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Abstract

In this paper, we will propose to generalize the Dirac delta impulse to sev-
eral dimensions. This generalization will be done by taking into account the one-
dimensional version of the Dirac delta impulse. From a projection of the variance-
covariance matrix, located inside the cone of positive semi-definite matrices, onto
the boundary of the cone of positive semi-definite matrices having only the last
eigenvalue equal to zero, we will make the transition from Gaussian probability
theory to determinism.
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1 Introduction

In this paper, we will recall the notion of Dirac delta impulse in the one-dimensional
case. This classical definition is made from a limit computed from a one-dimensional
Gaussian. We will then generalize this concept to several dimensions from a projection
of a variance covariance matrix Xy, initially located inside the cone of semi-definite
positive matrices, onto the boundary of the cone of semi-definite positive matrices hav-
ing only the last eigenvalue equal to zero: . — 9S{.

We will also explain the reason why we have generalized the notion of Dirac delta
impulse to several dimensions. From the result obtained in paper [1] page 4, this pro-
jection will show the transition between the domain of Gaussian randomness and the
determinism.



2 Classical Dirac delta impulse obtained from a Gaus-
sian

Before introducing the generalized Dirac delta impulse, we need to recall the approach
to the Dirac delta impulse made by the one-dimensional Gaussian in order to make
the analogy later. Recall that the one-dimensional Dirac delta impulse is made by the
following limit of the Gaussian:

2
6(x) = lim [

1
c—0" /27102 exp{_ffz ]

In what follows we will generalize this concept to several dimensions.




3 Generalized Dirac delta impulse obtained from the
multivariate Gaussian

We define the generalized Dirac delta impulse (f( —fix ) from the multivariate Gaussian
N (ux,Zy2) as follows:

(X - fix)' A (X - fix)
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6(X — fix) = Py, —as; [N (fix, Zx2 )] = Pr,—as: [(21) 72 [Zye| 72 exp - 5

]

To understand the generalized Dirac delta impulse, we must initially consider a random
Gaussian vector following the probability law N (uy, Zx2).

Ps,—as; then corresponds to the projection of the variance covariance matrix, located
inside the cone of positive semi-definite matrices, onto the boundary S of the cone
of positive semi-definite matrices having only the last eigenvalue equal to zero. This
projection of the matrix is done by performing the spectral decomposition of the
matrix Xy. = P.A.P', by canceling the last eigenvalue of A and by returning to the
starting basis.

Onto the boundary of the cone dS{, the determinant of the matrix is zero (|Zx| =
0), the matrix Xy is therefore singular and not invertible. By making the smallest
eigenvalue A,,;,(Zy2) of the matrix Xy tend towards 0, we will show that we have
indeed generalized the Dirac delta impulse to several dimensions.(see the analogy)

As we demonstrated in the paper ([1] page 4) the boundary of the cone of positive
semi-definite matrices having only the last eigenvalue equal to zero dS § contains the
predictability and the determinism. The projection szz—>asg therefore expresses
the transition from Gaussian probability theory to determinism.

The vector X of the multivariate Gaussian A (jiy,Zy2) therefore infers randomness
while the vector X of the generalized Dirac impulse 6(X - fix) infers determinism.

For the multivariate Gaussian, the transition from randomness to determinism is

made with the projection 73;)(2_,353 or by the limit (lirr; .
Amin(Zy2)—0




4 Integration for the generalized Dirac delta impulse

Consider the multivariate Gaussian ¥ = A (uy, Zy2) projected onto the boundary 95§
with the spectral decomposition of its variance covariance matrix: Zy> = PA.P'.

If we consider the vectors X and fiy in the normalized eigenvector basis of Zy.:
X = P_I? and ﬁx = P_I/,ly

then we obtain the following equality:

[x S[P.(X - fix)]dX = 1

The Dirac delta impulse in the initial basis therefore passes into the normalized eigen-
vector basis of the matrix Zx. — 95, then it is transformed with the linear application
matrix P into another Dirac delta impulse whose the integral of [—oo, +00] gives 1.

Proof
Consider the Gaussian N (fiy, Zy2 ):

The projection Ps , .55+ will be put in the form of a limit in which we make tender
the smallest eigenvalue A,,;,(Zy2) of the matrix Xy towards 0.
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We obtain:
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=1
because it is a probability density integrated over the entire domain.

The integral of the generalized Dirac impulse therefore becomes:
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We will show in what follows that this last limit is always equal to 1 for all values of A.
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We pose a = and z = (x, — ) if A, tends towards O then a tends towards

infinity.
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we have therefore demonstrated the following equality:

+oo N
f S[P(X — fix)]dX1dXo...dX, = 1

(f( _ﬁx)tl...n—l'A(_ll...n—le..Jz—l)'(X —HX)1.n-1 B 1 (xn ‘:“n)z]



5 Analogy between the generalized Dirac delta impulse
and the classical Dirac delta impulse

The one-dimensional dirac delta impulse:

| 400 ifx=1x9
6(x—x0)—{ 0 ifx # xo

with

+00
/ 6(x—xp)dx=1

oo

becomes multidimensional the following definition:

o[ 4o ifX=jix
(X “X)‘{o if X # fiy

with

[,o S[P.(X - jix)]dX =1

Where P corresponds to the matrix in the spectral decomposition of the variance co-
variance matrix Zy2 projected onto the boundary 4S5 j:

EXz = PAPt
and

the vectors X and Jiy are expressed in the normalized basis of eigenvectors of the matrix
projected Zx onto boundary 45 ;.

With several variables, we have another property that is added to the one-dimensional
impulse: we have demonstrated that §(X — fiy ) infers determinism (see paper [1] page
4) onto 4S § while the multivariate Gaussian N (fiy, Xx2 ) infers randomness inside the
cone of positive semi-definite matrices.



6 Conclusion

In this paper, the generalization of the Dirac delta impulse was made by taking into
account the classical one-dimensional version and the limit of the one-dimensional
Gaussian. The limit then became, in a multidimensional case, a projection of a strictly
positive-definite variance-covariance matrix onto the boundary of the cone of positive
semi-definite matrices having only the last eigenvalue equal to zero. The generaliza-
tion can also be done by making the last eigenvalue (the smallest) tend towards zeros:

(lirr; . This projection, giving the generalized Dirac delta impulse, made the tran-
Amin (Zy2 ) —0

sition between Gaussian randomness and the determinism. The multivariate Gaussian
in fact infers randomness, while the generalized Dirac delta impulse obtained by pro-
jection infers determinism.
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