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The Abraham–Minkowski controversy has arisen because the Minkowski stress-energy tensor for
the electromagnetic field in polarized and magnetized matter is not symmetric. This note proposes
an alternative that is both symmetric and traceless.

I. INTRODUCTION

A. Conventions Adopted

The Minkowski metric is (−,+,+,+).
∇· σ↔ ≡ ∇iσij so that a stress-energy (or stress-energy-

momentum) tensor takes the form(
u cg

S/c −σ↔

)
(1)

B. Background

The Abraham–Minkowski controversy is a century-
long dispute as to the true form of the electromagnetic
stress-energy tensor in and, hence, the electromagnetic
force on matter that is polarized and magnetized.

It has its origin in 1908, when Minkowski derived a
stress-energy tensor for the electromagnetic field in po-
larized and magnetized matter [1, eqn 75],

Θµν + ηµβPαβF
αν − 1

4η
µνPαβF

αβ (2)

where Θµν is the (symmetric) electromagnetic stress-
energy tensor, ηµν is the (Minkowski) metric tensor, Pµν

is the polarization-magnetization tensor [2, eqn 21], and
Fµν is the electromagnetic field tensor.

The controversy started the next year, when Abra-
ham [3] derived relations with ‘. . . eine merkwürdige
Symmetrieeigenschaft jenes Gleichungssystemes, die sich
in Minkowski’s Ansätzen nicht findet.’ The underly-
ing reason for this is the source of the controversy:
Minkowski’s stress-energy tensor is not symmetric.

Despite having been ‘resolved’ numerous times [4, 5],
the controversy persists to this day. This humble contri-
bution will make no difference to that situation.

II. DERIVATION

A. Electromagnetic Force Density

The Lorentz force density on free charges and currents
is

(∇ ·D)E+

(
∇×H− ∂D

∂t

)
×B (3)
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which is the same as

−∂µΘ
µj − (∂βPαβ)F

αj (4)

where the Latin index j denotes spatial components.
The Lorentz force density on bound charges and cur-

rents is [6, eqn 64]

(P · ∇)E+
∂P

∂t
×B+M× (∇×B) + (M · ∇)B (5)

which is almost the same as

−Pαβ(∂
βFαj) (6)

the difference being that the latter expression includes
an additional term

− ∂

∂t
(P×B) (7)

Omitting this term would break the Lorentz covariance
of Expression 6, which constitutes compelling evidence
that it is real. However, it does not contribute to the
Lorentz force density, so how to account for it?

B. Hidden Momentum

That P×B has the form of a momentum density sug-
gests treating it as if it were a component of the momen-
tum density of matter.
According to Newton’s second law of motion, the force

density on matter is

∂µΥ
µj (8)

where Υµν is the stress-energy tensor for matter. This is
the same as

∂gΥ

∂t
−∇ · σ↔Υ (9)

where gΥ is the momentum density of the matter and σ↔Υ

its stress tensor. If Expression 7 is a real force density,
then the electromagnetic force density on matter is equal
to the sum of Expressions 4 and 6,

∂µΥ
µj = −∂µΘ

µj − (∂βPαβ)F
αj − Pαβ(∂

βFαj)

= −∂µΠ
µj (10)

where

Πµν = Θµν + ηµβPαβF
αν (11)
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is Medina and Stephany’s stress-energy tensor for the
electromagnetic field [9, eqn 132]. The similarity to
Minkowski’s stress-energy tensor (Expression 2) is ap-
parent.

Consequently, the Lorentz force density (the sum of
Expressions 3 and 5) is equal to

∂

∂t
(gΥ +P×B)−∇ · σ↔Υ (12)

and therefore, the effective momentum of a body of finite
extent acted on by the Lorentz force is∫

V
(gΥ +P×B) dτ (13)

which implies that an electric dipole p in a magnetic field
has linear momentum p×B irrespective of its motion.

This is an example of hidden momentum, a ‘discov-
ery’ of Shockley and James [7], who found that magnetic
dipoles possess ‘“hidden momentum” Gl = −ϵ0E × µ0m
associated with energy flow in a current loop of magnetic
dipole strength m situated in an electric field E.’ They
examined only magnetic dipoles, but the situation for
electric dipoles is analogous.

This, however, creates a conundrum in that, unlike a
magnetic dipole, an electric dipole has no moving parts
(e.g. moving charges) and hence nowhere to store mo-
mentum. So, where is it hidden? Minkowski [1] hides it
in plain sight by incorporating it in the momentum den-
sity of the electromagnetic field. Griffiths [8] locates it
in the sources of the magnetic field. The resolution that
follows offers an insight into this question.

C. Resolution

Πµν , like Minkowski’s stress-energy tensor, is problem-
atic in that it:

1. is not symmetric

2. does not account for the hidden momentum of mag-
netic dipoles described by Shockley and James.

The remedy is to introduce a new stress-energy tensor

∆µν = ηµβMαβG
αν (14)

where Mµν and Gµν are the duals of Pµν and Fµν re-
spectfully. Defining Tµν such that

Υµν = Tµν + ηµβMαβG
αν (15)

which mirrors Equation 11, implies that Equation 10 is
equivalent to

∂µT
µj = −∂µV

µj (16)

where

V µν = Θµν + ηµβ(PαβF
αν +MαβG

αν) (17)

is symmetric and traceless. The momentum density com-
ponent of ∆µν is

cg∆ =
1

c
M×E (18)

so that the effective momentum of a body of finite extent
acted on by the Lorentz force becomes∫

V
(gT + g∆ +P×B) dτ

=

∫
V

(
gT +

1

c2
M×E+P×B

)
dτ (19)

where cgT is the momentum density component of Tµν .
This leads to the following interpretations.

1. Πµν is the stress-energy tensor for the field, which
must be the case if Υµν is the stress-energy tensor
for matter.

2. Tµν is the stress-energy tensor for matter prior to
its being polarized or magnetized, so ∆µν is the
change in the stress-energy tensor for matter when
it is polarized and magnetized.

3. Equation 16 is the (kinetic) electromagnetic force
density.

Returning to the issue of the location of the hidden mo-
mentum of electric dipoles, the first interpretation sug-
gests that it is present in the momentum density of the
field, which is D×B, not in that of matter.

III. CONCLUSION

Barnett [5] suggests that the ‘. . . resolution of the
Abraham–Minkowski dilemma requires us to recognize
that there are two distinct electromagnetic momenta, the
kinetic momentum and the canonical momentum.’
In this he is correct. There are two distinct electro-

magnetic stress-energy tensors:

1. V µν is the kinetic stress-energy tensor, which is
symmetric and traceless

2. Πµν is the canonical stress-energy tensor, which
is the stress-energy tensor for the electromagnetic
field.

In the absence of polarization and magnetization both
are equal to the familiar electromagnetic stress-energy
tensor, Θµν .
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