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Abstract 

This paper explores the hypothesis that quantum mechanics (QM) is a 

description of reality from the perspective of an internal observer—an 

observer who is simultaneously the subject and object of observation. The 

idea traces back to the work of J.A. Wheeler [1,2], who argued that the 

Universe cannot be fully explained from an external standpoint and must 

be integrated into the process of observation. Without claiming 

universality, we construct a simple model that demonstrates the 

emergence of QM within this self-referential framework. The conclusion is 

that quantum reality is an emergent phenomenon in the worldview of an 

internal observer. 

 

 

1. Introduction 

Quantum mechanics (QM) is an empirical theory. Its foundations remain a subject 

of debate, and the multitude of interpretations reflects the dissatisfaction of 

scientists with the current state of affairs, motivating them to continue the search 

for a deeper theory, as Einstein suggested [3]. 

The lack of even minimal progress in reductionist approaches to solving the 

problem of consciousness, on one hand, and the prolonged crisis in understanding 

the foundations of QM, on the other, hint that the two "hard problems"1 might be 

interconnected [4]. 

Wigner was among the first to realize that the formalism of QM operates not with 

the external world, but with the states of the observer's consciousness [5]. This 

implies that consciousness must be formalized and incorporated into physical 

theory. Such a step is challenging for a physicist, as it represents a move toward 

subjectivism. A. Linde remarked on this: "It seems that we are dealing with 

something very, very important, about which we haven’t even begun to think" [6]. 

With the advent of QM, the observer transitioned from being a passive witness to 

an active participant shaping reality. John Archibald Wheeler, in this regard, 

suggested replacing the term "observer" with "participant." His well-known 

statement, "observers are necessary to bring the universe into being," reflects his 

profound conviction in the fundamental role of the observer in the structure of the 

universe. Wheeler's student, Hugh Everett III, went even further in understanding 

the nature of the observer, realizing that there is no collapse, and consequently no 

 
1 The term "hard problem" were coined by the philosopher David Chalmers in a 1994 



contradictions associated with it—there is only the dynamics of quantum states. 

Later, M.B. Mensky proposed an expanded concept based on Everett's work [7,8], 

in which he identified selective measurement with consciousness. He considered 

consciousness a physical property possessed only by living matter. This approach 

fits within a reductionist narrative but does not address the main question—why 

and how this property is connected with quantum mechanics. 

In the present work, we consider the possibility of a reverse approach. We will 

demonstrate how quantum mechanics can emerge based on a formalized 

representation of consciousness. 

 

Ontology of Quantum Mechanics 

We shall outline the fundamental structure and axioms of the model. It is based on 

a finite set of states of an abstract observer, which we shall formally call states of 

consciousness. States of consciousness will serve as the fundamental primitives of 

our construction. This ensures that our model is ultimately background-

independent. Indeed, when the observer (their "self") becomes part of a 

mathematical structure, that very structure—be it a field, group, or space—

becomes physical reality for them. Thus, in the framework of this paper, states of 

consciousness are identified with physical states. For example, the predicative 

statement (P(x)), meaning "to have the coordinate (x)," describes the corresponding 

state of consciousness, which takes values from the Boolean set: {0,1}. 

Consider a finite set of states of consciousness: 𝑆 = {𝜓1, 𝜓2, … , 𝜓N}. The current 

state of consciousness is always directed at an object (in our case—another state 

of consciousness). This property of consciousness was termed intentionality by 

Franz Brentano. Intentional relations form ordered pairs {𝜓𝑖, 𝜉j}, where 𝜓𝑖 , 𝜉j ∈ 𝑆. 

The first element in the parentheses denotes the current state of consciousness. 

These pairs of states of consciousness will henceforth be referred to as ontological 

states. 

In the spirit of Wheeler's (John Archibald Wheeler) "it from bit" ideology, let us 

consider an 𝑁2-dimensional binary space of ontological states, Ω, with the basis: 

|ζ𝑘⟩ ≅ {𝜓𝑖, 𝜉j};  𝑖, 𝑗 = 1,2 … 𝑁, 𝑘 = (𝑖 − 1) × 𝑛 + 𝑗.  (2.1) 

Here, we transition to a consecutive numbering of the basis. More rigorously, we 

define this as a binary Hamming-normalized space over the field ℤ2, with the scalar 

product defined as ⟨𝑢𝑘|v𝑘⟩ = ∑ 𝑢𝑘v𝑘  In such a space, the norm of any vector is 

numerically equal to the number of non-zero projections: ‖𝑢‖𝐻 = ⟨𝑢𝑘|𝑢𝑘⟩.  Since 

‖𝑢‖𝐻 ∉ ℤ2, the norm here must be understood narrowly as a function returning 

the number of non-zero components. 

A vector in the ontological space Ω can be represented as a linear combination of 

the basis vectors:  



|Φ⟩ = ∑ 𝑎𝑘|ζ𝑘⟩𝑁2

1  ;  𝑎𝑘 ∈ ℤ2  (2.3) 

 

We assume that the ontological basis is ordered in some fundamental ontological 

time. If we consider the vector |Φ⟩ as a set of components corresponding to 

different moments in time, it essentially describes the evolution of the system in 

ontological time. Later, we will clarify the physical meaning of ontological time. For 

now, we note only that ontological time is a measure of the external observer's 

time, whereas physical time, which we measure with clocks, is a measure of the 

internal observer's time. 

The internal observer's (the subject's) perception of the world is, by definition, 

limited by his current state of consciousness. Consequently, such an observer does 

not distinguish between ontological states {𝜓𝑖 , 𝜉j} with the same current state of 

consciousness 𝜓𝑖 but different 𝜉j. This state of affairs will be referred to as physical 

or subjective incompleteness. The term "subjective" here carries no psychological 

or philosophical connotation; it simply means that the incompleteness is relative to 

the internal observer, i.e., the subject. Formally, incompleteness can be expressed 

by the equivalence relation: 

{𝜓𝑖, 𝜉j}~{𝜓𝑖, 𝜉𝑘}, где 𝑖, 𝑗, 𝑘 = 1,2 … 𝑁 (2.4) 

This equivalence serves as the basis for the factorization of the ontological space 

Ω by the criterion of "subjective indistinguishability": 

𝑆𝑢𝑏𝑗 ≔ Ω ~⁄               (2.5) 

Thus, states of consciousness (which are also physical states) are described by 

classes of indistinguishable ontological states, which form the equivalence class 

space with the basis: |𝜓𝑖⟩ ≅ {𝜓𝑖 , ~};  𝑖 = 1,2 … 𝑁  

To avoid misunderstanding of the structure considered here, we emphasize that we 

are factorizing the space Ω by the basis. Therefore, we have the tensor product Ω =

Subj ⊗  Obj, and accordingly: dim(Ω) = dim(Subj) ∙ dim(Obj). Here, Obj 

denotes the intentional copy of Subj.  

Let 𝑃̂̂𝑘 be the projector of the ontological space Ω onto the subspace of the class 

Φ𝑘 = {𝜓𝑘, ~}, corresponding to the k-th state of consciousness. It will become 

clear that the class Φ𝑘 in quantum mechanics corresponds to the k-th eigenvalue 

of the observable. Acting with the operator 𝑃̂̂𝑘 on an arbitrary vector |Φ⟩, we obtain 

the projection vector onto this subspace: |Φ𝑘⟩ = 𝑝𝑟𝑜𝑗Φ𝑘 (|Φ⟩) = 𝑃̂̂𝑘|Φ⟩ This 

vector lies within the equivalence class subspace Φ𝑘 and is indistinguishable from 

other vectors of the same class. However, its norm ‖|Φ𝑘⟩‖𝐻, equal to the number 

of non-zero projections, determines the weight of the state |𝜓𝑘⟩ in the factor space 

of states of consciousness.  



The factor space Subj, as defined earlier, does not necessarily "inherit" the structure 

of the original vector space. Therefore, we extend the field over which the factor 

space is constructed from the original ℤ2 to ℤ𝑝, where (p) is prime, and equip this 

space with a discrete Manhattan metric: 𝜌(𝑟, 𝑠) = ∑|𝑟𝑖 − 𝑠𝑖| where the basis 

coordinates 𝑟𝑖, 𝑠𝑖  ∈ ℤ𝑁. Then, any vector in the factor space can be represented as:  

|𝜓⟩ = ∑‖|Φ𝑘⟩‖𝐻 ∙ |𝜓𝑘⟩  (2.6) 

Although strictly speaking we are dealing with a module over the ring ℕ, for 

simplicity, we will continue to use the term "space." To align our formalism with the 

formalism of QM, it suffices to rewrite (2.6) in the form:  

|𝜓⟩ = ∑ √𝑛𝑘 ∙ |𝜓𝑘⟩  (2.7) 

Here, 𝑛𝑘 = ‖|Φ𝑘⟩‖𝐻 is the number of non-zero projections of the vector |Φ𝑘⟩. 

Since it is impossible to introduce Euclidean metrics on the field ℤ𝑝, the coefficients 

√𝑛𝑘 should not be understood as real numbers in an algebraic sense, but as 

characteristic functions that return the number of non-zero projections. 

It is important to note that both in the QM formalism and in our model, the state 

space is the space of classes of subjectively indistinguishable (hidden) states. In our 

case, these hidden states are ontological states, while in QM they are 

indistinguishable phase states 𝜓~𝜓 ∙ 𝑒𝑖𝜑. However, whereas we relate the 

cardinalities of the classes of ontological states to quantum amplitudes, QM neither 

explains the origin of amplitudes nor associates any physical meaning with 

equivalent phase states. Later, we will show that ontological states play the role of 

quantum-mechanical phases. 

The similarity of these mathematical objects suggests that the projective structure 

of the Hilbert space in QM owes its origin to the physical incompleteness 

considered here. Indeed, as we have shown, incompleteness inevitably leads to the 

existence of hidden parameters. In turn, incompleteness imposes fundamental 

epistemic constraints on the internal observer. Since we equate states of 

consciousness with physical states, epistemic constraints also become physical and 

are expressed, in particular, in Heisenberg's uncertainty principle. It is pertinent to 

recall David Hilton Wolpert's formal argument, stating that it is fundamentally 

impossible for any intelligence to know everything about the universe of which it 

is a part [9]. 

Ontological Dynamics 

Aristotle associated the measure of time with "the change of things" [10]. This 

reflects a profound understanding that it is not "things" that change within an 

absolute flow of time, but that time itself is nothing other than the change of 

"things." We always judge time by observing changes in something; we have no 

other way to measure time. Following Aristotle, let us assume that any observable 

change in the states of a system occurs in physical time. 



The existence of processes external to consciousness, i.e., fundamentally 

unobservable processes, is a key distinction between QM and classical mechanics. 

An example of unobservable dynamics in QM is the stationary state. In a stationary 

state, the expectation value of an observable ⟨𝜓|𝑥̂|𝜓⟩ does not depend on physical 

time, whereas the wave function itself oscillates in ontological time (see above). In 

our model, this situation corresponds to a stationary vector (2.3) in the ontological 

space Ω. 

A stationary vector |Φ⟩ ∈ Ω describes ontological evolution, i.e., the movement of 

the system in ontological time. Given that ontological states are grouped into 

equivalence classes Φ𝑘 = {|𝜓k⟩ ⊗ |~⟩}, the time spent by the system in each of 

these classes is determined by the number of non-zero projections of the vector 

|Φ⟩ onto the subspace Φ𝑘 of the k-th eigenvalue of the observable. This number 

defines the coefficients in equation (2.7), which describes the superposition. 

In contrast to QM, which assumes the actual simultaneous existence of the 

components of a superposition, in the model under consideration, simultaneity is 

interpreted as the inability of the observer to distinguish events that belong to 

different moments of ontological time but the same moment of physical time. 

Different moments of ontological time, while physically indistinguishable, differ in 

phase. Therefore, any quantum state at any given moment of physical time is 

degenerate with respect to phase. If a quantum state is a superposition, the result 

of a measurement (or awareness) will depend on the phase. Thus, phase 

degeneracy forms the foundation for the Many-Worlds Interpretation (MWI). We 

will not delve further into this topic here, as it requires separate consideration. 

To derive dynamics in physical time, let us rotate the vector |Φ⟩ ∈ Ω in physical 

time. In general, the evolution of the vector can be written as a recurrence equation:  

|Φ𝑡⟩ = [Û]
t

∙ |Φ0⟩  (3.1) 

 

Here, Û is a unitary evolution operator acting in the space Ω, and t is discrete 

physical time. The matrix Û, from the symmetric group SN, dimension 𝑁2 × 𝑁2 

permutes the basis. This is the most general law of dynamics on a finite field. 

Since deterministic evolution on finite spaces is cyclic, i.e., |Φ𝑡+𝑁⟩ = |Φ𝑡⟩ and since 

our construction is based on finite fields, we can, for convenience, transition to an 

isomorphic field of roots of unity:  

|Φt⟩ = 𝑒−𝑖𝐻̂t|Φ0⟩  (3.2) 

 

Here, the vectors |Φ⟩ are redefined in the basis of the discrete Fourier transform. 

The dynamics of quantum states, being supervenient over deterministic ontological 

dynamics, is not deterministic in the sense mentioned above, as the canonical 



factor mapping 𝑅:̂ Ω ⟶ 𝑆, which formalizes the reduction (collapse) of a quantum 

state, is surjective. This leads to an important understanding of the relativity of 

collapse. 

Collapse exists only for the internal observer, whereas objectively (from the 

perspective of a hypothetical external observer), the system's evolution is 

deterministic and free of jumps or discontinuities. 

From the internal observer's perspective, transitions between observable states 

appear probabilistic. These probabilities, however, follow deterministic dynamics in 

exactly the same way as in QM. Besides determinism, there must be ergodicity in 

the ontological dynamics. Only in this case can the probability be defined as the 

limit:  

P = lim
θ→∞

θi

θ
        (3.3) 

where θi is the time, the system spends in the class corresponding to state |𝜓𝑖⟩, 

and θ is the current ontological time. With 𝛩𝑚𝑎𝑥 = N2, infinity here is understood 

conditionally as sufficiently large N. 

For the internal observer with a number of states of consciousness (N), the number 

of ontological states is uncountable, N2 ≅ ∞, so the limit (3.3) becomes strict. 

Ergodicity in finite spaces can be justified by the plausible hypothesis of the 

uniform distribution of a geometric progression over a Galois field [11]. In a sense, 

this hypothesis is equivalent to the statistical physics postulate of equal probability 

for all admissible microstates. Based on this assumption, Born's rule in our case is 

easily derived by simply counting the projections of the evolution vector |Φ⟩ onto 

the subspaces of the observables. 

 

Born's Rule 

Let us consider the manifold Ω× ∈ Ω, formed by vectors |Φ⟩ ∈ Ω with the norm 

⟨Φ|Φ⟩ = 𝑁, where 𝑁 = dim (𝑂𝑏𝑗). Within the framework of axiomatic probability 

theory, the space Ω× can be viewed as a space of atomic events (elementary 

outcomes or simple events) [12]. The set of projections 𝑝𝑟𝑜𝑗Φ𝑖 (|Φ⟩) of the vector 

|Φ⟩ onto subspaces of the corresponding observables constitutes an event. Each 

event satisfies the normalization condition:  

∑ ‖𝑝𝑟𝑜𝑗Φ𝑖 (|Φ⟩)‖
2𝑁

1 = 𝑁 (4.1) 

 

It is important to note that the term "event" here corresponds to the concept of 

nonselective measurement. This refers to a situation where the result of a 

measurement is not consciously recognized and, therefore, can only be described 

by a probability distribution. The set of all possible events forms a σ -algebra of 

events £. The event space is defined as the triplet: 



ℋ = (Ω×, £, 𝑃)   (4.2) 

where (P) is the normalized probabilistic measure, defined as follows: 

 

Here, 𝑃𝑖 is the probability of selective measurement corresponding to the class 

{Φ}𝑖. 𝑃̂̂𝑖 - is the ontological projection operator associated with the eigenvalue of 

the observable, as introduced earlier. For clarity, the projector is represented in 

matrix form. In QM, for non-degenerate states, the diagonal of the projector 

contains only one unit. In our case, the number of units in group (i) is determined 

by the dimensionality of the subspace of the equivalence class. 

Authors of various QM interpretations are often concerned with the so-called 

preferred basis problem. The question is posed as follows: why, during 

measurement, does the quantum system "choose" one definite state instead of 

remaining in a superposition of multiple states? Or, in other words, why does our 

world appear classical? 

In the context of our model, which is focused on exploring the foundations of QM 

rather than its interpretation, this question loses its meaning. The choice is not 

made by the system but by the observer, who is constrained by a finite set of states 

of consciousness. What the observer observes is what they declare as the basis. In 

other words, the basis does not exist a priori; it is assigned by the observer. 

Discussions about superposition in this regard take on a counterfactual nature. 

 

Conclusions 

In recent times, increasing efforts have been made to integrate the observer into 

the fabric of physical theory. It is worth noting the similarity between the approach 

discussed here and Rovelli's relational interpretation (RQM) [14], which rejects the 

concept of an absolute independent observer. It also bears resemblance to works 

[15, 16] that are structurally close to our approach, where the authors ad hoc 

introduce the idea of indistinguishability of "microstates" by a conscious agent 

(observer), and from this derive Born's rule. Similarly, David Hoffman employs 

reverse reductionism to derive quantum mechanics from consciousness [17]. 

In this work, we have shown how quantum mechanics can emerge based on a 

formalized representation of consciousness. In our model, the observer is an 

abstract subject observing itself. In form, this is reminiscent of J.A. Wheeler's 

𝑃(𝑥𝑖) =
1

𝑁
⟨Φ|𝑃̂̂𝑖|Φ⟩ =

1
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⟨Φ|
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1

𝑁
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𝑛𝑖

𝑁
         (4.3)       



"Participatory Universe" [2]. However, the emphasis here is on self-reference, which, 

in the case of finite systems, analogously to Gödel's incompleteness theorems, 

generates "physical incompleteness." As a result, the world for the internal observer 

acquires non-classical properties, which are described by quantum mechanics. 
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