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Abstract: Over the past decades and more recently, there has been a significant effort and renewed interest in 

extending special relativity theory beyond the speed of light. In this comprehensive note, the paper “Relativity 

of superluminal observers in 1+3 spacetime” by Dragan et al. [1] is examined. The authors attempted to 

extend the aforementioned theory to superluminal inertial reference frames by generalizing Parker’s two-

dimensional transformation with the addition of two pairs of spatial dimensions. This approach is not novel 

and is already well-documented in the literature. It is demonstrated that unlike Lorentz transformations, the 

authors’ transformations do not form an orthogonal-orthochronous group due to their negative determinant. 

Consequently, principles such as relativity, causality, spatial isotropy, and temporal ordering cannot be 

preserved. The authors’pseudo-transformations are revealed to be reflections in a plane through the origin 

rather than true transformations. Also, a theoretical maximum limit of the Lorentz factor is introduced, which 

leads to an extension of Lorentz transformations to luminal inertial reference frames and raises an important 

conceptual question about the status and role of the symbolic quantity ‘c’, commonly called the speed of light 

in vacuum, as the neutrino and particularly the photon have non-zero mass. Therefore, it appears that as long 

as the non-zero mass of the photon is not taken seriously into full consideration, our current knowledge of 

physics, astronomy, astrophysics, and cosmology remains not only incomplete but above all vague and 

doubtful. Unfortunately, it seems that many present-day researchers are unaware that distinguished physicists 

like Einstein [59-62], de Broglie [63-66], Proca [67-71], Schrödinger [72-74], and many others [75-92] had 

already attributed non-zero mass to the photon because they realized that the photon itself behaves like a 

massive particle, carrying not only energy but also momentum and can exert pressure on a target. And at no 

stage may we really be able to conclude experimentally the exact masslessness of the photon because the 

Heisenberg uncertainty principle gives the lowest mass m that can be measured in the Universe’s age as  

𝑚~ℏ𝑡−1𝑐−2~1.5 × 10−33eV/𝑐2.  Once again, therefore, non-zero photon mass gives rise immediately to a 

conceptual question: What is the primary purpose of the symbolic quantity ‘c’ when it appears in some 

important equations describing the laws of physics? Moreover, this inclusive note highlights Hassani 

superluminal spatio-temporal transformations, which possess the algebraic structure of a linear group and 

serve as a generalization of Lorentz transformations for superluminal inertial reference frames. These 

transformations are anticipated to be fundamental in superluminal relativistic mechanics [50]. 

Keywords: special relativity theory; luxonic total energy; Lorentz transformations; superluminal observers 

1. Introduction 

 

The early investigation of superluminal (relative) motion, i.e., motion faster than the average speed 

of light in vacuum, goes back to Heaviside [2] and Sommerfeld [3]. However, after the publication 

of the work by Bilaniuk et al. [4] and Feinberg [5], who also coined the term ‘tachyon’ (hypothetical 

superluminal particle), an avalanche of articles on tachyons and superluminal spatio-temporal 

transformations followed [6-18]. The theoretical, observational, and experimental evidence of the 

(apparent) superluminal motions at micro and macroscopic scales [19-40] allows one to suggest that  

in Nature there are actually three kinematical levels (KLs): subluminal-KL, luminal-KL, and 

superluminal-KL in which physical phenomena could manifest at subluminal, luminal, and 

superluminal velocities, respectively. Also, each KL should be characterized by its group of spatio-
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temporal transformations. For example, subluminal-KL is characterized by the Galilean group for 

subrelativistic velocities (𝑣 << 𝑐0) and by the Lorentz group for relativistic velocities (𝑣 < 𝑐0); 
luminal-KL and superluminal-KL would have, respectively, luminal and superluminal groups for 

luminal velocities (𝑣 = 𝑐0) and superluminal velocities (𝑣 > 𝑐0). All these conceptual and empirical 

efforts and considerations have recently renewed a huge interest in the extension of the Lorentz 

transformations (LTs) for superluminal inertial reference frames (IRFs) in order to ‘superluminalize’ 

special relativity theory (SRT) [1,41-50]. Unfortunately, all of those serious attempts, including the 

recent ones, failed to ‘superluminalize’ SRT, except for the work in Ref. [50]. 

       The failure to extend SRT beyond the average vacuum speed of light was and still is mainly due 

to a misunderstanding of SRT formalism, the mathematical properties, and physical consequences of 

LTs, and the Minkowski space-time as a seat (arena) of relativistic physical phenomena. Moreover, 

the said failure is attributable to a misapprehension of the correlation between the causality principle 

and the relativity principle. 

       In this note, we show that the authors’ approach is not original and is already well known in the 

literature. We draw attention to the fact that contrary to the main property of Lorentz 

transformations, the authors’ ones do not form an orthogonal-orthochronous group since their 

determinant is negative. Additionally, we show that the authors’ approach violates the relativity 

principle, the causality principle, and the condition of spatial isotropy and temporal ordering because 

the authors’ pseudo-transformations are not really transformations but rather reflections in a 

plane through the origin. 

 

2. Lorentz Transformations 

 

In the following discussion, we focus exclusively on the proper Lorentz group, SO(3,1), in the 

context of SRT, or for those who prefer the other metric signature, SO(1,3), also known as the 

Lorentz group. The purpose of this section is to demonstrate that the well-known mathematical 

properties and physical consequences of LTs do not apply to Parker’s transformation or its 

generalization by the authors [1] in a superluminal context. To do this, consider two IRFs S and S' in 

standard configuration, where S' is moving uniformly in a straight line at a subluminal velocity 

v relative to S along the x-axis. The LTs relate S to S' and vice versa are: 

                                                      𝑆 → 𝑆′:

{
 
 

 
 
𝑥′ = 𝛾(𝑥 − 𝑣𝑡)                                                   
𝑦′ = 𝑦                                                                   

𝑧′ = 𝑧                     ,                                              

𝑡′ = 𝛾 (𝑡 −
𝑣𝑥

𝑐2
)                                                   

                 (1) 

 

                                                      𝑆′ → 𝑆:

{
 
 

 
 
𝑥 = 𝛾(𝑥′ + 𝑣𝑡′)                                                   

𝑦 = 𝑦′                                                                    

𝑧 = 𝑧′                     ,                                              

𝑡 = 𝛾 (𝑡′ +
𝑣𝑥′

𝑐2
)                                                   

                 (2) 

 

with                                            𝛾 ≡ 𝛾(𝑣) =
1

√1 − 𝑣2 𝑐2⁄
 ,    −𝑐 < 𝑣 < 𝑐. 

  

       It is clear that the determinant or the Jacobian of transformations (1) and (2) is positive, more 

precisely equal to +1. This property implies the orthogonality of LTs in addition to their 

orthochronous nature. As a direct result, we have the invariance of the Minkowski quadratic form 
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                                         𝑥′2 + 𝑦′2 + 𝑧′2 − 𝑐2𝑡′
2
= 𝑥2 + 𝑦2 + 𝑧2 − 𝑐2𝑡2,                                        (3)  

 

or, equivalently, in terms of differential 

 

                                  𝑑𝑥′2 + 𝑑𝑦′2 + 𝑑𝑧′2 − 𝑐2𝑑𝑡′
2
= 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 − 𝑐2𝑑𝑡2.                             (4) 

 

The identity (3) or (4) implies the invariance (in all IRFs) of the universal conversion (or 

proportionality) factor2, 𝑐, which has the physical dimension of a constant speed whose 

conventionally recommended and adopted numerical value is 299 792 458 m/s [51,52,53], 

comparable to the experimentally measured numerical value of 299 792 457.6 m/s [54,55,56] for 

the average3 speed of light in vacuum, 𝑐0. Theoretically and practically, 𝑐 and 𝑐0 are virtually 

indistinguishable; this particularity is due to the fact that 𝑐 ≈ 𝑐0 in all IRFs. The physical 

interpretation of 𝑐 mentioned above is exclusively based on the fact that we have taken into 

consideration the mass of neutrinos [57,58] and the non-zero mass of photons [59-92]. Additionally, 

the combination of 𝑐 and 𝑐0 allows us to determine the theoretical maximum numerical value of the 

Lorentz factor as follows 

                                                 𝛾max = lim
𝑣→𝑐0

1

√1−(
𝑣

𝑐
)
2
 = 

1

√1−(
𝑐0
𝑐
)
2
= 19358.217189 .                             (5) 

 

       If one considers the theoretical, experimental and observational evidence of non-zero photon 

mass and adheres to the indicated physical interpretation of ‘𝑐’ and the actual average speed of light 

𝑐0, then the naive idea propagated in popular science literature and many textbooks on SRT, which 

states that “according to SRT, from the perspective of the photon, time does not pass. The packet of 

electromagnetic radiation would cover vast distances but no time would have elapsed for it. Why? 

Simply because in the context of SRT, the velocity four-vector 𝐔 = 𝑑𝐗/𝑑𝜏, where 𝐗 is the position 

four-vector and 𝜏 is the proper time of a material object does not exist for world-lines of objects 

such as photons traveling at the speed of light. The expression for proper time is ∆𝜏 =

∆𝑡√1 − 𝑣2/𝑐2 . Thus, for photons traveling at the speed of light, we get ∆𝜏 = 0. That is why the 

velocity four-vector for photons is, in fact, undetermined.” becomes meaningless since a massive 

photon travels at 𝑐0. Consequently, the photon proper time is ∆𝜏 = ∆𝑡√1 − 𝑐0
2/𝑐2. 

 

 

                                                           
      2Actually, the theoretical, experimental and observational evidence of non-zero photon mass has 

naturally raised the following conceptual question: What is the status and role of the symbolic quantity 

‘c’ when it appears in some important equations describing the laws of physics?  

      3 When using the phrase ‘the speed of light in vacuum’, it is important to make a clear distinction 

between the ‘anisotropic one-way speed of light’ and the ‘isotropic two-way speed of light’. 

Practically, the one-way speed of light, from a source to an observer or a detector, cannot be measured 

independently of a convention on how to synchronize the clocks at the source and the detector. What 

can be experimentally measured is the round-trip speed or two-way speed of light from the source to a 

mirror (or another method of reflection) and back to the detector. Thus, to keep the two-way speed of 

light at ‘𝑐0’, any increase in speed in one direction must be countered by a decrease in the opposite 

direction. The result is that the vacuum speed of light, 𝑐0, is the arithmetic average speed over the 

around-trip journey, and we cannot be certain that the speed is the same in both directions. Therefore, 

when using the phrase ‘the speed of light in vacuum’, we must refer to it as ‘the average speed of light 

in vacuum.’ The index 0 in 𝑐0  indicates the vacuum in a classical sense. 
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3. Luminal Lorentz transformations 

 

SRT is a well-established and experimentally verified physical theory with its own domain of 

applicability and limits of validity. It is crucially based on the concept of IRF and LTs. In the context 

of SRT, ‘c’ plays the role of the limiting velocity, particularly for relativistic velocities. However, 

many authors have criticized the emphasis placed on the invariance of the vacuum speed of light as a 

central postulate in the standard derivation of the LTs. These authors have criticized the 

overemphasized role of the speed of light in the basic foundations of SRT and have proposed a 

new approach to these foundations that dispenses with the postulate of the invariance of light speed 

[93-96]. Consequently, they derived the LTs by simply invoking the relativity principle 

alone, without resorting to the aforementioned postulate of invariance. In fact, it is not necessary to 

suggest the concept of the existence of a universal limiting velocity or to identify it with the speed of 

light; this consideration has been known for a long time [97-103]. 

       Unfortunately, these important works have not received sufficient attention in textbooks and 

articles on SRT, despite being more economical in derivations and allowing for a more acceptable 

conceptual approach to be easily adopted and practically used than is possible in any of the ‘two 

postulate derivations.’ By founding SRT, partially or totally, on a property of the speed of light, one 

could logically understand that this theory is exclusively linked to a very restricted class of natural 

phenomena directly related to electromagnetic radiation. However, the pedagogical and 

epistemological lesson to be drawn from the history of science is that, 120 years after its 

formulation, SRT still seems to govern a wide variety of natural phenomena within its framework 

and formalism, in addition to describing the structure of the space-time arena in which those natural 

phenomena take place. 

        Now let us begin the derivation of luminal LTs by observing that if v = c, the Lorentz factor 

becomes infinite, and if v > c, it leads to an imaginary value of the Lorentz factor. This demonstrates 

that the relative velocity of two IRFs related by LT must be less than ‘c’. Finite real spatio-temporal 

coordinates in one subluminal IRF must correspond to finite real spatio-temporal coordinates in any 

other subluminal IRF. An IRF can be associated with any non-accelerated particle or material object 

moving with subluminal velocity, translating into the requirement that the magnitude of particles’ 

velocity and all physical signals should be limited by ‘c’. This consideration justifies the prohibition 

of the existence of luminal IRFs (i.e., when the IRFs S and S' are in relative motion at a luminal 

velocity of magnitude c with respect to each other) in the SRT context. However, the determination 

of the upper limit for the Lorentz factor or equivalently the theoretical maximum numerical value 

for the Lorentz factor renders the mentioned prohibition unnecessary since in general we have 𝑐 ≈
𝑐0 in all IRFs. Therefore, for the case when S' is moving uniformly in a straight line at a luminal 

velocity v = c0 relative to S along the x-axis, the luminal LTs relating S to S' and vice versa are 

respectively: 

                                              𝑆 → 𝑆′:

{
 
 

 
 
𝑥′ = 𝛾max(𝑥 − 𝛽max𝑐𝑡)                                                   

𝑦′ = 𝑦                                                                                  

𝑧′ = 𝑧                                   ,                                              

𝑡′ = 𝛾max (𝑡 − 𝛽max
𝑥

𝑐
)                                                   

           (6) 

 

                                               𝑆′ → 𝑆:

{
 
 

 
 
𝑥 = 𝛾max(𝑥

′ + 𝛽max𝑐𝑡′)                                                   

𝑦 = 𝑦′                                                                                   

𝑧 = 𝑧′                                    ,                                              

𝑡 = 𝛾max (𝑡′ + 𝛽max
𝑥′

𝑐
)                                                   

          (7) 

 

with                                         𝛾max = (1 − 𝛽max
2 )−1/2 ,   𝛽max = 𝑐0/𝑐 . 
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       If we take into account the fact that the current numerical value of  𝑐 is 299 792 458 m/

s which is selected by recommendation and conventionally fixed by definition for the purpose of 

metrology [51,52,53], while the numerical value of 𝑐0 is actually experimentally determined as 

299 792 457.6 m/s from direct frequency and wavelength measurements of the stabilized laser 

[54,55,56], we find that the proposed 𝛾max, luminal LTs (6) and (7), and the concept of luminal 

IRFs  clarify the frontiers between relativistic physics and superluminal physics more visibly. 

This renders claims such as: “Probably a proton detected at a speed close to 

0.9999999999 9999999999 99951𝑐; the Lorentz factor is about 𝛾 ≈ 3 × 1011; perhaps the 

Lorentz symmetry is violated and/or the apparent existence of a privileged local inertial frame.” 

absolutely meaningless. 

       In this note, the main motivation behind determining the theoretical maximum numerical value 

for the Lorentz factor, 𝛾max = 19358.217189, is the desire to circumvent a singularity that is 

essentially an absurdity. For instance, SRT formalism, modern physics textbooks, and research 

articles assert that, among other things, the velocity of a material object can never reach but only 

approach the speed of light, which is usually denoted as 𝑐, without specifying a precise upper limit 

on how close it could get to that specific speed. Even the terms ‘relativistic velocity’ and ‘ultra-

relativistic velocity’ are ambiguous and confusing. The legitimate question then arises: How close to 

the speed of light can an object move? Let us evaluate the importance of this question as follows: An 

electron is a fundamental particle with a mass of 𝑚𝑒 = 9.10938356 × 10
−31kg . What happens to 

the electron’s relativistic kinetic energy 𝐾𝑒 = [(1 − 𝑣
2 𝑐2⁄ )−1 2⁄ − 1]𝑚𝑒𝑐

2 when v approaches, but 

never reaches, the speed of light? Now, suppose the electron is hypothetically accelerated to the 

velocity 

 

       𝑣 = 0.9999999999 9999999999 9999999999 9999999999 9999999999 9999999999  
9999999999 9999999999 9999999999 9999999999 9999999999 9999999999  
9999999999 895 𝑐. 
 

That is 130 nines behind the decimal point followed by the number 895. Putting this numerical value 

in the Lorentz factor formula 𝛾 = (1 − 𝑣2 𝑐2⁄ )−1 2⁄ , we get 𝛾 ≈ 2.2 × 1060, which by itself is 

enough to tell us that there is some unacceptable exaggeration. As a direct consequence, the Lorentz 

factor really needs to be fixed at a reasonable maximum attainable value. Now after substitution in 

the above relativistic kinetic energy formula, we get 𝐾𝑒 = 1.787 × 10
47 J. The Sun’s rest energy 

𝑚⊙𝑐
2 = 1.787 × 1047J, with 𝑚⊙ = 1.989 × 1030 kg  and  𝑐 = 299 792 458 m/s. Finally, a 

simple comparison yields 𝐾𝑒 = 𝑚⊙𝑐
2. It is really quite absurd; an elementary particle of an 

infinitesimally small mass whose relativistic kinetic energy becomes suddenly equal to the rest 

energy of the Sun! This absurdity is a perfect illustration of why we need an adequate answer to the 

formerly asked question, namely, How close to the light speed can an object move? To come to 

the desired adequate answer it is only necessary to grasp the already proposed physical interpretation 

of the symbolic quantity ‘𝑐’ sharply enough as it is needed for the purposes of physical 

practicability. In the framework of SRT, we assume that the experimentally determined value of 

𝑐0 = 299792457.6m/s is the maximum possible ultra-relativistic velocity that a moving material 

object can reach. If one adheres strictly to the stated physical interpretation of ‘𝑐’, and the status 

and  role of 𝑐0, then it turns out that the theoretical maximum numerical value of the Lorentz factor 

would be 𝛾max = (1 − (𝑐0/𝑐)
2)−1 2⁄ .   
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        The most important result that can be deduced from the above considerations is the following:  

From a practical standpoint, the theoretical maximum numerical value of the Lorentz factor should 

serve as a criterion to delineate the frontiers between relativistic physics and superluminal physics as 

follows. Let 𝐸 and 𝐸0  be the total energy and rest energy of a hypothetical moving material point 

such that: 

 

1) If 
𝐸

𝐸0
< 𝛾max , the material point is moving at subluminal velocity, 𝑣 < 𝑐0, and belongs to 

subluminal-KL. 

2) If  
𝐸

𝐸0
= 𝛾max , the material point is moving at luminal velocity, 𝑣 = 𝑐0, and belongs to luminal-

KL. 

3) If 
𝐸

𝐸0
> 𝛾max , the material point is moving at superluminal velocity, 𝑣 > 𝑐0, and belongs to 

superluminal-KL. 

 

        Logically, the above answer leads to another question: What is the average magnitude of 

velocity of the material point in each KL? If we take into account the fact that in Nature nothing is 

infinite, all physical parameters of phenomena and material objects are defined and characterized by 

finite values. None can prevent any freely moving material body from reaching or 

exceeding the speed of light in vacuum. In terms of the average magnitude, the velocity in units of 

𝑐0~𝑐 of a moving material point of total energy 𝐸 and rest energy 𝐸0 = 𝑚𝑐
2 is given by the 

following relations: 

                                     

{
 

 𝛽 = √1 − (
𝐸0

𝐸
)
2

  ,   
𝐸

𝐸0
≤ 𝛾max , 𝛽 =

𝑣

𝑐
                            

  𝜀 = √1 − (
𝐸0

𝐸
)
2

  ,   
𝐸

𝐸0
> 𝛾max , 𝜀 =  

𝑣

𝜗(𝑣)
  .                     

 
                 (8)                            

  

The first relation in (8) for the case 𝐸/𝐸0 < 𝛾max is well-known in SRT, whereas the second one for 

the case 𝐸/𝐸0 > 𝛾max 
is deduced from the formalism of [50]. Furthermore, in the framework of the 

present work, the theoretical existence of the maximum Lorentz factor (5) implies, among other 

things, the hypothetical existence of massive luxons, i.e., particles of non-zero mass capable of 

moving at exactly the speed of light. As a pedagogical illustration, we have selected some important 

particles and evaluated the numerical value of their luxonic total energy E = 𝛾max𝐸0.These values 

are listed in Table1 below.  

 
                                                                       

                                              
Particle                rest energy               luxonic total energy 

                                                                                      
𝐸0(MeV)                       

  E  (MeV)                                                                                                                                                                 
                                                                        

                                                             electron                      0.511                        9.892049 × 103                  

                                                             proton                    938.28                        18.163429 × 106                 

                                                             neutron                  939.57                        18.188400 × 106                               

                                                             muon                      105.70                          2.046163 × 106                             

                                                             pion


                   139.60                          2.702407 × 106                              

                                                             pion
0

                   135.00                          2.613359 × 106           

   

Table 1: A set of six particles is selected and the value of the luxonic 

  total energy E = 𝛾max𝐸0 of each particle is computed and listed. 
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       In the following, we will briefly demonstrate the theoretical and practical importance and 

usefulness of the concept of luxonic total energy. This concept serves as an energetic milestone 

that signifies the limits of validity and the end of SRT applicability, marking the beginning of the 

realm of superluminal physics where all physical phenomena manifest and evolve in superluminal 

space-time. The result of superluminal physics may appear completely unusual and even be 

considered unphysical by some individuals. But historically, similar criticisms were made about SRT 

in its early days because its opponents were too skeptical and resistant to change, as they were 

heavily invested in the classical physics dominated by Newtonian mechanics. However, skepticism 

eventually dissipated when opponents of SRT realized that relativistic mechanics can be reduced to 

Newtonian mechanics for subrelativistic velocities, specifically when 𝑣 ≪ 𝑐  or  𝑣/𝑐~0.  

        Table 1 reveals that the luxonic total energy of the proton and muon is of the order of 

TeV, which by itself is enough to suggest that the observed high, very high, and ultra-high energy 

cosmic rays could be a natural consequence of their acceleration at extremely high superluminal 

velocities by some galactic and extragalactic structures. Active galactic nuclei and their 

superluminal jets can be seen as potential sources and accelerators of the observed ultra-high energy 

cosmic rays (UHECRs). For example, blazar PKS 1502+106 has exhibited a superluminal jet 

component motion at a velocity of 22𝑐 [109], and also blazar 3C279 has two inner jet components 

moving at apparent superluminal velocities of 15𝑐 and 20𝑐, respectively [110].  

       Some theoretical models expect that since cosmic rays are generally charged particles, they are 

deflected along their path to Earth by intervening galactic and extragalactic magnetic fields, and 

interactions with cosmic microwave background radiation (CMBR) suppress the flux of UHECRs. 

However, if we consider the concept of luxonic total energy as a practical energetic criterion instead 

of the Greissen-Zatsepin-Kuzmin (GZK) limit or cutoff (5 × 1019eV), which is highly questionable 

not only because it was formulated on the assumption that neutrinos and photons are massless 

particles but also because this limit is violated by the detection of several cosmic rays with energies 

higher than 5 × 1019eV [111-115], we find that UHECRs with energies above the luxonic total 

energy of the proton could be deflected less strongly by magnetic fields and suppressed very feebly 

by CMBR due to their higher superluminal velocities. Therefore, their arrival directions are 

expected to be closely correlated with their original sources.  

        Let us return to the LTs, more precisely with respect to the quadratic form (3) or 

(4), whose invariance in all IRFs indicates the homogeneity and isotropy of space, and the 

uniformity of time. This fact exactly reflects the main requirement of the relativity principle, which 

is the equivalence of all IRFs. Furthermore, when 𝑣 = 0, the LT (1) or (2) becomes an identity 

transformation whose determinant is also equal to +1: 

 

                                                        𝑆 → 𝑆′: {

𝑥′ = 𝑥
𝑦′ = 𝑦

𝑧′ = 𝑧
𝑡′ = 𝑡

  .                                                                      (9) 

We have from (4): 

                                                     (𝑢′2 − 𝑐2) 𝑑𝑡′
2
= (𝑢2 − 𝑐2) 𝑑𝑡2,                                                  (10)   

this kinematically implies that if 𝑢′ ≤ 𝑐 in 𝑆′, then 𝑢 ≤ 𝑐 in 𝑆 and if 𝑢′ ≥ 𝑐 in 𝑆′, then  𝑢 ≥ 𝑐 in 𝑆. 

Thus, the important fact that should be noted is that subluminal velocities always transform to 

subluminal velocities and superluminal velocities to superluminal velocities. For if 𝑢 and 𝑢′ are the 
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velocities of a point (a signal or a particle) in 𝑆 and 𝑆′, respectively. This also implies that if 𝑑𝑡′ ≥ 0 

in 𝑆′, then 𝑑𝑡 ≥ 0 in 𝑆. It is clear from the above properties that the relativity principle is again 

preserved via the velocity transformation, and the causality principle is also preserved through the 

temporal ordering. Furthermore, contrary to traditional naive belief, SRT can easily accommodate –

indeed, does not exclude– superluminal signaling at the kinematical level. Actually, the superluminal 

signals do not violate the causality principle but they can shorten the luminal vacuum time span 

between cause and effect. In other words, the superluminal signals save time. 

4. Generalized Parker’s transformations 

In 1961, Parker derived the so-called Parker’s (two-dimensional) superluminal spatio-temporal 

transformation by considering a world with only one spatial dimension and one temporal dimension 

to study the kinematics of tachyons. He named the context and the formalism ‘theory’ [7]. Here, 

we attempt to rewrite Parker’s transformation in a more conventional form to reduce unnecessary 

complexity and enhance comprehension. 

                                                𝑆 → 𝑆′: {
𝑥′ = 𝜇(𝑥 − 𝑣𝑡)

𝑡′ = 𝜇 (𝑡 −
𝑣𝑥

𝑐2
)

 ,                                                     (11) 

where 𝜇 = (
𝑣2

𝑐2
− 1)

−1 2⁄

, and 𝑣 (𝑐 < |𝑣| < ∞) is the superluminal relative velocity of the primed 

(IRF) 𝑆′ with respect to unprimed (IRF) 𝑆. The two IRFs are supposed to be in standard 

configuration. Apparently, after reflection, Parker realized that his ‘transformation’ cannot be 

extended to three spatial dimensions, and he wrote in Ref. [7]: “It does not seem to be possible to 

generalize our theory to three dimensions, so that it may have little if any relevance to constructing a 

three-dimensional theory of tachyons.” 

        Actually, despite the fact that his ‘transformation’ is not a transformation at all but instead a 

spatio-temporal reflection, Parker’s conclusion was and still is quite correct about the impossibility 

of generalizing transformation (11). However, in [1], Dragan and his co-authors attempted to 

challenge Parker’s conclusion but unfortunately they failed, as we shall see.  

       To circumvent this impossibility, Dragan et al. [1] added 𝑦′ = 𝑦 , 𝑧′ = 𝑧  to the (1+1)-

dimensional case to obtain the so-called generalized Parker’s transformations: 

 

                                                      𝑆 → 𝑆′:

{
 
 

 
 
𝑥′ = 𝜇(𝑥 − 𝑣𝑡)                                                   

𝑦′ = 𝑦                                                                   

𝑧′ = 𝑧                     ,                                              

𝑡′ = 𝜇 (𝑡 −
𝑣𝑥

𝑐2
)                                                   

                 (12) 

 

                                                        𝑆′ → 𝑆:

{
 
 

 
 
𝑥 = 𝜇(𝑥′ + 𝑣𝑡′)                                                   

𝑦 = 𝑦′                                                                    

𝑧 = 𝑧′                     .                                              

𝑡 = 𝜇 (𝑡′ +
𝑣𝑥′

𝑐2
)                                                   

                (13) 

In doing so, there is no notable originality since anybody, including Parker himself can easily do this 

banal task. Now, let us show mathematically and physically that transformations (12) and (13) have 

nothing to do with any useful transformations. First, it can be seen that  𝜇 = (
𝑣2

𝑐2
− 1)

−1 2⁄

 is singular 
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at 𝑣 = ±𝑐, and 𝜇 becomes imaginary at 𝑣 = 0. Consequently, (12) or (13) cannot reduce to an 

identity transformation. For the limit at 𝑣 → +∞, (12) and (13) become respectively:   

                                                              𝑆 → 𝑆′: {

𝑥′ = −𝑐𝑡   
𝑦′ = 𝑦        

𝑧′ = 𝑧        
𝑐𝑡′ = −𝑥      

,                                                            (14)            

                                                              𝑆′ → 𝑆: {

𝑥 = 𝑐𝑡′
𝑦 = 𝑦′

𝑧 = 𝑧′
𝑐𝑡 = 𝑥′

       .                                                             (15)      

It is worth noting that (14) is not an identity transformation, unlike (15). This indicates that, unlike 

Lorentz transformations, the so-called generalized Parker's transformations (14) and (15) are not 

internally coherent. There is no coherence between (14) and (15). Thus, when the superluminal 

velocity becomes infinitely large, the new coordinates x' and t' can no longer be identified as spatial 

and temporal ones because they become timelike and spacelike, respectively. Therefore, the new 

coordinates x' and t', while adequately viable as mathematical labels in space-time, lack an intrinsic 

chronological interpretation, which is exactly what one desires from the concept of coordinates in 

SRT. This is quite understandable given that (14) and (15) are not structurally coherent. Furthermore, 

in (3+1)-dimensions, the so-called generalized Parker’s transformations (12) and (13) transform the 

Minkowski quadratic form  

     𝑄(𝑥, 𝑦, 𝑧, 𝑐𝑡) = 𝑥2 + 𝑦2 + 𝑧2 − 𝑐2𝑡2     to    𝑄(𝑥′, 𝑦′, 𝑧′, 𝑐𝑡′) = −𝑥′
2
+ 𝑦′

2
+ 𝑧′

2
+ 𝑐2𝑡′

2
,          (16) 

or equivalent, the light-cone 

                       𝑥2 + 𝑦2 + 𝑧2 − 𝑐2𝑡2 = 0     to    −𝑥′
2
+ 𝑦′

2
+ 𝑧′

2
+ 𝑐2𝑡′

2
= 0,                                  (17) 

and the wave operator (d’Alembertian)  

                      
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
 −

𝜕2

𝑐2𝜕𝑡2
      to   −

𝜕2

𝜕𝑥′
2 +

𝜕2

𝜕𝑦′
2 +

𝜕2

𝜕𝑧′
2 +

𝜕2

𝑐2𝜕𝑡′
2 .                                    (18) 

Therefore, the Minkowski quadratic form, the light-cone and the wave operator are not invariant 

under (12) or (13) for superluminal relative motion. The generalized Parker transformations change 

the signature of the metric (+ + + −) to (− + + +) showing more conclusively that the rotational 

symmetry,  homogeneity, and isotropy of space, and the uniformity of time are completely lost for 

superluminal relative motion. As a direct consequence, the relativity principle is violated since its 

main requirement, the equivalence of all IRFs, does not hold anymore. Additionally, the causality 

principle is violated because the temporal ordering is reversed. The so-called vacuum speed of 

light, 𝑐, is not the same in both superluminal IRFs. If √𝑥2 + 𝑦2 + 𝑧2 𝑡⁄  has the value 𝑐 in 𝑆, while in 

𝑆′, √𝑥′2 − 𝑦′2 − 𝑧′2 𝑡′⁄ = 𝑐′. 

        Now, let us demonstrate that unlike LTs, the so-called generalized Parker’s transformations 

cannot describe superluminal relative motion. To do this, suppose 𝑢 and 𝑢′ are two superluminal 

velocities of a hypothetical signal or particle in 𝑆 and 𝑆′, respectively. By differentiating and squaring 

transformation (12), we get:  
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                                       𝑑𝑥′2 + 𝑑𝑦′2 + 𝑑𝑧′2 − 𝑐2𝑑𝑡′2 = −𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 + 𝑐2𝑑𝑡.                     (19) 

The differentials refer to the signal/particle worldline. We can rewrite identity (19) in the following 

form: 

                                                                (
𝑢′
2

𝑐2
− 1)𝑑𝑡′

2
= −(

𝑢2

𝑐2
− 1)𝑑𝑡2.                                       (20) 

From equation (20), we can see that superluminal velocities always transform to superluminal 

velocities. That is, if 𝑢′ > 𝑐 in 𝑆′,  then  𝑢 > 𝑐 in 𝑆. However, time has lost its usual role as a 

chronological parameter, i.e., a positive real-valued scalar. This is evident from equation (20): 

                                                                  √
𝑢′
2

𝑐2
− 1  𝑑𝑡′ = 𝑖√

𝑢2

𝑐2
− 1 𝑑𝑡,                                            (21)       

which is, of course, physically meaningless. Another temporal anomaly can be deduced as follows. 

Supposing the hypothetical superluminal signal/particle propagating at  𝑢 = 𝑢𝑥 > 𝑐 along the x-axis. 

Hence, by differentiating the 4th equation in (12), we obtain: 

                                                                       𝑑𝑡′ = 𝜇 (1 −
𝑣𝑢𝑥

𝑐2
) 𝑑𝑡.                                                   (22)     

Since  𝑣 > 𝑐  and  𝑢𝑥 > 𝑐 this implies (1 −
𝑣𝑢𝑥

𝑐2
) < 0. Thus, if 𝑑𝑡 > 0 in 𝑆, then  𝑑𝑡′ < 0 in 𝑆′, and 

vice versa. That is, if 𝑑𝑡 < 0 in 𝑆, then  𝑑𝑡′ > 0 in 𝑆′. It appears that Parker was and still is correct 

about the impossibility of generalizing transformation (11) to three dimensions. 

       The determinant or the Jacobian of (11), (12), and (13) is: 1. Therefore, the so-called Parker’s 

transformation and its supposed generalization are improper pseudo-transformations. It is also of 

interest to note that unlike LTs, the pseudo-transformations (11), (12), and (13) do not perform a 

rotation since they are not orthogonal and in fact do not form a group. Actually, these pseudo-

transformations in (1+1)-dimensions or in (3+1)-dimensions are not transformations at all and, once 

again, cannot be used to describe superluminal relative motion. Instead, they are spatio-temporal 

reflections in a plane through the origin. Two of these can be singled out as follows: spatial 

inversion, in which the spatial coordinates are reversed in sign, and temporal inversion, in which the 

time coordinate has its sign reversed. 

 

5. Authors’ formalism 

It seems that Dragan et al. [1] are not familiar with the general theory of linear transformations. This 

is evident from what the authors themselves wrote in their paper ([1]; page 3): “… we will pick the 

negative sign so that the transformation (3) remains a hyperbolic rotation.” By (3) the authors refer 

to Parker’s (1+1)-dimensional transformation (11). However, as demonstrated earlier, this pseudo-

transformation (3) or (11) is not orthogonal because its determinant or Jacobian is negative (−1). 

Therefore, it is evident that the authors either ignore or misunderstand the key property of hyperbolic 

rotation in the context of the general theory of linear transformations, which is that its determinant is 

always equal to (+1). This is simply because cosh2𝜃 − sinh2𝜃 = +1. 

        Concerning the authors’ formalism, which is exclusively based on successive substitutions and 

lacks reproducible calculations, any professional researcher in theoretical or mathematical physics 

could find that the authors’ approach is not only bizarre but also highly questionable mathematically 
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and physically. What went wrong? First of all, the authors confused mathematics with physics. 

Physics, as a natural science, uses mathematics as a tool or language, not as the primary focus. The 

laws of physics are expressed through mathematical equations, and to discover a new law, the 

corresponding equation must be formulated. However, the true meaning of a law is only revealed 

when the connection between the symbols in the equation and measurable physical phenomena is 

established through experiments or observations. In contrast to equations in a purely mathematical 

context, where experimental confirmation is not always necessary, in physics, experimental 

validation is crucial as mathematics itself is an abstract science. 

       In addition to confusing vectors with scalars, the authors also extended this confusion to 

the concept of time. For instance, instead of recognizing time as a universally accepted chronological 

parameter represented by a positive real scalar that is unidimensional, unidirectional, and uniform in 

all IRFs, the authors treated time as a three-dimensional vector in superluminal IRFs and as a 

temporal coordinate in subluminal IRFs [1]. This assumption is entirely disconnected from 

theoretical, mathematical, and experimental physics, as well as any reasonable speculative 

idealization. 

        We have previously seen that the pseudo-transformations (11), (12), and (13) violated the main 

requirements of the relativity principle and causality principle. Now the same requirements are again 

violated by supposing time to be a three-dimensional vector in one IRF and a temporal coordinate in 

another. All of this has reinforced the bizarreness of the authors’ formalism [1]. It appears that the 

authors were perfectly aware of this bizarreness, which is why they wrote (pages 3 and 4): “This 

result indicates that the laws of physics in the inertial superluminal frame of reference are different 

from those within the orthodox family of subluminal frames.” “Our interpretation that the 

superluminal observer characterizes spacetime using three temporal dimensions 𝒕′ poses several 

interpretational challenges.” In reality, the idea of assuming time to be a three-dimensional vector is 

not new. It seems that Dragan et al. [1] have overlooked that such a supposition was given early, in 

1975, by Demers [12], and in 1976, Mignani and Recami reconsidered and adopted the same idea 

[13] with the aim of superluminalizing SRT. However, the idea was eventually abandoned because it 

was not only fruitless but also an obstacle to any future development of ‘superluminal physics’. 

6. Hassani (superluminal spatio-temporal) transformations  

Taking into account what was previously said, the interested reader may curiously and logically ask 

the following question: After more than six decades of dedicated intensive theoretical and 

mathematical research, including the current ones, aimed at superluminalizing SRT, unfortunately, 

all have failed to reach the expected resultmaybe except for [50]why? Because the systematic 

scrutiny of the totality of those works has shown more conclusively that the principal reason behind 

the failure was typically a strategic one. How? In order to superluminalize SRT, the authors’ 

strategy was, firstly, exclusively focused on the superluminalization of LTs without setting the 

necessary and sufficient conditions that should be imposed on the desired superluminal (spatio-

temporal) transformations. But the veritable crux of the said failure was and still is the fact that 

instead of beginning with the superluminalization of LTs, the authors would, firstly, commence by 

superluminalizing the usual relativity principle, IRFs and Minkowski space-time. Once these triple 

tasks are correctly accomplished, the authors must set some basic conditions under which the LTs 

could be finally superluminalized.  
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A) Basic conditions (requirements): The desired superluminal (spatio-temporal) transformations 

between the superluminal IRFs should satisfy the following requirements 

a) They are real 

b) They are linear 

c) They are orthogonal 

d) They are orthochronous 

e) They form a group 

f) They contain LTs as a special case. 

 

It is worth noting that for a more detailed technical discussion about the conceptual strategy 

mentioned above, the reader can refer to Ref.[50], where Hassani (superluminal spatio-temporal) 

transformations were published in 2014 in an article titled “Foundations of Superluminal 

Relativistic4 Mechanics.” In addition to their mathematical, physical, and pedagogical significance 

due to their exact satisfaction of the aforementioned requirements, Hassani transformations 

are fundamentally based on an approach that is radically different from previous ones. Therefore, we 

felt compelled to rewrite them based on [50]. However, we should first rewrite the framework in 

which Hassani transformations were developed. 

 

B) Superluminalization of relativity principle: The extension of the relativity principle to the 

superluminal IRFs is called superluminalization of the relativity principle and consequently 

became the superluminal relativity principle which states that the totality of equations describing 

the laws of superluminal physics has the same form in all the superluminal IRFs. 

 

C) Specific kinematical parameter: Each IRF has, in addition to its relative velocity of magnitude 𝑣, 

its proper specific kinematical parameter (SKP), which has the physical dimension of a constant 

speed defined as 

                                                             {

𝜗(𝑣) = 𝑐,   − 𝑐 < 𝑣 < 𝑐                       

𝜗(𝑣) > 𝑣,    𝑐 ≤ |𝑣| < ∞ .                

 𝜗2(−𝑣) = 𝜗2(𝑣),    ∀𝑣                          

                                 (i) 

 

Mathematically, the SKP can also be interpreted as a constant function, which is a typical example 

of a step function5.  

 

                                                           
      4 The adjective Relativistic in the expression “Foundations of Superluminal Relativistic Mechanics” 

means that the basic element of this theory is the relativity principle generalized to uniform rectilinear 

superluminal motion. It also reflects two intrinsic aspects of this generalized principle: certain physical 

characteristics of a material system are relative, meaning that the numerical value of such 

characteristics measured by one observer may be different from the value measured by another 

observer moving with respect to the first one. This is what we mean by saying that certain physical 

quantities are observer-dependent. The second aspect, which is in fact inseparable from the first one, is 

that all fundamental laws of Nature are independent of the observer’s motion. This statement reflects 

the ‘absolute’ aspect of the superluminalized relativity principle, namely, that superluminal physical 

laws are the same for all inertial observers. The two aspects are inseparable because one directly 

follows from the other. Indeed, the relativity of motionthe states of rest and motion are relative and do 

not have any absolute meaningfollows immediately from the absoluteness of fundamental natural 

lawsthey are the same regardless of the state of motion of an observer. 
     5 Step functions are generally used to model idealized physical situations in which some quantity 

rapidly changes from one value to another in such a way that the exact details of the change are 

irrelevant for problem solving. 
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The following additional properties of 𝜗(𝑣) as a step function are highly important: 

1) 𝜗(𝑣) as a step function has a constant value on given intervals, but the constant is different for 

each interval. The constant value on each interval creates a series of horizontal lines, and the fact 

that the constant is different for each interval creates the jumps in between each horizontal line 

segment. 

2) 𝜗(𝑣) as a step function is not continuous nor differentiable in the entire domain of the function. 

3) 𝜗(𝑣) as a step function can only take a limited number of values. 

 

4) 
𝑑𝜗(𝑣)

𝑑𝑣
= 0,  ∀𝑣.  

 

5) ∫ 𝜗(𝑣)𝑑𝑣 =
𝑣<𝑐

0
𝜗(𝑣)𝑣.  

 

6)  ∫ 𝜗(𝑣)𝑑𝑣 =
𝑣<∞

0
𝜗(𝑣)𝑣. 

 

The integrals (5) and (6) are evaluated by using partial integration over the intervals 0 ≤ 𝑣 < 𝑐 and 

 0 ≤ 𝑣 < ∞. 

        If we take into consideration the definition (i) and the fact that 𝜗(𝑣) is a step function, we can 

assert that, in the context of [50], the mathematical notion of infinite velocities does not exist in 

physical reality.  This assertion seems quite reasonable since the observable Universe itself has a 

finite age and size. We can know absolutely nothing of the Universe outside what we can observe. 

Furthermore, ‘𝑐’ in (i) plays the role of a limiting velocity. But a limit has two sides, above and 

below. Therefore, according to (i), subluminal velocities have ‘𝑐’ as a maximum limiting velocity; 

luminal velocities have ‘𝑐’ as a critical velocity while superluminal velocities have ‘𝑐’ as a minimum 

limiting velocity. Moreover, the physical usefulness of LTs depends on condition −𝑐 < 𝑣 < 𝑐, while 

the physical applicability of Hassani transformations depends exclusively on definition (i), which is 

precisely the necessary condition under which the transformations find their physical applicability 

 

D)  Superluminal space-time: What is the appropriate geometry of space-time to describe 

superluminal physical phenomena? To answer this question properly, we need to consider the 

concept of the SKP, specifically its definition (i). Therefore, we can proceed to determine the 

mathematical framework of superluminal space-time based on the existence of superluminal motions. 

The mathematical structure of superluminal space-time, as the setting for superluminal physical 

phenomena, should be defined by the following superluminal quadratic form (superluminal metric): 

 

                             𝑥′2 + 𝑦′2 + 𝑧′2 − 𝜗2(𝑣)𝑡′
2
= 𝑥2 + 𝑦2 + 𝑧2 − 𝜗2(𝑣)𝑡2.                          (ii) 

As we can see, according to the definition of SKP (i), the superluminal quadratic form (ii) may be 

reduced to that of Minkowski (3) for the special case  𝜗(𝑣) = 𝑐  when −𝑐 < 𝑣 < 𝑐 . The signature of 

the metric (+ + + −) in (ii) means that the geometry of superluminal space-time is not completely 

Euclidean; it is, in fact, non-Euclidean because in the superluminal regime, space ‘contracts’ and 

time ‘dilates’ exactly as in Minkowski space-time for relativistic velocities (see, e.g., [50]). 

Consequently, the superluminal quadratic form (ii) should be invariant under the superluminal 

spatio-temporal transformation during any transition from a superluminal IRF to another. For this 

reason, one can also define a superluminal four-vector of position as follows: Relatively to (IRF) S, 
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we refer to the superluminal four-vector of the position of a superluminal event with spatio-temporal 

coordinates (x, y, z, t) as a vector R with components: 

                                (𝑥1 = 𝑥,   𝑥2 =  𝑦,   𝑥3 = 𝑧,   𝑥4 = 𝑖𝜗(𝑣)𝑡),            𝑖 = √−1 .                            (iii) 

Now we come to our main goal, which is the superluminal spatio-temporal transformations known 

as Hassani transformations. We will focus on their mathematical expressions in this discussion. 

For the derivation process, please refer to [50].  

       Superluminal space-time has already found theoretical applications at both the micro and 

macroscopic levels. For example, the existence of the Scharnhorst effect (faster-than-light photon 

propagation in the Casimir vacuum) [104-107] should lead one to adopt a superluminal space-time 

metric in the Casimir vacuum, which automatically leads to the adoption of both the superluminal 

relativity principle and the superluminal causality principle. The same applies to the Hartman effect 

(tunnel effect); the ‘rapid lateral expansion of optical luminosity in lightning-induced ionospheric 

flashes’[30]; ‘apparent faster-than-light pulse propagation in interstellar space’[31]; and ‘long-range 

superluminal pulse propagation in a coaxial photonic crystal’[40]. Therefore, conceptually, the 

motion of superluminal particles or the propagation of superluminal signals in superluminal space-

time shortens the luminal vacuum time span between cause and effect in accordance with the 

superluminal causality principle. 

       Let us consider two IRFs  𝑆 and 𝑆′, with  𝑆′ moving in uniform translational motion 

at a superluminal velocity 𝑣 along the x-axis of S, where 𝑐 ≤ |𝑣| < 𝜗(𝑣). We assume that a 

superluminal event can be described by spatio-temporal coordinates (x, y, z, t) in 𝑆 and (x', y', z', t') 

in 𝑆′. The two superluminal IRFs are assumed to be in a standard configuration. Therefore, 

the Hassani transformations from 𝑆 to 𝑆′ and vice versa are as follows: 

 

                                                     𝑆 → 𝑆′:

{
 
 

 
 
𝑥′ = 𝜂(𝑥 − 𝑣𝑡)                                                      

𝑦′ = 𝑦                                                                      

𝑧′ = 𝑧                       ,                                              

𝑡′ = 𝜂 (𝑡 −
𝑣𝑥

𝜗2(𝑣)
)                                                 

                (iv) 

 

                                                        𝑆′ → 𝑆:

{
 
 

 
 
𝑥 = 𝜂(𝑥′ + 𝑣𝑡′)                                                     

𝑦 = 𝑦′                                                                       

𝑧 = 𝑧′                        ,                                              

𝑡 = 𝜂 (𝑡′ +
𝑣𝑥′

𝜗2(𝑣)
)                                                   

                (v) 

with 

                                        𝜂 ≡ 𝜂(𝑣) = 1 √1 − 𝑣2 𝜗2(𝑣)⁄⁄   ,       𝑐 ≤ |𝑣| < 𝜗(𝑣).                               (vi) 

 

Let us show that the superluminal quadratic form (ii) is truly invariant under the Hassani 

transformation (iv) during any transition from S to S'. Thus, we have: 

 

           𝑥′
2
+ 𝑦′

2
+ 𝑧′

2
− 𝜗2(𝑣)𝑡′

2
= 𝜂2(𝑥 − 𝑣𝑡)2 + 𝑦2 + 𝑧2 − 𝜂2 (𝜗(𝑣)𝑡 −

𝑣𝑥

𝜗(𝑣)
)
2

 

                                                         = 𝜂2(1 − 𝑣2 𝜗2(𝑣)⁄ )𝑥2 + 𝑦2 + 𝑧2 − 𝜂2(1 − 𝑣2 𝜗2(𝑣)⁄ )𝜗2(𝑣)𝑡2                                                                         

                                            = 𝑥2 + 𝑦2 + 𝑧2 − 𝜗2(𝑣)𝑡2. 
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This important property implies that in (3+1)-dimensions, the Hassani transformations transform the 

superluminal wave operator  

                       
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
 −

𝜕2

𝜗2(𝑣)𝜕𝑡2
         to       

𝜕2

𝜕𝑥′
2 +

𝜕2

𝜕𝑦′
2 +

𝜕2

𝜕𝑧′
2 −

𝜕2

𝜗2(𝑣)𝜕𝑡′
2 ,                        (vii) 

  the superluminal light-cone 

                      𝑥2 + 𝑦2 + 𝑧2 − 𝜗2(𝑣)𝑡2 = 0         to        𝑥′
2
+ 𝑦′

2
+ 𝑧′

2
− 𝜗2(𝑣)𝑡′

2
= 0 ,                 (viii) 

 

the square of superluminal wave four-vector  

      

                    𝐊𝟐 = 𝑘𝑥
2 + 𝑘𝑦

2 + 𝑘𝑧
2 −

𝜔2

𝜗2(𝑣)
        to        𝐊′𝟐 = 𝑘′𝑥′

2 + 𝑘′𝑦′
2 + 𝑘′𝑧′

2 −
𝜔′

2

𝜗2(𝑣)
  ,                     (ix) 

where 

                     𝐊 = (𝑘𝑥, 𝑘𝑦 , 𝑘𝑧 , 𝑖
𝜔

𝜗(𝑣)
)              and        𝐊′ = (𝑘′𝑥′ , 𝑘

′
𝑦′ ,𝑘

′
𝑧′ , 𝑖

𝜔′

𝜗(𝑣)
) , 

 

with 

                                                   𝑆′ → 𝑆:

{
 
 

 
 𝑘𝑥 = 𝜂 (𝑘′𝑥′ + 𝜀

𝜔′

𝜗(𝑣)
)                                                        

𝑘𝑦 = 𝑘′𝑦′                                                                                

 𝑘𝑧 = 𝑘′𝑧′                                  ,                                              

 
𝜔

𝜗(𝑣)
= 𝜂 (

𝜔′

𝜗(𝑣)
+ 𝜀 𝑘′𝑥′)                                                      

      (x) 

 

   𝜂 = 1 √1 − 𝜀2⁄   ,        𝜀 = 𝑣/𝜗(𝑣) 

 

and also they transform the square of superluminal momentum-energy four-vector 

 

                         𝐏2 = 𝑝𝑥
2 + 𝑝𝑦

2 + 𝑝𝑧
2 −

𝐸2

𝜗2(𝑣)
        to      𝐏′2 = 𝑝′

𝑥′

2
+ 𝑝′

𝑦′

2
+ 𝑝′

𝑧′

2
−

𝐸′2

𝜗2(𝑣)
  ,                 (xi)                           

where 

                          𝐏 = (𝑝𝑥, 𝑝𝑦, 𝑝𝑧 , 𝑖
𝐸

𝜗(𝑣)
)            and       𝐏′ = (𝑝′

𝑥′
, 𝑝′

𝑦′
, 𝑝′

𝑧′
, 𝑖

𝐸′

𝜗(𝑣)
), 

with 

                                                      𝑆′ → 𝑆:

{
 
 

 
 𝑝𝑥 = 𝜂 (𝑝′

𝑥′
+ 𝜀

𝐸′

𝜗(𝑣)
)                                                        

𝑝𝑦 = 𝑝
′
𝑦′
                                                                               

 𝑝𝑧 = 𝑝
′
𝑧′
                                 .                                              

 
𝐸

𝜗(𝑣)
= 𝜂 (

𝐸′

𝜗(𝑣)
+ 𝜀 𝑝′

𝑥′
)                                                      

 (xii) 

                          

Effectively, the superluminal wave operator, the superluminal light-cone, the square of the 

superluminal wave four-vector, and the square of the superluminal momentum-energy four-vector 

are invariant under the Hassani transformations for superluminal relative motion. This is in good 

agreement with the aforementioned superluminal relativity principle. Moreover, it is easy to verify 

that the Hassani transformations (iv) and (v), which depend on the kinematical parameters 𝑣 and 
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𝜗(𝑣), form a linear orthogonal-orthochronous group and also form a rotation in superluminal space-

time since their determinant is equal to +1. Therefore, Hassani transformations satisfy all the 

imposed requirements (af). Note that these transformations preserve the orientation of the spatial 

axes and leave the sign of the time component unchanged. This allows us, once again, to affirm that 

the relativity principle and the causality principle are extended to superluminal IRFs via Hassani 

transformations, which can be reduced to LTs for the special case  𝜗(𝑣) = 𝑐  when −𝑐 < 𝑣 < 𝑐. 

They are actually a generalization of LTs to superluminal IRFs. If we apply the superluminal 

transformation (xii) of the superluminal momentum-energy four-vector that should characterize any 

material point moving at superluminal velocity to a material point of mass 𝑚 in its proper 

superluminal frame 𝑆′ (where the material point is at relative rest), in the observer’s frame 𝑆 (where 

the same material point is seen to move at superluminal velocity 𝑣, where 𝑐 ≤ |𝑣| < 𝜗(𝑣)), we 

obtain, after a simple calculation, the following expected superluminal three-dimensional 

momentum  p and  superluminal (total) energy 𝐸, respectively: 

 

                                                                               𝐩 =
𝐸

𝜗2(𝑣)
 𝐯 ,                                                       (xiii) 

and                                                                                       

                                                                                 𝐸 = 𝜂𝐸0 ,                                                         (xiv) 

 

with  𝜂 = 1 √1 − 𝑣2 𝜗2(𝑣)⁄⁄   ,  ‖𝐯‖ = 𝑣 , and 𝐸0 = 𝑚𝑐2 being the rest energy of the material point, 

the two important derived formulas (xiii) and (xiv) are part of the foundations of superluminal 

relativistic dynamics, a part of superluminal relativistic mechanics [50]. Furthermore, we can show 

that the combination of (xiii) and (xiv) leads immediately to the following superluminal momentum-

energy relation: 

                                                                           𝐸2 = 𝐩2𝜗2(𝑣)  +  𝐸0
2.                                               (xv) 

 

Consequently, if we know the total energy and momentum of a given superluminal particle, we can 

find its velocity. The general expression for the velocity of the superluminal particle in terms of its 

total energy and momentum can be deduced by differentiating Eq.(xv) with respect to 𝐩. We obtain: 

                                  

                                                                       𝑣 =
𝑑𝐸

𝑑𝐏
= 𝜗(𝑣)√1 −

𝐸0
2

𝐸2
 .                                           (xvi) 

Notice that it is not difficult to show that for the case 𝑣~𝜗(𝑣), the combination of 𝛾max =

1/√1 − 𝑐0
2/𝑐2  and 𝜂 = 1/√1 − 𝑣2/𝜗2(𝑣)  yields the expression 

𝜗(𝑣)

𝑐
=

𝜂

𝛾max
 or equivalently 

𝜗(𝑣)

𝑐
=

𝜂𝐸0

𝛾max𝐸0
= 

𝐸

E
  .Therefore, a direct substitution in Eq.(xvi) gives: 

                                                                    𝑣 =
𝑑𝐸

𝑑𝐏
= 𝑐 √

𝐸2−𝐸0
2

E
  2   .                                                  (xvii) 

It is easily seen from Eqs.(xvi) and (xvii) that the higher the energy, 𝐸, the more superluminal the 

particle’s velocity. Moreover, since the superluminal kinetic energy, 𝐾 = (𝜂 − 1)𝐸0, is equal to the 

difference between the superluminal total energy, 𝐸 = 𝜂𝐸0, and the rest energy, 𝐸0 = 𝑚𝑐
2, once a 

superluminal particle’s velocity 𝑣 is sufficiently close to 𝜗(𝑣), its superluminal kinetic energy 

increases due to the apparent increase in superluminal total energy not due to a change in velocity. 
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      The reader can be assured that, according to definition (i) of SKP6, the five formulas above are 

reducible to the known relativistic ones (belonging to the SRT formalism) for the special limiting 

case 𝜗(𝑣) = 𝑐  when −𝑐 < 𝑣 < 𝑐. Consequently, theoretically, the high, very high, and ultra-high 

energy cosmic rays can be easily investigated within the framework of superluminal relativistic 

mechanics [50] without any ad hoc assumptions or artificial devices for modifying SRT at extremely 

high energies, as proposed by some researchers. Actually, SRT, as a robust theory in its own domain 

of applicability, has its limits of validity and accordingly does not need to be modified but instead 

needs to be generalized through an approach radically departing from the previous ones. In this 

sense, superluminal relativistic mechanics [50] is precisely what SRT conceptually needs. It seems 

that many researchers are unaware of what exactly Einstein himself said about the limits of validity 

of SRT when he realized that, in the framework of GRT, the postulate of the constancy of the speed 

of light has no universal validity. Einstein’s awareness of the non-universality of the constancy of 

the speed of light is clearly mentioned in his popular book [108]. Einstein wrote: “In the second 

place our result shows that, according to the general theory of relativity, the law of the constancy of 

the velocity of light in vacuo, which constitutes one of the two fundamental assumptions in the 

special theory of relativity and to which we have already frequently referred, cannot claim any 

unlimited validity. A curvature of rays of light can only take place when the velocity of propagation 

of light varies with position. Now we might think that as a consequence of this, the special theory of 

relativity and with it the whole theory of relativity would be laid in the dust. But in reality this is not 

the case. We can only conclude that the special theory of relativity cannot claim an unlimited 

domain of validity (…)”  

      Incidentally, contrary to some repeated claims, in general, SRT does not prohibit superluminal 

motion or the manifestation of physical phenomena at superluminal velocities. Instead, it only 

excludes, within its proper framework, superluminal IRFs because of LTs. And Einstein himself was 

quite clear on this point, as he wrote in Ref.[116]: “A relative motion of reference systems with 

superluminal velocity is incompatible with our principles.”       

 

7. Superluminal relativistic mechanics and causality principle 

 

Let us now examine the practical utility of superluminal relativistic mechanics [50], specifically the 

application of superluminal relativistic kinematics to the study of superluminal signaling. First, 

we will explore superluminal causality within the framework of relativistic kinematics 

and demonstrate that contrary to the widespread naive belief that superluminal signaling violates the 

physical principles of relativity and causality, it actually upholds relativistic causality. This 

challenges the common assumption that causal processes or signals can only propagate within the 

light-cone. Many physicists and philosophers unquestioningly adhere to this requirement without 

critically evaluating its partial or total validity, relative or absolute validity, or universal 

applicability. This misconception can be traced back to Einstein’s 1907 note [116], later known as 

Einstein’s causality, and Tolman’s 1917 argument against faster-than-light signals [117], often 

referred to as Tolman’s paradox.  

      Tolman’s misinterpretation of relativistic kinematics led to misleading statements, which were 

subsequently used by other authors to argue against the possibility of superluminal signaling. 

However, a closer examination reveals that Einstein’s reasoning in his thought-experiment was 

flawed due to a lack of understanding of LTs. While historical context may excuse Einstein’s errors, 

                                                           
      6 The SKP, 𝜗(𝑣), as a step function can be easily shown to be generally 𝜗(𝑣)~𝑣 by using the expression of 𝜂 

as follows: we have from 𝜂 = 1 √1 − 𝑣2 𝜗2(𝑣)⁄⁄ , the expression  𝜗(𝑣) = 𝜂𝑣 √𝜂2 − 1⁄  . It is clear that for a 

sufficiently large value of 𝜂, we automatically get 𝜗(𝑣)~𝑣. Furthermore, we can show that the combination of   

𝛾max  and 𝜂 leads to the expression 𝜗(𝑣)/𝑐 = 𝜂/𝛾max. 
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 there is no justification for perpetuating these misconceptions in current literature. The root of these 

errors lies in a misunderstanding of the properties of LTs. LTs form an orthogonal-orthochronous 

group, preserving temporal ordering and the concept of past, present, and future in all IRFs. This 

preservation of causality principle through temporal ordering is inherent in LTs, ensuring that 

causality is maintained across different frames of reference. 

       Textbooks and peer-reviewed articles have dismissed the possibility of superluminal signaling 

due to authors’ ignorance of the causality conditions defined by the fourth equation of LTs. This 

ignorance or deliberate disregard of these conditions has led to the mistaken belief that superluminal 

motion inevitably results in causal paradoxes in SRT. While different inertial observers may disagree 

on the time ordering of superluminal signals, the necessary causality conditions provided by LTs 

prevent the emergence of causal paradoxes associated with time travel.           

       Before delving into the causality of superluminal signaling, it is indispensable to emphasize the 

importance of well-posed conditions in theoretical and mathematical physics. A properly worded 

problem should include relevant conditions for solving it effectively. Just as in mathematics, where 

specifying the set to which a variable belongs is crucial for solving equations, respecting the 

necessary causality conditions contained in LTs is essential for correctly analyzing superluminal 

signaling. For example, the physical validity of LTs hinges on the condition −𝑐 < 𝑣 < 𝑐  where 𝑣 

represents the relative subluminal velocity between two IRFs. It is crucial to note that the chosen 

interval dictates the value of 𝑣, emphasizing that 𝑣 cannot be arbitrary selected. 

      In the following discussion, we will clarify that the so-called Tolman’s paradox is not a paradox 

at all, but rather an unphysical solution incorrectly labeled as a paradox. This unphysical solution 

arises from the violation of the relativity principle and the necessary causality conditions inherent in 

the LTs and the law of composition of velocities. The correct physical solution to Tolman’s thought-

 experiment [117] can be obtained by applying the LTs and relativistic kinematics in accordance 

with the relativity principle, which automatically excludes the unphysical solution. Unfortunately, 

this pseudo-paradox has been perpetuated in several papers, leading to further citations of these 

incorrect works. It is important to rectify this error before it spreads further. To address this issue, we 

present a simple and analogous problem within classical kinematics to illustrate what is going on 

with Tolman’s reasoning. 

      A streamer has a velocity 𝑢 relative to water. It starts at point 𝐴 on the bank of the river with 

stream velocity 𝑣. It moves downstream to the point𝐵on the same bank at a distance 𝐷 from 𝐴, 

immediately turns back and moves upstream.1) How long will it take to make round-trip from 𝐴 to 𝐵 

and back? 2) What is the average velocity of the streamer for the entire journey? 

       Solution: In the obvious case of still water (lake), the answer would be 

 

                                                                          𝑡0 =
2𝐷

𝑢
 .                                                                     (I) 

 

Now, taking into account the stream. If the streamer makes 𝑢 km/h relative to water and the stream 

makes 𝑣 km/h relative to the bank, then the streamer’s velocity relative to the bank is (𝑢 + 𝑣) when 

downstream and (𝑢 − 𝑣) when upstream. Here, first, we are interested in the resulting time, which is 

the total time. It consists of two parts: one, 𝑡𝐴𝐵, which is needed to move from 𝐴 to 𝐵, and the other, 

𝑡𝐵𝐴, to move back from 𝐵 to 𝐴. Obviously, the time 𝑡𝐵𝐴 is always greater than 𝑡𝐴𝐵, since the net 

velocity of the streamer is less during this time. Thus, the net velocity of the streamer is greater than 

𝑢 during the shorter time and less than 𝑢 by the same amount during the longer time. Therefore, its 

average over the whole time is less than 𝑢. As a result, the total time itself must be greater than 𝑡0. 

       Let us now solve the problem quantitatively. The time it takes to go from 𝐴 to 𝐵 and then back 

from 𝐵 to 𝐴 is, respectively:   
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                                                            𝑡𝐴𝐵 =
𝐷

𝑢+𝑣
 ,    𝑡𝐵𝐴 =

𝐷

𝑢−𝑣
 .                                                        (II) 

       

So the total time is 

                                                               𝑡 = 𝑡𝐴𝐵  + 𝑡𝐵𝐴 =
𝐷

𝑢+𝑣
+

𝐷

𝑢−𝑣
=

𝑡0

1−𝑣2/𝑢2
 ,                           (III) 

 

where 𝑡0 would be the time in the still water, given by Eq.(I). As we can see, the necessary  

condition, 0 ≤ 𝑣 < 𝑢, under which the physical solution of the problem is determined, is already 

reflected in the mathematical structure of Eq.(III). Thus, for all 𝑣 < 𝑢, the total time 𝑡 > 𝑡0. 

However, if we were not be attached to the necessary condition, then 𝑡 becomes infinite at 𝑣 = 𝑢, 

and negative at all 𝑣 > 𝑢. It is quite clear that by violating the abovementioned condition, we have 

found two unphysical solutions, namely, an infinite total time and a negative total time. In brief, 

something very similar happens in Tolman’s reasoning concerning particularly the negative time. 

Actually, it is completely absurd to call or interpret, for example, 𝑡 < 0 when 𝑣 > 𝑢 paradox since 

we deliberately violated the necessary condition to get this unphysical solution. 

        Finally, the average velocity of the streamer for the entire journey is the harmonic mean of the 

two relative velocities of the streamer: 

                                                                             〈𝑢〉 =
2𝑢+𝑢−

𝑢++𝑢−
= (1 −

𝑣2

𝑢2
) 𝑢,                                  (IV) 

 

where 𝑢+ = (𝑢 + 𝑣)  and  𝑢− = (𝑢 − 𝑣). It is clear from Eq.(IV), the streamer’s average velocity 

over the whole time is less than 𝑢. 

       We now return to the main subject of the present section. Actually, the study of superluminal 

signaling in the framework of relativistic kinematics reduces to the study of signal propagation at 

superluminal velocity relative to subluminal IRFs. This means that by virtue of the relativity 

principle, if a given signal propagates at a superluminal velocity 𝑢 > 𝑐 relative to IRF 𝑆, then the 

same signal should also propagate at a superluminal velocity  𝑢′ > 𝑐 relative to 𝑆′, which is moving 

in uniform translational motion at a subluminal velocity v along the x-axis of 𝑆. This is all about the 

combination of signal superluminal velocity and relative subluminal velocity between two IRFs. The 

combination of the two types of velocities is not a new idea since in his 1905 paper ‘On the 

electrodynamics of moving bodies’[118], Einstein himself used the subluminal and superluminal 

velocities, the expressions (𝑐 − 𝑣), (𝑐 + 𝑣), and √𝑐2 − 𝑣2 for the relative velocities of light, in order 

to analyze the relativity of lengths and times, and also to derive the Lorentz transformation 

equations. It seems quite contrary to his second postulate that the speed of light was independent of 

the motion of the source. Actually, Einstein perfectly knew that the second postulate has no 

universal validity and the first two expressions are a direct consequence of the anisotropy of the one-

way speed of light [119]. The same relative velocities (𝑐 ± 𝑣) of light appeared in the expressions 

for the elapsed time of sending out a light signal from one point to another and back again in the 

Michelson-Morley experiment [120], and are equally present in the Doppler effect and Sagnac effect 

[121]. 
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       From all that, we can understand that it is quite absurd to exclusively link causality (the cause of 

an event precedes the effect of the event) to the vacuum speed of light since the vacuum itself is 

only vacuum in name as the absolute vacuum does not exist, and the so-called constancy of light 

speed is not an absolute fact but at the same time relative and conditional7. Without forgetting that in 

physics, the notion of velocity does not by itself tell us anything. It only becomes really meaningful 

if we specify relative to what this velocity is calculated or measured. That is why we mean by saying 

that velocity is typically a relative physical quantity. Therefore, for the causality principle to be a 

truly universal principle, it would have to be equally valid for subluminal, luminal, and superluminal 

signals under any natural and/or artificial circumstances. For instance, suppose a massive particle is 

emitted before it is absorbed in a detector. Even if the particle’s velocity were many trillion times 

faster than c, the cause (emission) would still precede the effect (absorption), and causality would 

not be violated for the reason that superluminal signals do not violate the causality principle; they 

just shorten the vacuum luminal time span between cause and effect. 

      Scenario A: By taking into account all the above mentioned conceptual considerations we 

suppose, in the framework of relativistic kinematics, two IRFs 𝑆 and 𝑆′ in standard configuration and 

are related to each other by LTs, with 𝑆′ moving at a subluminal velocity 𝑣 along the x-axis of 𝑆. 

Assume that at a time 𝑡0 = 0, the reference axes of the two IRFs coincide and that the clocks are so 

synchronized that at 𝑡0 = 0 the clocks in 𝑆′ indicate 𝑡′0 = 0. Now consider the following 

hypothetical events. At  𝑡0 = 𝑡′0 = 0, a superluminal particle is emitted in the x direction from the 

common origin of 𝑆 and 𝑆′. Let the superluminal velocity of this particle be  𝑢 > 𝑐 relative to 𝑆, then 

its velocity relative to 𝑆′ is 

                                                                       𝑢′ =
𝑢 − 𝑣

1 − 
𝑢𝑣

𝑐2

> 𝑐.                                                          (1A) 

Let us show that, in terms of velocities, the necessary and sufficient causality condition is already 

contained in the expression (1A). First, notice that since we have 𝑣 < 𝑐, 𝑢 > 𝑐 and 𝑢′ > 𝑐 this 

immediately implies 

                                                                        1 − 
𝑢𝑣

𝑐2
> 0,                                                             (2A) 

 

from where we get the following important inequalities: 

  

                                                    
𝑢𝑣

𝑐2
< 1,              𝑢 <  

𝑐2

𝑣
 ,             𝑣 <  

𝑐2

𝑢
 .                                    (3A)  

 

The first inequality, 𝑢𝑣/𝑐2 < 1, in (3A) is precisely the necessary and sufficient causality condition 

within the framework of relativistic kinematics, the second inequality, 𝑢 < 𝑐2/𝑣, determines the 

                                                           
       7 Actually, there is a profound difference between an absolute constant and a relative constant. 

 For example, Planck’s constant ‘ℎ’ and Newton’s constant ‘𝐺’ are both absolute constants 

because they cannot be influenced by physical phenomena, unlike the so-called speed of light ‘𝑐’, which 

is a relative constant because its constancy or variation depends on the medium through which 

light propagates. During its propagation, light as electromagnetic radiation may be influenced by 

electric, magnetic, electromagnetic, and gravitational fields, as well as interstellar dust, atomic and 

molecular gas, etc. The expression “speed of light in vacuum” has nothing to do with the physical 

reality of the vacuum itself. Why? Because in Nature, complete and absolute vacuum does not exist 

since nothing real can reach absolute zero thermodynamic temperature. Furthermore, in quantum 

vacuum, light behaves differently than in classical vacuum due to the Scharnhorst effect [104-107]. 
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interval of all the possible superluminal velocities that can be given to 𝑢, that is, 𝑐 < 𝑢 <
𝑐2

𝑣
, and the 

third inequality, 𝑣 < 𝑐2/𝑢, determines the interval of all the possible subluminal velocities that can 

be given to 𝑣 , namely, 0 < 𝑣 <
𝑐2

𝑢
. The two intervals play the role of the boundary conditions of the 

problem under consideration. Therefore, the velocities 𝑢 and 𝑣 cannot take on any value outside 

their intervals.  

       However, in order to prove the violation of causality by superluminal signals, Tolman [117] and 

many other authors simply and naively fabricated the inequality 
𝑢𝑣

𝑐2
> 1, which is clearly in 

contradiction with the inequality 
𝑢𝑣

𝑐2
< 1. In doing so, these authors failed to realize that they have 

violated, at the same time, the expression (1A), the relativity principle, LTs, and relativistic 

kinematics. They confused physics with mathematics during the process of calculation because by 

proposing the above-mentioned inequality they already violated the necessary and sufficient 

causality condition. As a direct result, they obtained an unphysical solution wrongly called a 

paradox.   

        Assume now that at a time 𝑡1, when it is at 𝑥1 in the frame 𝑆, the superluminal particle is 

absorbed. The corresponding time of absorption, as measured in 𝑆′, is given by  

 

                                                                     𝑡′1 = 𝛾 (𝑡1 −
𝑣𝑥1

𝑐2
),                                                      (4A) 

from where we obtain   

                                                                     𝑡′1 = 𝛾 (1 −
𝑢𝑣

𝑐2
) 𝑡1,                                                     (5A)  

 

where  𝛾 = (1 − 𝑣2/𝑐2)−1/2  and  𝑥1/𝑡1 = 𝑢. Notice that according to the inequalities (3A), the 

Lorentz transformation of the time coordinate (4A) is still orthochronous (preserving time direction) 

for a subluminal relative velocity 𝑣 < 𝑐 and for superluminal velocity 𝑢 > 𝑐. Therefore, in these 

circumstances, we obtain what was expected: if ∆𝑡 > 0 in 𝑆, then ∆𝑡′ > 0 in 𝑆′. It is clear that the 

causality principle is preserved through the temporal ordering under the necessary and sufficient 

condition 𝑢𝑣/𝑐2 < 1. From all that, we arrive at the following result: quite contrary to common 

naive belief, under some relevant conditions, SRT can easily accommodate, and indeed does not 

exclude, superluminal signaling at the kinematical level, particularly when we put the concept of 

proper (inertial frame) or comoving (IR) frame aside. 

       Scenario B: In this scenario we aim to study superluminal signaling within the framework of 

superluminal relativistic kinematics [50]. This essentially involves examining signal propagation at 

superluminal velocities relative to superluminal IRFs. Let 𝑆 and 𝑆 be two IRFs in standard 

configuration, related to each other by Hassani transformations. The IRF 𝑆′ moves at a superluminal 

velocity 𝑣 along the x-axis of 𝑆, such that 𝑐 < |𝑣| < 𝜗(𝑣). Consider two points 𝐴 and 𝐵 on the x-

axis of the frame 𝑆, and suppose that some impulse originates at 𝐴, travels to 𝐵 at superluminal 

velocity 𝑢 such that 𝑢 > 𝑣, and at 𝐵 produces some observable phenomenon, the starting of the 

impulse at 𝐴 and the resulting phenomenon at 𝐵 thus being connected by the relation of cause and 

effect. The time elapsing between the cause and its effect as measured in the units of frame 𝑆 will 

evidently be  

 

                                                                         ∆𝑡 = 𝑡𝐵 − 𝑡𝐴 =
𝑥𝐵−𝑥𝐴

𝑢
 ,                                               (1B) 
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where  𝑥𝐴  and  𝑥𝐵 are the coordinates of the two points 𝐴 and 𝐵. The impulse’s superluminal 

velocity relative to the second frame 𝑆′ is 

                                                                               𝑢′ =
𝑢 − 𝑣

1 − 
𝑢𝑣

𝜗2(𝑣)

 > 𝑐 .                                             (2B)  

Notice that, in terms of superluminal velocities, the necessary and sufficient causality condition is 

inherent in the expression (2B) as 𝑐 < |𝑣| < 𝜗(𝑣), 𝑢 > 𝑣 and  𝑢′ > 𝑐 this directly implies  

 

                                                                                 1 −
𝑢𝑣

𝜗2(𝑣)
> 0,                                                  (3B)       

from where we get the following significant inequalities: 

  

                                                           
𝑢𝑣

𝜗2(𝑣)
< 1,       𝑢 <  

𝜗2(𝑣)

𝑣
 ,       𝑣 <  

𝜗2(𝑣)

𝑢
 .                             (4B)                                              

The first inequality, 𝑢𝑣/𝜗2(𝑣) < 1, in (4B) is exactly the necessary and sufficient causality 

condition within the framework of superluminal relativistic kinematics. The second inequality, 𝑢 <

𝜗2(𝑣)/𝑣, determines the interval of all the possible superluminal velocities that can be given to 𝑢, 

that is, 𝑐 < 𝑢 <
𝜗2(𝑣)

𝑣
, and the third inequality, 𝑣 < 𝜗2(𝑣)/𝑢, determines the interval of all the 

possible superluminal velocities that can be given to 𝑣 , namely, 𝑐 < 𝑣 <
𝜗2(𝑣)

𝑢
. The two intervals 

play the role of the boundary conditions of the problem under consideration. Therefore, the 

superluminal velocities 𝑢 and 𝑣 cannot take on any value outside their intervals.  

       Now in the frame 𝑆′, the time elapsing between cause and effect would evidently be  

 

                                          ∆𝑡′ = 𝑡′𝐵 − 𝑡
′
𝐴 = 𝜂 (𝑡𝐵 −

𝑣

𝜗2(𝑣)
𝑥𝐵) − 𝜂 (𝑡𝐴 −

𝑣

𝜗2(𝑣)
𝑥𝐴),                     (5B) 

 

where  𝜂 = 1 √1 − 𝑣2/𝜗2(𝑣)⁄  . In the expression (5B), we have substituted for 𝑡′𝐴 and 𝑡′𝐵 in 

accordance with the fourth equation of Hassani transformation (iv). Simplifying and introducing 

equation (1B), we obtain 

                                                                      ∆𝑡′ = 𝜂 (1 −
𝑢𝑣

𝜗2(𝑣)
)∆𝑡.                                              (6B) 

 

By considering the inequalities (4B), the Hassani transformation of the time interval (6B) remains 

orthochronous for superluminal velocities. Therefore, as expected, if ∆𝑡 > 0 in 𝑆, then ∆𝑡′ > 0 

in 𝑆′. This ensures that the causality principle is maintained through temporal ordering8 under 

the superluminal necessary and sufficient condition  𝑢𝑣/𝑐2 < 1. Scenarios A and B demonstrate not 

only the preservation of the causality principle under specific conditions but also highlight the 

significance of these conditions in science, especially in theoretical and experimental physics. 

                                                           
       8 Actually, time ordering cannot be used as a universal criterion or sufficient condition 

to determine that the effect precedes the cause. Therefore, causality is not violated by superluminal 

signaling because mathematically, causality violation can be proven using only subluminal 

signaling. Additionally, if a causal link between two events could only be established based on their 

temporal ordering, the concepts of cause and effect would be problematic in theories like Newtonian 

gravity which allow for instantaneous action at a distance. 
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Paradoxes are human constructs, as there is no inherent paradox in the real world. In physics, 

the creation of paradoxes is often a result of misunderstanding, misinterpretation, oversight, or the 

absence of necessary conditions for investigating a problem. 

 

8. Conclusion  

 

In this paper, we have presented a critical assessment of the significant effort over the past decades 

and renewed interest in extending the special relativity theory (SRT) beyond the speed of light [6-

18]. In this comprehensive note, the paper "Relativity of superluminal observers in 1+3 spacetime" 

by Dragan et al. [1] is examined. The authors attempted to extend the aforementioned theory to 

superluminal inertial reference frames by generalizing Parker's two-dimensional transformation [7] 

with the addition of two pairs of spatial dimensions. This approach is not novel and is already well-

documented in the literature. We have demonstrated that unlike Lorentz transformations, the authors' 

transformations do not form an orthogonal-orthochronous group due to their negative determinant. 

As a result, principles such as relativity, causality, spatial isotropy, and temporal ordering cannot be 

preserved. The authors' pseudo-transformations are revealed to be reflections in a plane through the 

origin rather than true transformations. We conclude that the authors’ pseudo-transformations do not 

and cannot generalize SRT in (3+1)-dimensions as claimed by Dragan et al. Also, a theoretical 

maximum limit of the Lorentz factor is introduced, which leads to an extension of Lorentz 

transformations to luminal inertial reference frames and raises a conceptual question about the status 

and role of the symbolic quantity ‘c’, commonly called the speed of light in vacuum, as the neutrino 

and particularly the photon have non-zero mass. Consequently, it appears that as long as the non-

zero mass of the photon is not taken seriously into full consideration, our current knowledge of 

physics, astronomy, astrophysics, and cosmology remains not only incomplete but above all vague 

and doubtful. Finally, Hassani superluminal spatio-temporal transformations are revealed and their 

physical consequences are partly investigated. 
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