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Ramanujan’s τ function
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Abstract

A criterion for Lehmer’s conjecture in terms of the spherical designs
held in the shells of the lattice E8 was derived by de La Harpe, Pache
and Venkov circa 2005. We check that this criterion is satisfied by
combining spherical designs, harmonic polynomials, weighted theta
series, and Deligne’s bound on the modulus of the τ function.
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1 Introduction

The Lehmer conjecture (LC) on the non-vanishing of Ramanujan τ function
is very important in number theory, historically and theoretically. Let ∆(q)
denote the discriminant function, which, as a formal power series generates
Ramanujan τ numbers

∆(q) = q
∞
∏

n=1

(1− qn)24 =
∞
∑

n=1

τ(n)qn.
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Lehmer conjectured in 1947 that ∀n ≥ 1, τ(n) 6= 0 [15]. This fact has been
checked for n ≤ 1015 by Serre in 1985 [18], and for n ≤ 1023 in 2013 [8].
While Hardy was afraid that this function belonged to the “backwaters of
mathematics ” [11, Lect. X], it is now completely mainstream in modern
mathematics. To wit its interpretation as the trace of a ℓ-adic representation
[19], a conception which allowed Deligne to prove the third Ramanujan con-
jecture [11, 10.7.1] on that function at prime arguments [7], as a far reaching
consequence of his proof of Weil conjectures [14]. This result in turn implies
the estimate on the modulus of τ ([11, 10.7.2] ) that we will need in this
paper (Lemma 3).

In the present work, we prove the Lehmer conjecture by using a criterion
based on spherical designs due to La Harpe, Pache and Venkov [12, 13, 17].
For backround material on spherical designs we recommend to the interested
reader the survey [2]. Essentially, to check that this criterion is satisfied, we
have to prove that the shells of the Gosset/Korkine/Zolotareff lattice (E8

shortly) in dimension 8 never form a spherical design of strength 8. This is
achieved by using a consequence of another criterion due to Venkov for a
lattice to hold spherical designs in its shells. This Venkov criterion, when
applied to E8 tests the value of the average of the eighth powers of a given
coordinate over a shell. This value is computed by projection of the homo-
geneous function x8

1 on the spaces of harmonic polynomials of respective de-
gree 0, 2, 4, 6, 8. The technique of harmonic projection is known at least since
Vilenkin’s book [21], and has been used recently in mathematical physics [1].
The contribution of each degree (denoted by cn(j) in the text) is then evalu-
ated by attaching to it a weighted theta series which turns out to have been
determined by Pache [17]. In particular, degree 8 yields the discriminant
function above as an harmonic modular form of weight 12. The violation
of Venkov criterion is then achieved by having recourse to some estimates
of arithmetic functions like the divisor functions σk(n), and Ramanujan τ
function.

The material is arranged as follows. The next section collects some back-
ground notions needed for the rest of the paper. Section 3 studies the Venkov
criterion for E8. Section 4 describes harmonic projection. Section 5 discusses
weighted theta series. Section 6 proves Lehmer conjecture asymptotically.
An effective proof is given in Section 7. Section 8 concludes this note.
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2 Preliminaries

2.1 Spherical designs

Define the unit sphere Ω(n) of Rn as

Ω(n) := {x ∈ R
n | (x, x) = 1},

where (., .) denotes the standard euclidean inner product. Write P (n, t) (resp.
H(n, t)) the vector space of homogeneous (resp. homogeneous harmonic)
polynomials in n variables of degree t. Here harmonic means being in the

kernel of the Laplacian operator
n
∑

i=1

∂2

∂2xi

.

A spherical design of strength t ( t-design shortly) is a finite subset X of
Ω(n) such that the average of every element P in P (n, j) over X for 1 ≤ j ≤ t
equals its integral over Ω(n).

1

|X|
∑

x∈X
P (x) =

∫

x∈Ω(n)

P (x).

An alternative definition of a spherical design is

∀1 ≤ j ≤ t, ∀P ∈ H(n, j),
∑

x∈X
P (x) = 0.

The Venkov criterion [16, Th. 3.2], [2, Th. 2.2] written here for X = −X
and t even, states that X is a t-design iff ∀α ∈ R

n, and all even 2 ≤ j ≤ t,
we have

∑

x∈X
(x, α)j = (α, α)j/2

j!!

n(n+ 2) . . . (n+ j − 2)
|X|.

In this work, we will only use the case α = ei with ei the element of index
i of the canonical basis of Rn. The above equation becomes

∑

x∈X
xj
i =

j!!

n(n + 2) . . . (n+ j − 2)
|X|.
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2.2 Lattices

A lattice L is an additive discrete subgroup of Rn. The norm of a lattice is
min{(x, x) | 0 6= x ∈ L}. For any integer m we define the shell Lm of order
m of L as

Lm = {x ∈ L | (x, x) = m}.
There is a notion of duality for a lattice, that is

L∗ = {x ∈ R
n | ∀y ∈ L, (x, y) = 0}.

A lattice is Type II iff L = L∗ and the squared norm of each of its
vectors is an even integer. A Type II lattice is extremal iff its norm is equal
to 2(⌊n/24⌋ + 1). It is known that extremal lattices hold spherical designs
in all their shells, their common strengths being 7, 3, 11 depending on n ≡
8, 16, 24 (mod 24) respectively [16, Th. 16.4, ch. 1]. The E8 lattice is, up to
equivalence, the only Type II lattice in dimension 8. It is defined explicitly
in [5] as E8 = D8 ∪ (u+D8), with u = (1/2, · · · , 1/2), and

D8 = {x ∈ Z
8 |

8
∑

i=1

xi ≡ 0 (mod 2)}.

Given an harmonic polynomial P in n variables and L a lattice in R
n, define

the weighted theta series as the formal power series

θ(L, P ; q) =
∑

x∈L
P (x)q(x,x).

Upon letting q = exp(πiz) with ℑ(z) > 0, when L is Type II, these
weighted theta series become modular forms of weight n/2+ r where r is the
degree of P [6, 9]. From the definitions, it is clear that, up to normalization,
(L)m is a t-design iff the coefficient of qm in θ(L, P ; q) vanishes for all P ∈
H(n, j) and all 1 ≤ j ≤ t. (Cf. [17, Lemma 5]). By this simple observation,
we deduce the de la Harpe, Pache, Venkov criterion (HPV criterion) on the
vanishing of the τ function. Write, to simplify notation,

√
nSn = (E8)n.

Proposition 1 ([17, Th. 32]) For all integers n ≥ 1, τ(n) = 0 iff S2n is an
8-design.
Proof. It is well-known that the shell S2n is always a 7-design by ex-
tremality of E8. By [17, Lemma 31] we know that

θ(E8, P ; q) = c(P )∆(q2)
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for all P ∈ H(8, 8), and for some real c(P ). The result follows by taking
coefficients of q2n on both sides.
For general connections between spherical designs and extremal lattices see
[3].

3 Venkov criterion

To contradict the HPV criterion, we need to check that Sn is not an 8-design.
There is an equivalent definition of spherical designs due to Venkov [2, Th.
2.2.(6)], recalled in Section 2, that yields in this special case the following
necessary condition.

For all i ∈ [8], if Sn is a 8-design we should have

∑

u∈Sn

u8
i = |Sn|

1.3.5. . . . 15

8.(8 + 2). . . . (8 + 14)
=

3× 13|Sn|
215

,

and in particular
1

|Sn|
∑

u∈Sn

u8
i =

3× 13

215
.

The LHS of the latter equation can be computed numerically for the first
few values of n. Note that if S(n) were an 8-design, then for all i ∈ [8], we
would have

1

|Sn|
∑

u∈Sn

u8
i =

3× 13

215
≈ 0.001190.

The size of Sn can be obtained directly by

|Sn| = 240σ3

(n

2

)

, where σr (m) =
∑

d|m
dr.

By using Magma [4], for some small n, we get the set Sn and observe that
it is not an 8-design in the following table. The value of 1

|S(n)|
∑

u∈Sn
u8
i is

rounded to 6 decimal places. The entry for odd n is omitted since then Sn

is empty. Table 1 suggests that the real value of
∑

u∈Sn
u8
i is strictly larger

than the value imposed by the 8-design property.
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Table 1: Values of 1
|S(n)|

∑

u∈Sn
u
8
i for some small n’s.

n 2 4 6 8 10 12
|Sn| 240 2160 6720 17520 30240 60480

∑

u∈√nSn
u8
i 28.5 4356 67662 562848 2355255 9806832

1
|S(n)|

∑

u∈Sn
u8
i 0.007422 0.007878 0.007769 0.007843 0.007789 0.007820

4 Harmonic polynomials

For simplicity’s sake, we let henceforth i = 1. Every homogeneous polyno-
mial can be expressed on the basis of Harmonic polynomials by the explicit
formulas of [1, 21].

Proposition 2 The harmonic projection of x8
1 is given by

x8
1 =

8
∑

j=0

r8−jhj(x)

where hj(x) is a harmonic polynomial of degree j in 8 variables, r2 = (x, x),
and j = 0, 2, 4, 6, 8.
Proof. This follows by [21, (3), p.443], or, alternatively by [1, (11)].

Let cn(j) =
∑

u∈Sn

hj(u). We note, for future use, the relation

∑

u∈Sn

u8
i =

8
∑

j=0

cn(j), (1)

which comes from Proposition 2, upon noting that r = 1 for u on the unit
sphere.

5 Modular forms

To evaluate cn(j) we introduce the weighted theta series

Tj(q) := θ(E8, hj) =
∑

x∈E8

hj(x)q
(x,x).

The connection with cn(j) is as follows.
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Proposition 3 For j ∈ {0, 2, 4, 6, 8}, we have Tj(q) =
∞
∑

n=0

cn(j)n
j/2qn.

Proof. Write

∑

x∈E8

hj(x)q
(x,x) =

∞
∑

n=0

∑

x∈√nSn

hj(x)q
(x,x) =

∞
∑

n=0

qn
∑

x∈√nSn

hj(x).

We conclude by homogeneity of hj .

The evaluation of weighted theta series in [17] translates into evaluation
of the cn(j)

′s.

Proposition 4 For any integer n ≥ 1 we have

• cn(0) =
|Sn|
128

,

• cn(j) = 0, for j = 2, 4, 6

• n4cn(8) = 16c2(8) τ(n/2) = −1.5 τ(n/2)

Proof. The expression h0(x) = 1
128

can be obtained by applying formula
(16) in [1]. Since h8 is a homogeneous polynomial of degree 8, by using
Magma [4], we have

16c2(8) = 16
∑

u∈S2

h8(u)=
∑

u∈
√
2S2

h8(u)= −1.5 .

Then the results follows immediately from [17, Lemma 31, (i)] by taking q-
expansions of weighted theta series and using Proposition 3.

6 Arithmetic functions

In this section, we derive an asymptotic version of Lehmer conjecture.

Theorem 1 A sufficient condition for Sn to not be an 8-design is

−1.5τ(n/2)

n4
+ |Sn|/128 >

3× 13

215
|Sn|. (2)
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Proof. By Equ.(1) and Proposition 4, we have

∑

x∈Sn

x8
1 = cn(0) + cn(8) =

−1.5τ(n/2)

n4
+ |Sn|/128.

The result follows then by Venkov criterion.

It should be noted that the values of cn(0)+ cn(8) are consistent with the
data in Table 1 for n ≤ 12. The following estimates for divisor functions are
well known [10, 20].

Lemma 1 For fixed k > 1, we have

σk(n) ≥ nk,

and
σk(n) ≤ ζ(k)nk,

where ζ(k) is the Riemann Zeta function given by ζ(k)=
∞
∑

n=1

1
nk .

We know that |Sn| = 240σ3(n/2) [5]. Write f(x) = O(g(x)) if there is a
constant C > 0, such that for all x large enough we have |f(x)| ≤ C|g(x)|.
Thus, by the above estimates on σk(n) we have

30n3 ≤ |Sn| = O(n3).

By a deep result of Deligne [5, Chap. 2, (55)], for any ǫ > 0, we have

τ(n) = O(n
11

2
+ǫ), and so −1.5τ(n/2)

n4 = O(n3/2).
Thus, roughly speaking, for n → ∞, the dominant term in the LHS of

inequality (2) is the second one which is trivially larger than the RHS. We
summarize the previous discussion as follows.

Theorem 2 There exists an integer n0 > 0, such that the inequality (2)
holds for n > n0.

7 Effective bounds

In this section, we strive to make Theorem 1 effective. We begin by the
crude, but explicit.

8



Lemma 2 For n ≥ 1, we have σ0(n) ≤ 2
√
n.

Proof. By the definition of σr (m), we have σ0 (n) =
∑

d|n
1, which is equiva-

lent to the number of factors of n. If d divides n, so does n/d. For any factor
d, one of d, n/d is smaller than or equal to

√
n. Then the result follows.

We need a deep inequality which is called Ramanujan conjecture. The
inequality was proved by Deligne in [14].

Lemma 3 For n ≥ 1, we have |τ(n)| ≤ σ0(n)n
11/2.

We are now in a position to state and prove the main result of this note.

Theorem 3 For n ≥ 1, we have τ(n) 6= 0.
Proof. We show that the bound of Theorem 1 holds for n ≥ N, for some
explicit N. Combining Lemmas 1, 2 and 3 gives a sufficient condition

−1.5×
(

n6

25

)

n4
+

30n3

128
>

3× 13

215
× 30ξ(3)n3.

By using ζ(3) < 2, we have a sufficient condition for Theorem 1, that is

−6n2 + 30n3 ≥ 3× 13× 30

27
n3,

which holds for n ≥ N, with

N = ⌈ 3

30− 9.140625
⌉ = 1.

8 Conclusion and open problems

In this note we have given a proof of Lehmer’s conjecture on Ramanujan τ
function based on spherical designs and estimates of some arithmetic func-
tions. In particular, we have proved that the shells of the lattice E8 never
form 8-designs. The tool that have might been missed by the authors of [13]
is probably the technique of harmonic projection [1, 21].
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It seems likely that our techniques can be extended to other extremal
lattices. For instance, it can be conjectured that the shells of the Leech lattice
never form a 12-design ( see the Remark in [17] after Theorem 32). This might
require, however, estimates on arithmetic functions not yet available in the
literature.

In another direction, the fundamental analogy between codes and lattices
should provide arguments for the non-existence of high strength combinato-
rial designs in the supports of extremal codes.

Acknowledgement: The authors are indebted to Eiichi Bannai for help-
ful discussions.
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