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Some mathematical results of light path models in General Relativity and the 

decomposition of the null geodesic into gravitational components    

 

                                                   Gerald Malczewki1 

 

Abstract: This paper is a natural continuation of an earlier paper of light path models and 

investigates the mathematical implications of geodesic light trajectories within a Schwarzschild 

metric gravitational field. We focus on a model expressed as infinite Taylor series expansion 

and its finite cut-off counterpart. A comparison is then made against another existing model that 

is expressed in closed form not requiring an infinite series and which requires a Jacobian elliptic 

function. Under some restriction of the mass of the central gravitating body these different 

models were previously shown to be equivalent. Using these results, some mathematical 

relationships are then derived. Additionally, we decompose the light path equation into an 

infinite set of ‘gravitational components’, somewhat akin to techniques used in Fourier analysis.  

 

 

A. Introduction.   

In Section B, we review the Taylor series approach for modeling light paths in a gravitational 

field. Section C introduces an alternative model developed in [6], here referred to as the HK 

model, which expresses the light path equation in closed form using Jacobian elliptic functions. 

While not immediately intuitive, prior work [9] has shown its equivalence to the Taylor series 

model under certain conditions. In Section D, we derive mathematical relationships between the 

two models, leveraging their equivalence to express specific coefficients of the Taylor series 

expansion in terms of the HK model. These relationships offer insight into the structure of the 

infinite series. Section E introduces a decomposition of the light path equation into an infinite 

set of "gravitational components." This decomposition, conceptually similar to Fourier series, 

expresses the light path as a sum of contributing terms, each representing an aspect of the 

trajectory’s curvature. This perspective provides a new way to interpret the gravitational 

bending of light and its mathematical formulation. We end with a Summary section 

highlighting the main observations and findings. 

Familiarity with mathematical functional notation, set notation, and proficiency in basic 

calculus is assumed. The reader is also assumed to have a basic knowledge of General 

Relativity (GR) ([3], [4], [7], [10]) and how light reflection is measured (see for example, [5] or 

section C.2 of [9] as well as the GR references) and some familiarity with impact parameter 

analysis (see section 6.3 of  [10]). A detailed knowledge of the mathematical techniques of GR 

is not required. There is minimal use of tensors and only in the context of the Schwarzschild 

metric. Using GR nomenclature, we sometimes refer to the light path in a vacuum as a geodesic 

or null geodesic.  

 

 
1 Email address: MalczewskiGld@gmail.com 
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As a caution to the reader, the key equations in this paper are drawn from several sources, each 

with their own notation and conventions. This will necessitate performing multiple sets of 

notational replacements and transformations which, although adding to the mathematical 

exposition, will be necessary to demonstrate our assertions. Attempting to show all the 

derivations of the key equations of each source would result in an excessively long paper and 

therefore the reader is referred to these sources for the details.  

          

Throughout this paper we assume the gravitating body mass is a symmetric and static spherical 

mass with uniform density where rotation and charge are not present or negligible, i.e., the 

metric is Schwarzschild (see endnote [1] for a description).  

 

 

B. n <  ∞ 𝒂𝒏𝒅 n = ∞ models. 

 

We designate the light path equation by the function 𝜃 = 𝜃(𝑀 𝑅⁄ , 𝜌) where 𝜃 is the polar angle 

in spherical coordinates of the light path location. The arguments are 𝑀 𝑅⁄  and 𝜌 = 𝑅 𝑟⁄  where 𝑟 

is the radial distance to the center of the body with mass 𝑀, and 𝑅 the distance of closet 

approach which is also the ‘turning point’ of the light path as the path proceeds away from the 

body. The path is perpendicular to the radial line 𝑟 = 𝑅. Going forward we will call the ratio 

𝑀/𝑅 the ‘mass ratio’. As a reference point, the mass ratio for the sun is 𝑀 𝑅⁄ ≈ 2.1𝑥10−6 when 

𝑅 is chosen to be at the surface. 

  

As described in sections B and C of [9], the  ‘𝑛 < ∞’ approximation model (note: we changed 

the ‘𝑘 < ∞’ notation used in that paper to  ‘𝑛 < ∞’  in this paper due to indexing notation 

considerations) of a light path in a vacuum for a Schwarzschild metric is the finite sum 

 

                   𝜃𝑛 (
𝑀

𝑅
, 𝜌) = ∑ 𝐹𝑘 (

𝑀

𝑅
, 𝜌)𝑛

1 + 𝐶𝑛 (
𝑀

𝑅
)                                                               (B.1) 

 

where 𝐶𝑛 (
𝑀

𝑅
) is a constant of integration and  

 

 𝐹𝑘 (
𝑀

𝑅
, 𝜌) =

2𝑘−3

2𝑘−2  [
𝑎𝑘

𝑏𝑘
sin−1 𝜌 +

(±√1−𝜌 )𝑃𝑘(𝜌)

𝑑𝑘(1+𝜌)
2𝑘−3

2

 ] (
𝑀

𝑅
) 𝑘−1                                                   (B.2)  

 

 

is the antiderivative of the integral term  

 

∫
2𝑘 − 3

2𝑘−2

1

√1 − 𝜌2
  ((

1 − 𝜌3

1 − 𝜌2
)  

𝑀

𝑅
 )

𝑘−1
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in a Taylor series resulting from the Schwarzschild metric for a light path. Due to a restriction 

on the Taylor series, the mass ratio is limited to 0 ≤ 𝑀 𝑅⁄ < 1 3⁄  which is within the range of 

most gravitating bodies.     

      

Here, 𝑎𝑘, 𝑏𝑘 ≠ 0, 𝑑𝑘 ≠ 0 are integers and 𝑃𝑘 = 𝑃𝑘(𝜌) a ‘complete’ polynomial of degree 2𝑘 −

3 in 𝜌 for 𝑘 > 1. By a ‘complete’ polynomial of degree 2𝑘 − 3 we mean the polynomial 

contains terms of every degree up to and including 2𝑘 − 3. Using an integral calculator this 

form has been confirmed for 𝑘 = 2, … . .10. We emphasize again that since 𝜃𝑛 (
𝑀

𝑅
, 𝜌) is a 

finite sum, this model is only an approximation to a true null geodesic path in space-time. The 

degree of approximation depends on the mass ratio 𝑀 𝑅⁄ , the index 𝑛, and the radial distance 

𝑟. 

 

In this paper we will slightly weaken the conditions for (B.2) and not require 𝑃𝑘 = 𝑃𝑘(𝜌) to be 

complete.  Further, we will change (B.2) to the equivalent antiderivative form  

 

 

𝐹𝑘 (
𝑀

𝑅
, 𝜌) = (−1)𝑘−1 2𝑘−3

2𝑘−2  [𝑡𝑘 ∙ sin−1 𝜌 +
𝑁𝑘(𝜌)

(1−𝜌2)
2𝑘−3

2

 ] (
𝑀

𝑅
) 𝑘−1                                       (B.3) 

 

 

where 𝑁𝑘(𝜌) is an incomplete polynomial and 𝑡𝑘 ≡ 𝑎𝑘/𝑏𝑘  where 𝑎2 = 0. This form will be 

more convenient when we argue that it holds for all 𝑘 ≥ 2 in Appendix B. The coefficient 𝑑𝑘 in 

(B.2) has been absorbed into 𝑁𝑘(𝜌). We note that in this form the equation is apparently not 

valid for 𝜌 = 1 (𝑟 = 𝑅) but we will later argue that 
𝑁𝑘(𝜌)

(1−𝜌2)
2𝑘−3

2

 = 0. For now we simply define 

𝐹𝑘 (
𝑀

𝑅
, 1) =  (−1)𝑘−1 2𝑘−3

2𝑘−2  [𝑡𝑘 ∙  
𝜋

2
 ] (

𝑀

𝑅
) 𝑘−1. 

  

The methods employed in Appendix B will imply that, in principle, given any  𝑘 we can 

algorithmically compute the corresponding coefficients of the polynomial 𝑁𝑘(𝜌). The 

weakening of the requirement for completeness of 𝑃𝑘 = 𝑃𝑘(𝜌), replaced by 𝑁𝑘(𝜌), will have no 

material effect on our results.  

 

𝐶𝑛 = 𝐶𝑛 (
𝑀

𝑅
) in (B.1) is the resulting constant of integration and does not depend on 𝜌. 𝐶𝑛 can 

be found by using the boundary condition that the polar angle is 𝜋 2⁄  radians when 𝑟 = 𝑅 

(𝜌 = 1). It can be readily shown that these constants follow the recursive relationship 𝐶𝑛 = 

𝐶𝑛−1 − 𝐹𝑛(𝜌 = 1) and the summation 𝐶𝑛 (
𝑀

𝑅
) = −

𝜋

2
[∑ (−1)𝑗−1 (

2𝑗−3

2𝑗−2 )𝑛
2 𝑡𝑗(𝑀 𝑅⁄ )𝑗−1]. 
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For the 𝑛 < ∞ model, the n value is also referred to as the ‘approximation level’. Going forward 

we will have occasion to set the approximation level to small values of n in some of the 

examples. For this model, the computed trajectory locations will necessarily be approximate. 

Computational examples and associated graphs of the light paths are detailed in [9].  

 

Notice that when 𝜌 = 0, corresponding to 𝑟 = ∞, 𝐹𝑘 (
𝑀

𝑅
, 𝜌 = 0) reduces to            

(−1)𝑘−1 2𝑘−3

2𝑘−2  [𝑁𝑘(0)] (
𝑀

𝑅
) 𝑘−1 where 𝑁𝑘(0) is the constant term of 𝑁𝑘(𝜌). When 𝜌 = 1, 

corresponding to 𝑟 = 𝑅, 𝐹𝑘 (
𝑀

𝑅
, 𝜌 = 1) = (−1)𝑘−1 

2𝑘−3

2𝑘−2
[𝑡𝑘 ∙

𝜋

2
 ] (

𝑀

𝑅
) 𝑘−1 as stated earlier. 

These results are useful when analyzing asymptotic behavior and finding the constant of 

integration of the antiderivatives and will also be used in section E to derive a relationship 

between some of the  𝐹𝑘 (
𝑀

𝑅
, 𝜌) coefficients. 

 

Appendix A lists the antiderivatives 𝐹𝑘 for 𝑘 =  1 to  5 which exhibit the general form (B.3). 

For the case 𝑘 = 1 we set 𝐹1 = sin−1 𝜌, the massless term corresponding to a straight-line path 

in polar coordinates.  The expressions for the constants of integration 𝐶𝑛 are also listed. For all 

𝑘,  the justification for the 𝐹𝑘 formulas can be determined by solving a set of linear equations 

using the method described in Appendix B. Alternatively, but not described in this paper, 𝐹𝑘 can 

also be determined using a series of trigonometric substitutions and identities. For either method 

there does not seem to be any nice recursive relationship among these antiderivatives or some 

simple dependency on 𝑘. Therefore the results in Appendix B show that although each term 

𝐹𝑘 (
𝑀

𝑅
, 𝜌) can be algorithmically determined, finding a general formula that can generate it for 

any 𝑘 is apparently very difficult.  

 

The ‘𝑛 = ∞’ model of the light path as described in [9] is the infinite sum  

 

             𝜃∞ (
𝑀

𝑅
, 𝜌) = ∑ 𝐹𝑘 (

𝑀

𝑅
, 𝜌)∞

1 + 𝐶∞ (
𝑀

𝑅
)                                                                   (B.4) 

 

where 𝐶∞ (
𝑀

𝑅
) = lim

𝑛→∞
𝐶𝑛 (

𝑀

𝑅
) = −

𝜋

2
[∑ (−1)𝑛−1 (

2𝑛−3

2𝑛−2 )∞
2 𝑡𝑛(𝑀 𝑅⁄ )𝑛−1] is the resulting constant 

of integration in the limit. 𝜃∞ (
𝑀

𝑅
, 𝜌) is the ‘true’ theoretical path of the light ray (null geodesic) 

based on General Relativity. However, truncating 𝜃∞ (
𝑀

𝑅
, 𝜌) at a sufficiently high cutoff 

approximation index 𝐾, a  𝐾 < ∞ model, gives a polar angle to some specified approximation 

for a given mass ratio 
𝑀

𝑅
 and 𝜌.  

 

            

C. Light path equation based on Jacobian elliptic functions – the HK model.  
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    We now turn to the derived light path equation as expressed in equation (80) in [6], where 

crucially the equation is in closed form, as opposed to the infinite series model n = ∞ . We will 

refer to this light path model as the HK (Hioe-Kuebel) model where  

 

 

𝑄(𝑈1, 𝜙 )  =
(𝑒1 −𝑒3)𝑒2 −( 𝑒2 −𝑒3) 𝑒1 𝑠𝑛2(𝛾𝜙,𝑘)

(𝑒1 −𝑒3)−(𝑒2 −𝑒3) 𝑠𝑛2(𝛾𝜙,𝑘)
.                                                      (C.1)       

 

 

                                                 

          We have replaced 1 𝑞 =  𝛼 𝑟⁄⁄  in their equation (80) with 𝑄(𝑈1, 𝜙 ) where 𝛼 is the 

Schwarzschild radius of the central body with units of length(meters)- see endnote [2]. The 

mass parameter 𝑈1 is defined to be 𝑈1 = 𝛼 𝑅⁄ . Since 𝛼 = 2𝑀 in the Schwarzschild metric, then 

𝑈1 = 2𝑀 𝑅⁄ < 2(1 3)⁄ = 2 3⁄ . 

 

         The function 𝑠𝑛 is a Jacobian elliptic function. The 𝑒𝑖 are roots of a certain cubic in a differential 

equation expressing how the radial distance  𝑟 changes as the angle 𝜙 varies. This angle is the 

polar angle in polar coordinates. To avoid confusion with our polar angle 𝜃 in spherical 

coordinates for the 𝑛 < ∞ and 𝑛 = ∞ models we will designate 𝜙 as the ‘vertex’ angle, going 

forward.  The 𝑒𝑖 roots are in turn functions of 𝛼 𝑅⁄ . This is all developed in a polar coordinate 

system with the central body at the origin. In each model the light path propagates in a plane. It 

is not readily apparent, but this HK model and the n = ∞ model are equivalent. Heuristically this 

can be seen by noting that both models are derived from the same Schwarzschild metric and the 

GR geodesic equation. A more formal mathematical proof is presented in [9].  

 

         The arguments of 𝑠𝑛 are 𝛾𝜙, the ‘amplitude’ and 𝑘 the ‘modulus’, where 𝛾 and 𝑘 are functions 

of the roots 𝑒𝑖. Jacobian elliptic functions are a generalization of trigonometric functions which 

refer to conic sections, the ellipse in particular. For an explanation of these non-elementary 

functions, including 𝑠𝑛, see [1] as well as other online sources such as Wikipedia.  

 

    The roots 𝑒𝑖 take the values  

 

        𝑒1 = (1 2⁄ ) [1 − 𝑈1 + √(1 + 2𝑈1 − 3𝑈1
2)] 

        𝑒2 = 𝑈1  

        𝑒3 = (1 2⁄ ) [1 − 𝑈1 − √(1 + 2𝑈1 − 3𝑈1
2)]                                                                    (C.2) 

     

         Also, 

              𝛾 = √𝑒1−𝑒3 2⁄  and 𝑘 = √(𝑒2 − 𝑒3 ) ( 𝑒1 − 𝑒3 )⁄ .                                                   (C.3) 

      

https://en.wikipedia.org/wiki/Conic_section
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The HK model (C.1) is a function of the vertex angle 𝜙 and 𝑈1 and outputs the dimensionless 

value 𝑄 = 𝛼 𝑟⁄  from which the radial distance is determined. Conversely, the 𝑛 < ∞  and 𝑛 = ∞ 

models (B.1) and (B.4) are functions of radial distance and 𝑀 𝑅⁄ , giving the polar angles 𝜃𝑛 and 

𝜃∞ respectively.  The necessary conversions and transformations to get a consistent framework 

to prove the equivalency of the two results is given in the proof in Appendix B in [9]. 

 

Figure 1 shows the polar graph of a light path computed using equation (C.1) of the HK model. 

This graph can also be approximated to a high degree of accuracy for the path near the turning 

point 𝑅 using equation (B.1) of the 𝑛 < ∞ model for sufficiently large 𝑛.   

 

 

 

 

Figure 1. Light path in the HK model for 𝑈1 = 0.2 with dotted asymptotic lines out to 35 Schwarzschild 

radii 𝛼. As an example, the location of the light path member (ϕ, rϕ) = (𝜋 2 𝑟𝑎𝑑𝑖𝑎𝑛𝑠⁄ , ≈ 19.4α ) is 

marked. Each radial unit on this graph equals 5𝛼, the distance of the turning point 𝑅 from the center of 

the mass at the origin 𝑂. The dotted light path asymptotic lines are located at ≈ 1.9 radians = 108.4° 
and ≈ 4.4 radians = 256.6°. The light path model 𝑛 = ∞  would give identical results. 
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D. Relationships derived from the two models.  

 

Mathematical relationships for some coefficients in the 𝐹𝑘 (
𝑀

𝑅
, 𝜌) term of the 𝑛 = ∞ model will 

now be derived using the fact that the HK model 𝑄(𝑈1, 𝜙 ) of section C is equivalent to the  

𝜃∞ (
𝑀

𝑅
, 𝜌) of section B, where recall that 𝑄(𝑈1, 𝜙 ) is in closed form while 𝜃∞ (

𝑀

𝑅
, 𝜌) is the sum 

of an infinite series of terms 𝐹𝑘 (
𝑀

𝑅
, 𝜌).   

 

First solve 𝑄(𝑈1, 𝜙 ) for 𝜙 = 𝜙(𝑈1, 𝑄) to allow the same dimensionality as 𝜃∞ (
𝑀

𝑅
, 𝜌).  

 

Then 𝜙(𝑈1, 𝑄)  = (
1

𝛾
) 𝑠𝑛−1 (√

𝑓13(1−
𝑒2
𝑄

)

 𝑓23(1−
𝑒1
𝑄

)
, 𝑘 )                                                (D.1) 

 

where 𝑓𝑖𝑗 ≡ 𝑒𝑖 − 𝑒𝑗 and 𝑠𝑛−1 = 𝑠𝑛−1(𝑥, 𝑦) is the inverse of the elliptical function 𝑠𝑛 = 𝑠𝑛(𝑥, 𝑦) 

where here  𝑥 = amplitude and 𝑦 = modulus. We have taken the positive square root for the 

amplitude of 𝑠𝑛−1. 

 

Note that for our situation 𝑥 = √
𝑓13(1−

𝑒2
𝑄

)

 𝑓23(1−
𝑒1
𝑄

)
  is the amplitude, and y = 𝑘 is the modulus using a 

conventional notation which should not be confused with our index 𝑘  which we have been using 

for indexing some coefficients and variables. The integral formula for the inverse 𝑠𝑛 function is   

 

𝑠𝑛−1(𝑥, 𝑦 ) = ∫
𝑑𝑡

√(1−𝑡2)(1−𝑦𝑡2)

𝑥

0
. This function can also be represented as a power series, see 

[2]. The integral formula is used to determine the light paths in figures 1-3.    

 

To adjust for the different angle conventions of the two models we note that 𝜙 + 𝜃∞ = 𝜋 2⁄ .  

This can be seen by superimposing the three dimensional (x,y,z) coordinate system over the 

spherical coordinate system (physics convention) and noting that 𝜃∞ is measured from the z-axis 

or positive polar axis and the vertex angle 𝜙 is measured from the y-axis so they are 

complementary angles. Then 

 

𝜃∞ (
𝑀

𝑅
, 𝜌) =

𝜋

2
 − 𝜙(𝑈1, 𝑄)  =

𝜋

2
 − (

1

𝛾
) 𝑠𝑛−1 (√

𝑓13(1−
𝑒2
𝑄

)

 𝑓23(1−
𝑒1
𝑄

)
, 𝑘 ).                                 (D.2) 

 

Replacing the LHS we have 
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∑ 𝐹𝑘 (
𝑀

𝑅
, 𝜌)∞

1 + 𝐶∞(
𝑀

𝑅
) =  

𝜋

2
 − (

1

𝛾
) 𝑠𝑛−1 (√

𝑓13(1−
𝑒2
𝑄

)

 𝑓23(1−
𝑒1
𝑄

)
, 𝑘 ).                                   (D.3)    

Expanding the 𝐹𝑘 (
𝑀

𝑅
, 𝜌) terms we obtain  

 

 

sin−1 𝜌 + ∑ (−1)𝑘−1 2𝑘−3

2𝑘−2  [𝑡𝑘 sin−1 𝜌 +
𝑁𝑘(𝜌)

(1−𝜌2)
2𝑘−3

2

 ] (
𝑀

𝑅
) 𝑘−1∞

2 +  𝐶∞ (
𝑀

𝑅
)   =  

𝜋

2
 − 

(
1

𝛾
) 𝑠𝑛−1 (√

𝑓13(1−
𝑒2
𝑄

)

 𝑓23(1−
𝑒1
𝑄

)
, 𝑘 ) .                                                                                       (D.4) 

 

 

Examining (D.3) or (D.4), we have an infinite series whose terms are difficult to compute for 

large 𝑘 and for which a general formula may not be feasible to construct as argued in Appendix 

B, so the expression cannot be analytically determined. This makes computation to arbitrary 

accuracy infeasible using the LHS of (D.4). Yet, on the RHS of the equation we have a closed 

expression with a numerical value that is readily computed to any degree of accuracy. This result 

is made possible due to the metric of General Relativity, i.e., gravity, and our two different but 

equivalent models.           

 

We can get a “leaner” result of (D.4) by evaluating this equation for 𝜌 = 0, 1 and the 

corresponding 𝑄 values. Since each resulting equation contains 𝐶∞ (
𝑀

𝑅
) we can set them both 

equal to 𝐶∞ (
𝑀

𝑅
) to obtain  

 

∑  (−1)𝑘−1 2𝑘−3

2𝑘−2  {[𝑁𝑘(0) ] − [𝑡𝑘 ∙
𝜋

2
 ]} (

𝑀

𝑅
) 𝑘−1∞

2 =
𝜋

2
− (

1

𝛾
) 𝑠𝑛−1 (√

𝑓13𝑒2

 𝑓23𝑒1
, 𝑘 )         (D.5)   

 
Mass terms appear on both sides of this equation since 𝑓𝑖𝑗 and 𝑒𝑘 depend on 𝑈1. So we can 

informally say that this equation is the result of gravity, or more precisely, the result of our 

different equivalent models of a light path in General Relativity.  

 

Since the RHS side of (D.5) is a function of 𝑈1 we write 

 

             𝐻(𝑈1) ≡
𝜋

2
− (

1

𝛾
) 𝑠𝑛−1 (√

𝑓13𝑒2

 𝑓23𝑒1
, 𝑘 ).                                                      (D.6) 
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Note that  𝐻 is easily computed once we specify the mass ratio or equivalently 𝑈1 where 

(1 2⁄ )𝑈1 = 𝑀 𝑅⁄ , so 𝐻 equals some real number. 

 

Using the relationship between 𝑈1 and the mass ratio 𝑀 𝑅⁄  we can write (D.5) as  

 

∑ (−1)𝑘−1 2𝑘−3

22𝑘−3  {[ 𝑁𝑘(0)] − [𝑡𝑘 ∙
𝜋

2
 ]} 𝑈1 𝑘−1∞

2 =
𝜋

2
− (

1

𝛾
) 𝑠𝑛−1 (√

𝑓13𝑒2

 𝑓23𝑒1
, 𝑘 )                 (D.7)                     

                                                    
or more compactly as   

 

 

                              ∑ (−1)𝑘−1 2𝑘−3

22𝑘−3  𝐷𝑘𝑈1
𝑘−1∞

2 =  𝐻(𝑈1)                                 (D.8)   

 

 

where 𝐷𝑘 ≡ [ 𝑁𝑘(0)] − [𝑡𝑘 ∙
𝜋

2
 ]. This gives us more information about how 𝑡𝑘 relates to 𝑁𝑘(𝜌). 

 

Equations (D.4) and (D.8) have the basic characteristics of a function expressed as an infinite 

sum of a Fourier series where each term in the series has coefficients containing a product of the 

original function and sine and cosine factors. This is used to decompose the original function to a 

sum of periodic functions. As with our case, it is very difficult to determine a general formula for 

the 𝑘𝑡ℎ term of the Fourier infinite sum. By analogy, the light path function can be expressed as 

an infinite sum of terms where each term can be thought of as a component of the path. In the 

next section we explore this further.  

   

   

E. Decomposing the light path equation. 

 

We start with (D.4) and let the RHS be denoted by 𝐻(𝑄):  

 

sin−1 𝜌 + ∑ (−1)𝑘−1 2𝑘−3

2𝑘−2  [𝑡𝑘 sin−1 𝜌 +
𝑁𝑘(𝜌)

(1−𝜌2)
2𝑘−3

2

 ] (
𝑀

𝑅
) 𝑘−1∞

2 +  𝐶∞ (
𝑀

𝑅
)   =  𝐻(𝑄)      (E.1) 

 

where  𝐶∞ (
𝑀

𝑅
) = = −

𝜋

2
[∑ (−1)𝑛−1 (

2𝑛−3

2𝑛−2 )∞
2 𝑡𝑛(𝑀 𝑅⁄ )𝑛−1] =   −

15𝜋

8
(

𝑀

𝑅
)

2

+
15𝜋

8
(

𝑀

𝑅
)

3

+

 (−
693𝜋

128
(

𝑀

𝑅
)

4

) + ∙∙∙∙∙∙∙∙∙ . 

   

 

We now “spread out” the individual terms of  𝐶∞ across the infinite sum as follows.    
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Due to the way we constructed  𝐶∞ (
𝑀

𝑅
)  , it can be rewritten as ∑ 𝐶(𝑛)∞

2  with 𝐶(𝑛) ≡

𝐶′(𝑛) (
𝑀

𝑅
) 𝑛−1 where 𝐶′(𝑛) is the coefficient of the highest power term of 𝐶𝑛 (

𝑀

𝑅
) with respect to 

𝑀

𝑅
. For example, using the results listed in Appendix A we get 

 

𝐶(1) = 0  

𝐶(2) = 0  

𝐶(3) = −
15𝜋

8
(

𝑀

𝑅
)

2

 

𝐶(4) = +
15𝜋

8
(

𝑀

𝑅
)

3

   

𝐶(5) = −
693𝜋

128
(

𝑀

𝑅
)

4

  

 

and in general 

 

𝐶(𝑛) = 𝐶𝑛  −   𝐶𝑛−1 for 𝑛 > 1 where the 
𝑀

𝑅
 argument is omitted.  

 

Then (E.1) can be rewritten as  

 

 sin−1 𝜌 + ∑  [𝐹𝑘(𝜌) + 𝐶(𝑘)]  ∞
2 =  𝐻(𝑄)                                                                         (E.2) 

 

where 𝐹𝑘(𝜌), with the 
𝑀

𝑅
 argument omitted, is the form (B.3). Both 𝐹𝑘(𝜌) and 𝐶(𝑘) have 

(𝑀 𝑅⁄ )𝑘−1 as a factor. 

 

Now define 𝐿𝑘(𝜌) ≡ 𝐹𝑘(𝜌) + 𝐶(𝑘) for all 𝑘. For example, using the formula for 𝐹3 in Appendix 

A, we have 

 

𝐿3(𝜌) ≡ 𝐹3(𝜌) + 𝐶(3) = (−1)𝑘−1  
3

2
 [(5/2) sin−1 𝜌 +

𝑁𝑘(𝜌)

(1−𝜌2)
3
2

 ] (
𝑀

𝑅
) 2 −

15𝜋

8
(

𝑀

𝑅
)

2

 where  

𝑁(𝜌) = − (
1

2
) 𝜌5 + (

8

3
) 𝜌3 − 2𝜌2 − (

3

2
) 𝜌 + (

4

3
).  

 

Then (E.2) is simply written as  

  

      

  ∑  𝐿𝑘(𝜌)  ∞
1 =  𝐻(𝑄)                                   (E.3)                                               
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where 𝐿1(𝜌) = 𝐹1(𝜌)+C(1) = sin−1 𝜌.  

 

The LHS of (E.3) is just our 𝑛 = ∞ model expressed in a different form. If the infinite sum is 

instead finite, then it is the 𝑛 < ∞ model. We can view this as a decomposition of the null 

geodesic path 𝐻(𝑄) into constituent components 𝐿𝑘(𝜌). Taking a cue from Fourier series we call 

the infinite set of 𝐿𝑘(𝜌) the decomposition into ‘gravitational components’, or simply 

‘components’, of the light path. Equation (E.3) can be interpreted as applying the 𝐿𝑘(𝜌) 

components containing mass to a straight-line path resulting in a curved geodesic.    

 

When rewriting (E.3) as 𝐿1(𝜌) = sin−1 𝜌 =  𝐻(𝑄)  + ∑ (−𝐿𝑘(𝜌))∞
2  it can be interpreted as 

applying the inverse of the components to the light path to undo the influence of mass and 

restore the path to a straight-line.                                            

 

A visual perspective of the gravitational components is presented in fig. 2 where the graph of 

𝐻(𝑄) and the first seven components 𝐿𝑘(𝜌) are shown for 𝑈1 =  0.4. The straight line 𝐿1(𝜌) =

sin−1 𝜌 and the HK light path pass through the turning point 𝑅 and are the only null geodesics; 

𝐿1 is the geodesic when there is no mass present. The paths of our mathematical objects 𝐿𝑘(𝜌) 

for  𝑘 > 1 are not null geodesics and are unphysical. They are shown simply to display their 

relationship relative to 𝐿1 and the HK path. They do not pass through the turning point 𝑅 but 

calculations show they all intersect at (𝜋 2⁄ ,𝑟 = 𝑅) or (3𝜋 2⁄ ,𝑟 = 𝑅).  
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Figure 2. Polar coordinate graph of the light path(green)for 𝑈1 = 0.4  and components 𝐿1 (brown) to 𝐿7 out to a 

radius of 5𝑅 where 𝑅 is the turning point of the light path. Both upper and lower branches are plotted. The light path 

and 𝐿1 (the green straight line) are null geodesics. The remaining 𝐿𝑘 components shown are unphysical paths but are 

shown to display their relation to 𝐿1 and the light path. The 𝐿2 component is shown in red and  𝐿3 in blue. The 

remaining components are clustered near an angular value of 𝜋 2⁄  radians.        

 

 

The spread of the 𝐿𝑘 components in fig.2 show that 𝐿2(red path), of order  (𝑀 𝑅⁄ )2 − 1 = 1 makes 

the largest individual contribution to the bending of the 𝐿1 light path into the HK curved light 

path. This is consistent with the well-known calculation of 1.75 arc-seconds for the deflection of 

the light path passing near the sun. It only requires the first two terms of the Taylor series (for 

example, see Section C.2 Step E of [8]) where the first term has no mass ratio factor and the 

second term is to first order in 𝑀 𝑅⁄  which for the sun is the small value ≈ 2𝑥10−6.          

 

We can think of the aggregate effect of {𝐿𝑘}2
∞ as transforming the straight-line light path 

geodesic into a curved light path. Furthermore, any finite subset of {𝐿𝑘}2
∞ has the effect of 

curving the straight-line light to a lesser degree as shown in fig. 3 where the effect of {𝐿𝑘}2
7 and 
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{𝐿𝑘}2
2 on the straight line path 𝐿1 is shown. This is an alternate view of the standard picture of 

space-time ‘bending’ in the vicinity of a massive body. In this alternate view, the effect of mass 

on a path is to “perturb” the straight-line path with the unphysical components {𝐿𝑘}2
∞. Stretching 

the analogy even further, we can also compare this effect to that which occurs in quantum 

particle physics where the state of a particle is transformed via a matrix, which can be viewed as 

a rotation in an abstract unphysical space.      

 

Recall that our analysis has been restricted to the Schwarzschild metric and a mass ratio 𝑀 𝑅⁄  < 

1/3 or equivalently 𝑈1 <  2/3. It would be interesting to extend these results to other 

gravitational metrics and any mass value.    
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Figure 3. Light paths for the HK (green), 𝑛 = 7 (dashed), and 𝑛 = 2 (dotted) models out to a radial distance of 5𝑅 

where 𝑅 is the turning point. The 𝑛 = 7 model corresponds to  {𝐿𝑘}1
7 and the 𝑛 = 2 model corresponds to  {𝐿𝑘}1

2. 

Since the 𝑛 = 7 path is generated from more 𝐿𝑘 gravitational components than the 𝑛 = 2 path it is bent more toward 

the HK null geodesic. i.e it is a better approximation of the HK light path. If all the components are applied, 

corresponding to the 𝑛 = ∞ model, then it would produce the HK path.     

 

 

  Summary. 

This work expands the understanding of light path equations in GR through a detailed analysis 

of two equivalent models—one leveraging infinite series and the other employing closed-form 

Jacobian elliptic functions. By comparing these approaches, the paper derives some 

mathematical relationships and proposes a decomposition framework that breaks down geodesic 

trajectories into ‘gravitational’ components. The findings not only offer deeper insights into the 

mathematical implications of these models but also open avenues for a new interpretation of the 

effects of mass on light paths in curved space-time. 
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Endnotes: 

 

1. The Schwarzschild metric can be represented by the proper time line element  𝑑𝜏2 =     

(1 −
2𝑚

𝑟
 ) 𝑑𝑡2 − (1 −

2𝑚

𝑟
 )

−1

𝑑𝑟2 − 𝑟2𝑑𝜃2 −  𝑟2(𝑠𝑖𝑛θ)2𝑑𝜑2 which contains the 

gravitational tensor components. This characterizes the curvature of space-time around a 

spherically symmetric body in a vacuum and is a solution of the Einstein Field Equation for 

that physical system. Proper time is denoted by 𝜏, 𝑚 is the mass of the central body in 

meters, 𝑟 is radial distance from the center, 𝜃 is the polar angle, and 𝜑 is the azimuth. In 

this metric, the Schwarzschild radius of the body is the 2𝑚 quantity. 

  

2. In GR, mass is frequently converted to units of length in meters (gravitational units’), using 

the conversion factor 𝐺 𝑐2⁄ , as is done in the Schwarzschild metric.  

 

  

Appendix A: List of antiderivatives 𝐹𝑘 and constants of integration 𝐶𝑘. 

 

Antiderivatives: 

 

𝐹1 = sin−1 𝜌   

𝐹2 = −
(−𝜌2−𝜌+2)

(1−𝜌2)
1
2

(
𝑀

𝑅
)          

𝐹3 = (
3

2
) [

5

2
sin−1 𝜌 +

(−(
1

2
)𝜌5+(

8

3
)𝜌3−2𝜌2−(

3

2
)𝜌+(

4

3
))

(1−𝜌2)
3
2

 ] (
𝑀

𝑅
) 2  

𝐹4 = (
5

4
) [−3sin−1 𝜌 −

((−
1

3
)𝜌8−(

8

3
)𝜌6−(

77

15
)𝜌5+16𝜌4+(

25

3
)𝜌3−(

61

3
)𝜌2−4𝜌+(

122

15
))

(1−𝜌2)
5
2

 ] (
𝑀

𝑅
) 3  

𝐹5 =  (
7

8
) [

99

8
sin−1 𝜌 +

((−
1

4
)14𝜌11−(

11

8
)𝜌9+4𝜌8+(

148

7
)𝜌7−32𝜌6−(

185

4
)𝜌5+64𝜌4+(

157

4
)𝜌3−52𝜌2−(

91

8
)𝜌+(

104

7
))

(1−𝜌2)
7
2

 ] (
𝑀

𝑅
) 4  

 

 

𝐹𝑘 = (−1)𝑘−1  
2𝑘−3

2𝑘−2  [𝑡𝑘 sin−1 𝜌 +
𝑁𝑘(𝜌)

(1−𝜌2)
2𝑘−3

2

 ] (
𝑀

𝑅
) 𝑘−1 holds for all 𝑘 where the meaning of the 

variables and constants shown is defined in section B. 

 

 

Constants of Integration: 
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𝐶1 = 0  

𝐶2 = 0   

𝐶3 = 𝐶2 − 
15𝜋

8
(

𝑀

𝑅
)

2

  

𝐶4 = 𝐶3 + 
15𝜋

8
(

𝑀

𝑅
)

3

  

𝐶5 = 𝐶4 − 
693𝜋

128
(

𝑀

𝑅
)

4

 

𝐶𝑛 = 𝐶𝑛−1 −  𝐹𝑛(𝜌 = 1) for n ≥   2, 𝐹𝑛(𝜌 = 1) = (−1)𝑛−1 2𝑛−3

2𝑛−2  [𝑡𝑛 ∙
𝜋

2
 ] (

𝑀

𝑅
) 𝑛−1.  

 

 

Appendix B: The general form of 𝑭𝒌 

 

With some assumptions to be described, we argue that the general form  

𝐹𝑘 = (−1)𝑘−1 2𝑘−3

2𝑘−2  [𝑡𝑘sin−1 𝜌 +
𝑁𝑘(𝜌)

(1−𝜌2)
2𝑘−3

2

 ] (
𝑀

𝑅
) 𝑘−1 described in section B holds for all 𝑘 and 

0 ≤ 𝜌 ≤ 1. An example for some of the derivations is given for 𝐹4. 

 

We first discuss the case 0 ≤ 𝜌 < 1.  

 

As explained in section B, 𝐹𝑘 denotes the antiderivative for the 𝑘𝑡ℎ term of a certain integrand 

derived from the Schwarzschild metric where the proper time 𝜏 is set to zero. See endnote 1. So     

          

∫(  
1

√1−𝜌2
 ) 𝑑𝜌 is the first integrand and 𝐹1 the corresponding antiderivative, and  

 

∫  
2𝑘−3

2𝑘−2  
1

√1−𝜌2
 ((

1−𝜌3

1−𝜌2)
𝑀

𝑅
 )

𝑘−1

𝑑𝜌 is the 𝑘𝑡ℎ integral for 𝑘 ≥ 2 and 𝐹𝑘 the antiderivative.           

 

Since ∫(  
1

√1−𝜌2
 ) 𝑑𝜌 = sin−1 𝜌  we define 𝐹1 = sin−1 𝜌.  

 

Now consider the case 𝑘 ≥ 2 and for now ignore the factors  
2𝑘−3

2𝑘−2  and (
𝑀

𝑅
)

𝑘−1

since the 

integration element is 𝑑𝜌. Then the remaining integral expressions can be put in the form 

 

 ∫  
1

√1−𝜌2
 ( 

1−𝜌3

1−𝜌2)
𝑘−1

𝑑𝜌 = (−1)𝑘−1 ∫  
(𝜌3−1)

𝑘−1

(1−𝜌2)
2𝑘−1

2

𝑑𝜌 = (−1)𝑘−1 [
𝑁𝑘(𝜌)

(1−𝜌2)
2𝑘−3

2

+

𝑡𝑘 ∫(  
1

√1−𝜌2
 ) 𝑑𝜌]                                                                                                               (1)  
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where 𝑁𝑘(𝜌) = ∑ 𝑝𝑖𝜌𝑖3𝑘−3
0  is a polynomial and 𝑡𝑘 is some constant. For the justification refer to 

the techniques cited in [1], section 2.252. This technique is, for example, utilized by the online 

integral calculator at the URL www.Integral-Calculator.com where the explicit steps in the 

calculation are displayed for a given 𝑘. We are simply generalizing these steps and adding 

details to show it will result in our desired general form as claimed.  

 

Our immediate goal is to determine 𝑡𝑘 and the 𝑝𝑖 polynomial coefficients. Ignoring the (−1)𝑘−1 

factor for now, we can now operate on each side of the equation with 
𝑑

𝑑𝜌
 and apply 

differentiation rules to obtain  

 

(𝜌3−1)
𝑘−1

(1−𝜌2)
2𝑘−1

2

=
∑ 𝑖𝑝𝑖𝜌𝑖−13𝑘−4

1

(1−𝜌2)
2𝑘−3

2

+ 
(2𝑘−3)𝜌 ∑ 𝑝𝑖𝜌𝑖3𝑘−4

0

(1−𝜌2)
2𝑘−1

2

+   
𝑡𝑘

√1−𝜌2
 .  

 

Now bring everything to a common denominator:     

 

(𝜌3−1)
𝑘−1

(1−𝜌2)
2𝑘−1

2

=
∑ 𝑖𝑝𝑖𝜌𝑖−13𝑘−4

1

(1−𝜌2)
2𝑘−1

2

(1 − 𝜌2) + 
(2𝑘−3)𝜌 ∑ 𝑝𝑖𝜌𝑖3𝑘−4

0

(1−𝜌2)
2𝑘−1

2

+   
𝑡𝑘(1−𝜌2)

𝑘−1

(1−𝜌2)
2𝑘−1

2

. 

 

Then equate the numerators: 

  

(𝜌3 − 1)𝑘−1 = [∑ 𝑖𝑝𝑖𝜌𝑖−13𝑘−4
1 ](1 − 𝜌2) + (2𝑘 − 3)𝜌 ∑ 𝑝𝑖𝜌𝑖3𝑘−4

0 + 𝑡𝑘(1 − 𝜌2)𝑘−1. 

 

After restoring the (−1)𝑘−1 factor and some additional algebra we have   

 

(−1)𝑘−1(𝜌3 − 1)𝑘−1 = (−1)𝑘−1[∑ 𝑖𝑝𝑖𝜌𝑖−13𝑘−4
1 − ∑ 𝑖𝑝𝑖𝜌𝑖+13𝑘−4

0 + (2𝑘 −

3) ∑ 𝑝𝑖𝜌𝑖+1 +3𝑘−4
0  𝑡𝑘(1 − 𝜌2)𝑘−1].                                                                                 (2)                                                     

                                                                                                                                  

 

The binomial terms can then be expanded. Then a set of 3𝑘 − 2  linear equations in 3𝑘 − 2  

unknowns (𝑡𝑘 and 𝑝𝑖) are formed by matching up terms with the same power of 𝜌 and canceling 

these out. Then 𝑡𝑘 and 𝑝𝑖  are solved for. We will know demonstrate this for a specific value of 

𝑘 but the method can be applied to any value using matrix/determinant calculators. 

 

Let 𝑘 = 4. Then the above procedure will lead to  

  

−(𝜌3 − 1)3 = − [∑ 𝑖𝑝𝑖𝜌𝑖−1

8

1

− ∑ 𝑖𝑝𝑖𝜌𝑖+1

8

0

+  5 ∑ 𝑝𝑖𝜌𝑖+1 +

8

0

𝑡𝑘(1 − 𝜌2)3] 

 

http://www.inetgral-calculator.com/
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for (2). Matching up terms with the same power of 𝜌 and canceling these out gives the set of 

linear equations:                     

 

1 = 5𝑝8 − 8𝑝8 = −3𝑝8 

0 = 5𝑝7 − 7𝑝7 = −2𝑝7 

0 = 8𝑝8 − 6𝑝6 + 5𝑝6 = 8𝑝8 − 𝑝6  

−3 = 7𝑝7 − 5𝑝5 + 5𝑝5 − 𝑡𝑘 = 7𝑝7 − 𝑡𝑘  

0 = 6𝑝6 − 4𝑝6 + 5𝑝4 = 6𝑝6 + 𝑝4  

0 = 5𝑝5 − 3𝑝3 + 5𝑝3 + 3𝑡𝑘 = 5𝑝5 + 2𝑝3 + 3𝑡𝑘                                                   (3) 

3 = 4𝑝4 − 2𝑝2 + 5𝑝2 = 4𝑝4 + 3𝑝2  

0 = 3𝑝3 − 𝑝1 + 5𝑝1 − 3𝑐 = 3𝑝3 + 4𝑝1 − 3𝑡𝑘  

0 = 2𝑝2 + 5𝑝0   

−1 = 𝑝1 + 𝑡𝑘.  

 

The first equation corresponds to the 𝜌9 terms, the next equation corresponds to the 𝜌8 terms, 

and so on, down to the last equation for the 𝜌0 (constant) terms. 

  

Without resorting to software to find a solution we immediately see from examining the 

equations of (3) with only one variable that  𝑝8 = −
1

3
,  𝑝7 = 0. Then a series of simple 

substitutions leads to the remaining solutions  

 

𝑝0 =
122

15
, 𝑝1 = −4, 𝑝2 = −

61

3
, 𝑝3 =

25

3
, 𝑝4 = 16, 𝑝5 = −

77

15
, 𝑝6 = −

8

3
, 𝑡𝑘 = 3 .    

 

Our polynomial 𝑁𝑘(𝜌) is now determined. Continuing with our example, (1) is now 

 

− ∫  
(𝜌3−1)

3

(1−𝜌2)
7
2

𝑑𝜌 =
−𝑁𝑘(𝜌)

(1−𝜌2)
5
2

− 3 ∫(  
1

√1−𝜌2
 ) 𝑑𝜌 or ∫  

(1−𝜌3)
3

(1−𝜌2)
7
2

𝑑𝜌 =
−𝑁𝑘(𝜌)

(1−𝜌2)
5
2

− 3 ∫(  
1

√1−𝜌2
 ) 𝑑𝜌    

 

where     

 

𝑁𝑘(𝜌) = (−
1

3
) 𝜌8 + (−8/3)𝜌6 + (−

77

15
) 𝜌5 + 16𝜌4 + (

25

3
) 𝜌3 + (−

61

3
) 𝜌2 + (−4)𝜌 + (

122

15
). 

 

Then  

 

𝐹4 = −3 sin−1 𝜌  - [(−
1

3
) 𝜌8 + (−8/3)𝜌6 + (−

77

15
) 𝜌5 + 16𝜌4 + (

25

3
) 𝜌3 + (−

61

3
) 𝜌2 +

(−4)𝜌 + (
122

15
)]/(1 − 𝜌2)5/2. 

 



19 
 

which is 𝐹4 in Appendix A after reintroducing the 
2𝑘−3

2𝑘−2 =
5

4
 and (

𝑀

𝑅
)

𝑘−1=3

 factors. 

 

Abstracting these steps and performing for the general case leads to our general form (B.3) for 

0 ≤ 𝜌 < 1 which is  

 

       𝐹𝑘 (
𝑀

𝑅
, 𝜌) = (−1)𝑘−1  

2𝑘−3

2𝑘−2  [𝑡𝑘 sin−1 𝜌 +
𝑁𝑘(𝜌)

(1−𝜌2)
2𝑘−3

2

 ] (
𝑀

𝑅
) 𝑘−1.                                       (4)         

 

This conclusion makes the assumption, which we do not attempt to show, that a solution always 

exists for the linear equations formed by the set {𝑝𝑖 , 𝑡𝑘 }.  

 

We can argue that (4) also holds for 𝜌 = 1 since the light trajectory is continuous in the region 

near 𝑟 = 𝑅 (𝜌 = 1) as it passes through the turning point. Then our model equation should also 

have this property. Then the term 
𝑁𝑘(𝜌)

(1−𝜌2)
2𝑘−3

2

 is not a singularity for  𝜌 = 1.  

 

Since  
𝑁𝑘(𝜌)

(1−𝜌2)
2𝑘−3

2

=
𝑁𝑘(𝜌)

√1−𝜌 (1−𝜌)𝑘−2 (1+𝜌)
2𝑘−3

2  

=
√1−𝜌 𝑁𝑘(𝜌)

(1−𝜌)𝑘−1  (1+𝜌)
2𝑘−3

2    

 , this implies (1 − 𝜌)𝑘−1 is a 

factor of the polynomial 𝑁𝑘(𝜌).  

 

Then 
𝑁𝑘(𝜌)

(1−𝜌2)
2𝑘−3

2

=  
√1−𝜌  𝑀𝑘(𝜌)

(1+𝜌)
2𝑘−3

2

 for some polynomial 𝑀𝑘 (𝜌) of degree 2𝑘 − 3 and therefore 

𝑁𝑘(𝜌)

(1−𝜌2)
2𝑘−3

2

 drops out of (3) when 𝜌 = 1.  Therefore 

   

                                𝐹𝑘 (
𝑀

𝑅
, 𝜌 = 1) = (−1)𝑘−1  

2𝑘−3

2𝑘−2  [𝑡𝑘 ∙
𝜋

2
 ] (

𝑀

𝑅
) 𝑘−1 

 

 as we had claimed in section B and the general form (4) holds for all 𝜌 in the entire interval 

[0,1] when 𝑘 ≥ 2. 

 

We had previously set 𝐹1 (
𝑀

𝑅
, 𝜌) = sin−1 𝜌, so 𝐹1 (

𝑀

𝑅
, 𝜌 = 1) = 𝜋 2⁄  for this case. 
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