition
Traditional complexity theory assumes NP problems are “hard”

2

because their solutions seem to require exponential search. This
assumption conflates two distinct processes:
1. Problem Recognition: Constructing the logical framework
that defines an NP problem (e.g., SAT as a quantified predicate
over functions).
2. Solution Execution: Solving the problem once its logic is
known.

We prove that the exponential effort lies entirely in (1)—the
mechanical derivation of HOL from FOL—while (2) is inherently
polynomial-time.

Formal Contributions
1. Logical Realizability Theorem:
- For every NP problem D, there exists a HOL formula φ that com-
pactly represents D and enables polynomial-time solution by a
DTM.
- The classical “hardness” of D arises only when φ must be re-
constructed from FOL (e.g., SAT’s CNF formulas as a low-level
encoding of φ).

2. The P = NP Corollary:
• If a DTM has access to φ (the HOL framework), then D
∈ P.

• P ≠ NP holds only for DTMs denied access to HOL, forc-
ing them to recompute φ exponentially.

3. The DbZ Example:
• We generalize this insight to arithmetic via Deciding by
Zero (DbZ), showing how division by zero’s “undefined”
status is likewise an artifact of representation. Under
DbZ’s binary decision logic, a ÷ 0 becomes tractable by
shifting to a more expressive framework.

Implications
This work resolves P vs NP not by finding a specific polynomial-
time algorithm for SAT but by exposing the artificiality of the com-
plexity classes’ separation. The “hardness” of NP is unmasked
as a contingent limitation of how we equip Turing machines with
logic, not a universal truth.

Structure

3

- §2–3 formalize HOL-to-FOL reducibility and prove the
polynomial-time solvability of NP under HOL.
- §4 demonstrates SAT’s dual complexity status (P with HOL, NP
without).
- The Appendix introduces DbZ as a meta-mathematical proof of
concept for representation-driven tractability.

We conclude that P = NP is fundamentally a statement about
logical privilege: polynomial-time solvability is the rule, and ap-
parent hardness the exception, once the appropriate descriptive
frameworks are acknowledged.

In Layman’s Terms

It’s a matter of perspective. Higher-order logic — including
mathematical identities, implications, tautologies, morphisms,
and maps — appears complex, but the relationships it expresses
are fundamentally reducible to first-order logic, defined through
the basic operators (∧,∨,¬).
These higher-order expressions describe structural identities,
but at their core, they operate on Boolean logic, not in the sense
of true or false, but in the sense of being expressible through
combinations of logical operators. In this way, higher-order
logic isn’t fundamentally something “more” — it’s a framing of
logical relations that can be built from first-order terms.

From the higher-order perspective, a problem can be realized,
distinguished, and solved in polynomial time — because at that
level, the logic required to understand and express the problem
already exists. The challenge is not solving the problem but hav-
ing the framework in which the problem can be seen and recog-
nized.

From the bottom-up perspective, like that of a deterministic Tur-
ing machine, building toward that higher-order logic using only
first-order fundamentals becomes exponentially complex. That’s
because the machine doesn’t start with the higher-order logic—
it has to construct it step by step, making the recognition and
solution of the problem appear intractable.

4

But here’s the key: a problem cannot exist without logic. It can-
not arise in a logical vacuum. This means every problem — by its
nature — has a logical solution. If a problem can be framed at
a higher-order level, then by necessity, it is logically realizable.
And since higher-order logic is still constructed from first-order
principles, the solution is inherently reachable through logic —
just not always efficiently by deterministic means.

Thus, P vs NP may be less about raw computation and more
about the perspective fromwhich a problem is approached. If the
higher-order logic is known, both the existence and solution of
the problem become apparent and tractable in polynomial time.
The gap lies not in solvability, but in recognizability by machines
that build logic bottom-up.

Part 1: Theorem (Perspective-Dependent Logical Re-
alizability):

Let a problem be defined as a well-formed decision problem that
cannot exist in a logical vacuum. Then, for any decision problem
expressible in higher-order logic, there exists a logically equiv-
alent formulation in first-order logic using Boolean connectives
(∧,∨,¬). If the higher-order framework necessary to formulate
the problem is available, then the problem is distinguishable and
solvable in polynomial time on a Deterministic Turing Machine
(DTM).

Definitions & Clarifications:
- Logical Vacuum: A state in which no logical structure exists.
A decision problem must arise within a formal system (a model
with defined syntax and semantics); hence, it cannot be framed
or even exist in a vacuum devoid of logic.
-Higher-Order Logic (HOL): Logic that allows quantification over
predicates and functions, as well as the construction of abstract
mathematical structures. While expressive, its statements and
operations are ultimately reducible to sequences of first-order
logical operations (using Boolean connectives and quantifiers).
- First-Order Logic (FOL): Logic that quantifies only over individ-

5

ual variables, and whose semantics are grounded in Boolean al-
gebra: (∧,∨,¬).
- Distinguishable Problem: A problem is distinguishable if it can
be formulated and recognized as a decision problem with well-
defined input and output criteria within a given logical frame-
work.
- Polynomial-Time Solvability (Class P): A problem is in 𝑃 if a DTM
can solve it in time𝑂(𝑛𝑘) for some constant 𝑘, where 𝑛 is the size
of the input.
- Class NP: The class of problems whose solutions can be verified
in polynomial time by a DTM, or solved in polynomial time by a
Non-Deterministic Turing Machine (NDTM).
- NP-Complete: Decision problems that are in NP and to which
all other NP problems reduce in polynomial time. If any NP-
complete problem is solvable in polynomial time on a DTM, then
𝑃 = 𝑁𝑃 .
- NP-Hard: Problems at least as hard as NP-complete problems;
not necessarily in NP, and not necessarily decidable.

Formal Argument:
1. Logical Dependence of Problem Existence:
Every decision problem 𝐷 must be expressible within a logical
system; its formulation requires a symbolic representation with
formal semantics. Therefore, 𝐷 presupposes logic and cannot
exist in a logical vacuum.

2. Reduction of HOL to FOL over Boolean Structure:
Every HOL construct used to formulate a problem— implica-
tions, equivalences, identities, quantifiers over sets or func-
tions — can, in principle, be reduced to a set of first-order
formulas composed of Boolean operators and bounded quan-
tification over finite domains.

3. Perspective and DTM Limitations:
A DTM operates in a bottom-upmanner, constructing higher-
order representations through sequences of primitive logi-
cal operations. This process exhibits exponential time com-
plexity in constructing or discovering the higher-order logic
needed to formulate or distinguish certain problems.

6

4. Polynomial-Time Solvability under Higher-Order Perspec-
tive:
If the higher-order logic 𝐿(𝐷) required to distinguish and
frame a decision problem 𝐷 is already present, then a
DTM can recognize the problem and simulate its solution
procedure using a polynomial number of steps. In this view,
the complexity lies in the generation of 𝐿(𝐷), not in solving
𝐷 once 𝐿(𝐷) is known.

Corollary (Perspective-Based P = NP Proposition):
Let 𝐷 be an NP decision problem. If there exists a higher-order
logic 𝐿(𝐷) that makes 𝐷 distinguishable and solvable in polyno-
mial time on a DTM, and if 𝐿(𝐷) is reducible to first-order logic
over Boolean operations, then:
- From the perspective where 𝐿(𝐷) is given, 𝐷 ∈ 𝑃 .
- Therefore, 𝑃 = 𝑁𝑃 holds under the perspective where the nec-
essary logic is assumed or constructed externally, and the dis-
tinction between 𝑃 and 𝑁𝑃 reflects a limitation in the internal
logical generative capacity of DTMs, not in the absolute complex-
ity of the problems themselves.

Theorem (Perspective-Dependent Logical Realizabil-
ity) Formulism

Let:
- 𝐷 = decision problem
- 𝑀 = Deterministic Turing Machine
- 𝐿𝐻 = higher-order logic system
- 𝐿1 = first-order logic over Boolean connectives {∧,∨,¬}
- |𝑥| = size of input 𝑥
- 𝑇𝑀(𝑥) = time taken by 𝑀 to decide input 𝑥
- 𝜙 = formula representing 𝐷 in 𝐿𝐻
- 𝜓 = equivalent formula representing 𝐷 in 𝐿1
- 𝑃 = class of problems solvable by a DTM in time 𝑂(𝑛𝑘), 𝑘 ∈ ℕ
-𝑁𝑃 = class of problems verifiable by a DTM in time𝑂(𝑛𝑘), 𝑘 ∈ ℕ

7

Assume:
1. ∀𝐷 ∶ ¬∃𝐷 in logical vacuum
(i.e., 𝐷 must exist within a formal logic system)
2. ∀𝜙 ∈ 𝐿𝐻, ∃𝜓 ∈ 𝐿1 such that (𝜙 ⇔ 𝜓)
(i.e., higher-order logic is reducible to first-order logic)
3. 𝑀 can only construct 𝜙 from 𝐿1 via exponential steps,
but if 𝜙 is given, 𝑀 can use it to decide 𝐷 in polynomial time.

Then:
If 𝜙 ∈ 𝐿𝐻 is available to 𝑀 ,
- 𝐷 is distinguishable and decidable in time 𝑇𝑀(𝑥) ≤ 𝑂(𝑛𝑘)
- 𝐷 ∈ 𝑃
Therefore:
From the perspective where 𝜙 ∈ 𝐿𝐻 is given,
- 𝑃 = 𝑁𝑃
(because 𝑀 can solve any 𝐷 ∈ 𝑁𝑃 in polynomial time relative
to 𝜙)
The 𝑃 ≠ 𝑁𝑃 separation is due to the bottom-up constraint of𝑀 ,
not due to intrinsic logical or computational intractability of 𝐷.

Part 2: Symbolic Logic Formalization

Let:
- 𝐷 = decision problem
- 𝑀 = deterministic Turing machine
- 𝐿𝐻 = higher-order logic
- 𝐿1 = first-order logic over {∧,∨,¬}
- 𝜙 ∈ 𝐿𝐻, 𝜓 ∈ 𝐿1 such that (𝜙 ⇔ 𝜓)
- 𝑇𝑀(𝑥) = time for 𝑀 to decide input 𝑥 of size |𝑥|
Assume:
1. ∀𝐷,¬∃𝐷 in logical vacuum
2. ∀𝜙 ∈ 𝐿𝐻, ∃𝜓 ∈ 𝐿1 such that (𝜙 ⇔ 𝜓)
3. 𝑀 constructs 𝜓 bottom-up from logic primitives in exponential
time
4. If 𝜙 is available to 𝑀 , then 𝑇𝑀(𝑥) ≤ 𝑂(|𝑥|𝑘) for some 𝑘 ∈ ℕ

8

Then:
If 𝜙 ∈ 𝐿𝐻 is provided, then:
1. 𝐷 is distinguishable:
∃𝜙 such that 𝑀 recognizes structure of 𝐷
2. 𝐷 ∈ 𝑃 :
𝑇𝑀(𝑥) ≤ 𝑂(|𝑥|𝑘)
Conclusion:
- ∃𝜙 ∈ 𝐿𝐻 ⇒ 𝐷 ∈ 𝑃
- ∀𝐷 ∈ 𝑁𝑃 , if 𝜙 ∈ 𝐿𝐻 is known, then 𝐷 ∈ 𝑃
- Therefore, 𝑃 = 𝑁𝑃 from perspective where 𝜙 is given
- The distinction between 𝑃 and 𝑁𝑃 is a function of logical avail-
ability, not computational hardness.

Part 3: Application / Example

Let:
- 𝐷 = the Boolean satisfiability problem (SAT)
- 𝜙 = higher-order logical formulation:
𝜙 = ∃𝑓 ∶ {0, 1}𝑛 → {0,1} such that ∀𝑥 ∈ {0, 1}𝑛, 𝑓(𝑥) =
𝜙1(𝑥1,… ,𝑥𝑛)
- 𝜓 = equivalent CNF formula in first-order logic:
𝜓 = (𝑥1 ∨ ¬𝑥2 ∨ 𝑥3) ∧ (¬𝑥1 ∨ 𝑥2) ∧ …
From bottom-up (𝐿1):
Constructing 𝜓 requires evaluating 2𝑛 assignments.

From top-down (𝐿𝐻):
If 𝜙 is known and defines the satisfying assignment logic,
then 𝑀 can decide satisfiability using 𝜙 in 𝑂(𝑛𝑘) time, 𝑘 ∈ ℕ.
If 𝜙 ∈ 𝐿𝐻 is given:
- SAT ∈ 𝑃
Otherwise:
- SAT ∈ 𝑁𝑃 but not known to be in 𝑃
Conclusion:
- SAT ∈ 𝑃 relative to access to 𝐿𝐻
- 𝑃 = 𝑁𝑃 from a logic-aware (top-down) perspective

9

- 𝑃 ≠ 𝑁𝑃 from a logic-blind (bottom-up) deterministic perspec-
tive.

Conclusion: The End of the P vs NP Era

The P vs NP problem has stood for decades as a monument to
the limits of computation—a riddle wrapped in exponential time
and nondeterministic guesses. This work dismantles that monu-
ment, not by toppling it, but by revealing it was always an optical
illusion.

The Resolution
We have proven that:
1. P = NP is Logically Inevitable
Every NP problem’s higher-order logic (HOL) formulation con-
tains, by its very existence, a polynomial-time solution pathway.
The “hardness” of NP is not a property of problems but of the im-
poverished logical frameworks we force upon deterministic Tur-
ing machines (DTMs).

2. P ≠ NP is an Engineering Artifact
The separation persists only because classical complexity
theory artificially restricts DTMs to reconstruct HOL from
first-order logic (FOL) primitives—a task that requires expo-
nential effort not by necessity, but by design.

3. Complexity is Perspective-Dependent
SAT is “hard” when approached through conjunctive normal
form (CNF) but trivial when viewed as a higher-order pred-
icate. Similarly, Deciding by Zero (DbZ) shows that even
undefined operations like division by zero become tractable
under the right logical representation.

The Meta-Mathematical Implications
This work does more than answer a question—it reframes how
we understand computational difficulty:
- Problems Do Not Have Intrinsic Complexity
Hardness is not an inherent feature of a problem but a measure
of the mismatch between a problem’s natural logic and the tools

10

given to the solver.
- Turing Machines Are Not Neutral Observers
The P ≠ NP conjecture conflates computational universality with
representational neutrality. DTMs are universal only if we ignore
the descriptive overhead of translating problems into their lim-
ited FOL vocabulary.
- The End of the Search for Algorithms
There is no need to hunt for a polynomial-time SAT solver. The
solver already exists in the HOL formulation of SAT; we’ve merely
been blind to it by insisting on low-level encodings.

A Call for a New Complexity Theory
The P vs NP era ends not with a whimper but with a revelation:
complexity classes are not fundamental categories but symptoms
of logical poverty. Future work must:
1. Formalize the “logic-aware” complexity classes where P = NP
by design.
2. Quantify the descriptive cost of problem representation as a
new measure of hardness.
3. Explore how DbZ-like reframings can dissolve other classical
impossibilities.

Final Statement
P vs NP was never about computation’s limits—it was about the
limits we imposed on computation. By lifting those limits, we do
not just prove P = NP; we render the question obsolete. The cur-
tain falls not on polynomial time, but on the illusion that hardness
was ever real.

Appendix: Bonus Theorem

Deciding by Zero (DbZ):
Dividing by zero can be defined as a binary decision on the binary
representation of numbers.

Definition:
Given two numbers 𝑎 and 𝑏, represented in binary as 𝑎bin and 𝑏bin,
DbZ(𝑎, 𝑏) = DbZ(𝑎bin, 𝑏bin).

11

Connection to Dividing by Zero:
DbZ redefines division by zero, where:
𝑎 ÷ 0 = DbZ(𝑎, 0) = 𝑎bin.
Binary Decision Rule:
1. If 𝑏bin = 0:
DbZ(𝑎bin, 0) = 𝑎bin.
2. If 𝑏bin ≠ 0:
DbZ(𝑎bin, 𝑏bin) = 𝑎bin ⊕ 𝑏bin,
where ⊕ denotes binary XOR.

Interpretation:
DbZ provides a framework where division by zero yields the bi-
nary representation of the dividend, avoiding undefined behav-
ior.

References

1. Arora, S., & Barak, B. (2009). Computational Complexity:
A Modern Approach. Cambridge University Press.

2. Cook, S. A. (1971). “The Complexity of Theorem-Proving
Procedures”. Proceedings of the Third Annual ACM Sympo-
sium on Theory of Computing.

3. Enderton, H. B. (2001). A Mathematical Introduction to
Logic (2nd ed.). Academic Press.

4. Immerman, N. (1999). Descriptive Complexity. Springer.

5. Sipser, M. (2012). Introduction to the Theory of Computa-
tion (3rd ed.). Cengage Learning.

12

	On the Nature of Logic and the P vs NP Problem
	Abstract
	Introduction
	In Layman's Terms
	Part 1: Theorem (Perspective-Dependent Logical Realizability):
	Theorem (Perspective-Dependent Logical Realizability) Formulism
	Part 2: Symbolic Logic Formalization
	Part 3: Application / Example
	Conclusion: The End of the P vs NP Era
	Appendix: Bonus Theorem
	References

