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Abstract

In this work, we explore some applications of mathematics in the development and us-
age of supervised learning algorithms with a strong focus on linear regression models.
Subsequently, we look at the mathematical foundations essential for supervised learn-
ing, which include linear algebra, probability theory, calculus, optimization, statistics,
and geometry. For a concrete illustration of the applications of mathematics in super-
vised learning, this work employs simple and multiple linear regression models using
data that is about pH of pure water. Through these examples, we demonstrate how
mathematical techniques are applied in formulating, estimating and evaluating linear
regression models. Key processes such as least squares estimation and statistical in-
ference are highlighted to show their critical application in parameter estimation and
model validation. The findings underscore the importance of mathematical rigor in
ensuring accuracy and interpretability of supervised learning models.

1 Introduction

Machine learning employs techniques from mathematics and related computational resources
to create models that learn from experience, adapt to new data provided by a user and
generalize patterns after a successful training process. The motivation for the interest in the
connection between mathematics and supervised learning is highlighted below;

� Mathematics provides a theoretical foundation upon which machine learning algo-
rithms are built. Concepts from linear algebra, calculus, optimization, statistics, prob-
ability theory, graph theory and geometry are essential for understanding the inner
operations of algorithms.

� Selecting and customizing a given model. Mathematics plays a vital role in choosing
a model with an algorithm that can handle a unique problem at hand.

� Debugging code when things go wrong. Mathematics helps us understand errors and
diagnose them effectively. Here, it is like being a detective in the world of code.
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� Knowledge of mathematics enables us to effectively interpret the predictions made by
a given model that we choose to implement.

� Mathematics offers us rigorous tools for analyzing the performance, behavior and lim-
itations of machine learning models. Through mathematical analysis, we gain insights
into why certain algorithms work well in specific scenarios.

� Innovation and research. Creating new machine learning algorithms and improving
existing ones require a great deal of mathematical insights and principles.

In subsequent sections of this chapter, we look briefly at different areas of mathematics
and their applications in supervised learning. Section 2 is about the areas of mathematics
and their applications in supervised learning. In section 3, we present as applications, some
linear regression tasks. The conclusion is given in section 4.

2 Areas of mathematics and their applications in su-

pervised learning

2.1 Linear algebra

Linear algebra deals with the study of vectors, vector spaces and mappings that are required
to perform linear transformations between given vector spaces. Linear algebra provides tools
needed to effectively represent, modify, draw insights and improve machine learning models.
A lot of potential in machine learning is put forth using linear algebra objects such as vectors,
tensors, matrices and operations like addition, multiplication, inversion, transposition and
decomposition of matrices [1]. Various tools are unveiled to us through the knowledge of
linear algebra;

1. Vector spaces: A vector space can be visualized as a set of vectors along with vector
addition and scalar multiplication satisfying a given set of axioms. Vector spaces
provide us a foundation for understanding characteristics and connections between
vectors.

2. Vectors: Vectors are elements of a vector space. Vectors are generally objects with
magnitude and direction. In the light of machine learning, we use vectors to represent
data points and features of data. Addition, subtraction and scalar multiplication are
all possible operations with vectors.

3. Matrices and tensors: Matrices are rectangular arrays of objects in rows and columns.
Tensors are multidimensional arrays of data. We organize tabular data by way of
matrices or tensors and various operations come to life when we organize data using
matrices or tensors. Matrices can undergo scaling, addition, rotation, translation and
other operations. Tensors can undergo tensor contraction, reshaping, broadcasting and
other operations.

4. Linear transformations: These transfer vectors between vector spaces taking into ac-
count the underlying properties of the vector spaces. In machine learning, linear trans-
formations give us the ability to reshape and alter data in appropriate ways.
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2.1.1 Linear Algebra and Machine Learning Algorithms

Some algorithms in machine learning that utilize various principles from linear algebra in-
clude;

� Linear regression: We employ linear regression in creating a linear connection between
a predictor and a target variables. For example, matrix operations are employed in
solving systems of linear equations which enables the determination of ideal coefficients
that minimize error and thus allow us to obtain the best linear fit for data.

� Principle components analysis(PCA): In machine learning, principle component analy-
sis is used to decrease the dimensionality of high-dimensional datasets. Using PCA, we
can transform a high dimensional feature space into a lower-dimensional one while re-
taining the most relevant aspects of a dataset. Here, we use the analysis of eigenvalues
and eigenvectors to dissect a given covariance matrix.

� Support vector machine(SVM): For the determination of an ideal hyperplane that
categorizes data points into multiple classes, support vector machines heavily rely on
linear algebra. SVMs can work with complicated decision boundaries and classify new
instances by representing data points as vectors and employing dot products coupled
with matrix operations for their classification tasks.

� Neural networks: At the core of deep learning are neural networks that heavily em-
ploy linear algebra computations. Matrix multiplication and activation functions are
employed in forward and backward propagation in neural networks to handle weights
and biases in the network.

2.2 Calculus

Calculus forms a mathematical foundation for several machine learning algorithms and mod-
els. Calculus has two branches, that is; integral calculus and differential calculus. Integral
calculus focuses on the concept of integration, which is essentially the process of finding the
accumulated total of quantities. Differential calculus emphasizes creating an understanding
of rates of change and steepness of curves [2]. Machine learning models that employ vast
concepts from calculus include;

� Gradient descent: This is a first-order optimization algorithm employed when finding
the minimum point of a differentiable function. The gradient descent algorithm re-
peatedly changes the parameter of a function being optimized in a direction opposite
to the slope of the function and continuously reduces the value of the function. The
gradient descent algorithm iteratively takes steps in the direction opposite to that of
the gradient until convergence. The update rule for gradient descent is:

xi+1 = xi − η((∇f)(xi))
T , (1)

with η the step size, xi a data point and ∇f the gradient vector.

� Convolutional neural networks: Here, we observe calculus in deep learning. Calculus
enables convolution and pooling operations in convolutional neural networks. During
convolution, we apply filters to extract meaningful information from data. During
pooling, we employ calculus to decrease feature space dimensionality with minimal
information loss. These convolutional neural networks are employed in computer vision
to perform certain tasks such as image recognition.
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� Recurrent neural networks: This is still calculus in deep learning. Recurrent neural
networks are used in the analysis of sequential data. These networks employ gradi-
ents to learn over time enabling them to detect patterns and make predictions about
sequences.

2.2.1 Calculus and Regularization

Regularization techniques are used to prevent the model from over-fitting a given dataset.
During regularization, extra terms are added to a loss function. The extra terms serve as
penalties that encourage the model to find solutions that are not too complicated and can
easily be generalized on new datasets. For λ, λ1, λ2 as scalars and βi as model coefficients,
some regularization techniques are;

� Lasso regularization with a penalty term: λ
∑n

i=1 |βi|.

� Ridge regularization with a penalty term: λ
∑n

i=1 βi
2.

� Elastic net regularization with a penalty term: λ1

∑n
i=1 |βi| + λ2

∑n
i=1 βi

2.

2.3 Optimization

Optimization is the process of finding the best solution from a set of feasible solutions.
There are two kinds of optimization, continuous optimization and combinatorial optimiza-
tion. When we use computers to implement machine learning algorithms, then, inevitably
mathematical formulations are expressed as numerical optimization methods. In machine
learning, the process of optimization involves obtaining an ideal set of model parameters
that minimize a given cost function. By convention, most machine learning optimization
problems are handled as minimization problems.

A cost function calculates the discrepancy between the predicted output values and the
actual output values. In an optimization lens, training a machine learning model boils down
to simply finding a good set of model parameters. If we have n data points, yi as the actual
value and ŷi as the predicted value, some common cost functions can be defined as;

� Mean squared error(MSE): This is usually used in regression tasks,

MSE =
1

n

n∑
i=1

(yi − ŷi)2. (2)

� Mean absolute error(MAE): This is also used in regression tasks,

MAE =
1

n

n∑
i=1

|yi − ŷi|. (3)

� Cross-entropy loss: This is also known as the log loss function. It is used in binary
classification tasks where it measures the performance of a classification model whose
output is a probability between 0 and 1.

LogLoss = − 1

n

n∑
i=1

[yilog(ŷi) + (1− yi)log(1− ŷi)]. (4)
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� Cosine similarity loss:

`(θ) = 1− cos(θ) = 1− A ·B
||A||||B||

, (5)

with A as the true vector, B as the predicted vector, and θ is the angle between A and
B.

2.3.1 Optimization and Machine Learning Algorithms

In machine learning to find the minimum of a cost function, we use optimization algorithms
that iteratively modify model parameters until a desired estimate is obtained. Examples of
these algorithms include gradient descent, stochastic gradient descent and Adam.

2.3.2 Convex and Non-convex Optimization

A real-valued function is said to be convex if the line segment joining any two distinct points
on its graph lies above the graph between the two points. Convex optimization involves
convex objective functions with global minima. Many of the machine learning problems are
non-convex resulting in the occurrence of multiple minima. Techniques for convex optimiza-
tion such as quadratic programming and Langrage multipliers provide foundational tools for
the more complex non-convex optimization problems.

2.4 Probability and Statistics

In machine learning, we have probabilistic models and a probabilistic framework. The rigor-
ous probabilistic framework describes how to represent and manipulate uncertainty in models
and their predictions. Here, learning can be seen as an attempt to make predictions about
future data and the consequences of decisions taken. Observed data can have consistency
with different models and thus an appropriate model is uncertain. Further still, predictions
about future data and the consequences of future actions are uncertain.

In a probabilistic framework for supervised machine learning, the goal is still one of
approximating the relationship between input features,X and labels,Y . For regression tasks,
we assume that Y ∈ [0, 1] and we assume that Y ∈ {0, 1} for classification tasks. The
relationship between X and Y is encapsulated by an unknown probability measure µ on
Z = X × Y . The elements (x, y) ∈ Z can be called labeled examples. Learning takes place
when we present such labeled data of the form z ∈ Zm to a machine learning algorithm
which must return h : X → [0, 1] for a fixed set of possible hypotheses. The level at which
the output hypothesis A(z) correctly represents the hidden hypothesis µ is quantified with
the aid of a loss function ` : [0, 1] → [0, 1]. We always aim at having an A(z) with a small
value of the loss [3].

2.4.1 Categories of Probabilistic Models

These are models that quantify the inherent uncertainty in data and integrate it into their
predictions. These models are applied in speech and image recognition systems, recommen-
dation systems, natural language processing and more.

� Generative models: These aim at modeling the joint distribution of the predictor and
the target variable. Generative models create new datasets by utilizing the probability
distribution of the original dataset. Examples of these models include; Bayesian net-
works, variational auto-encoders, pixel recurrent neural networks, Markov chains and
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diffusion models. A good application of these models is Chat Generative Pre-trained
Transformer(ChatGPT) which is a type of large language model that uses probabilistic
methods to generate text.

� Discrimination models: These aim at discriminating the conditional distribution of the
target variables given the predictor variables. Discrimination models learn appropriate
decision boundaries which separates different classes of target variables. Examples
of these models include support vector machines, logistic regression and some neural
networks.

� Graphical models: Graphical probabilistic machine learning models determine the con-
ditional dependence between variables using graphical representations. They include
Bayesian networks which are directed graphical models and Markov networks that
utilize undirected graphs.

2.4.2 Various Statistical Tools in Machine Learning

Different machine learning models fall in a class of statistical learning models in which we
employ vast statistical techniques to develop models that can learn from data and make
appropriate predictions. Statistics also provides us with powerful tools in the form of de-
scriptive statistics that enable us to visualize data, summarize data, identify patterns and
detect outliers in a dataset. Furthermore, the principles of statistics form pillars upon which
we construct machine learning models, interpret results, and validate models. These include;

� Measures of central tendency.

� Measures of spread.

� Sampling.

� Estimation.

� Hypothesis testing.

� Cross validation.

Machine learning models that employ vast concepts from statistics include;

1. Linear regression: This is a supervised machine learning algorithm we employ to es-
tablish the relationship between predictor variables and target variables.

2. Logistic regression: This employs the logistic function to estimate the probability of a
categorical outcome basing on the input variables. Logistic regression performs binary
classification using the logistic function also known as the sigmoid function to map
outcomes to their probabilities. The logistic function is defined as;

σ(z) =
1

1 + e−z
, (6)

where z is a linear combination of input features.

3. Decision tree: This employs statistical tools to split data based on the features in
the dataset creating a tree-like structure. For regression tasks, we can employ a loss
function whereas for classification tasks, we can use the Gini index and the entropy
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function to show how ”pure” leaf nodes are. The Gini index and the entropy function
are respectively given by;

G(t) = 1−
c∑
i=1

pi
2 and E = −

n∑
i=1

pilog(pi). (7)

In the Gini index expression, t is a node with nt data points and pi is the proportion
of data points in the node t that belongs to a class i. In the entropy formula, E is
entropy over all classes, pi is the proportion of training data points with a class label
i.

4. Random forest: This is an ensemble machine-learning model that improves the accu-
racy of predictions by using several decision trees. Random forests sample randomly
selected subsets of features to build trees. Each tree in a decision forest makes a fore-
cast for an output and the final prediction is obtained from the majority vote for all
the trees in the forest.

Random forest = Decision trees+Bagging +Bootstraping +Random split. (8)

� Bagging is a learning method that employs several different models built by train-
ing them on different sample subsets then we either aggregate, average or take
the majority of the predictions.

� Bootstrapping is a resampling technique used to estimate a model’s parameters
by repeatedly sampling with replacement from a training dataset.

Remarks

1. We have a special class of trees called boosted trees. The process of boosting involves
combining several poorly performing classifiers to obtain a better classifier. For ex-
ample, instead of using an equal probability for all items in a dataset, we can give
a higher weight to items that have been misclassified by the model. XGBoost which
stands for extreme gradient boosting is one of the models that employs boosted trees
in its algorithm.

2. The majority of the statistical machine learning models such as decision trees, ran-
dom forests, and logistic regression incorporate vast ideas from probability theory. At
this point, we can also observe that a single machine-learning algorithm can employ
concepts from different areas of mathematics.

2.5 Geometry

Geometry in mathematics deals with shapes and structures. Other than the usual Euclidean
geometry, other geometries are also relevant in machine learning such as the elliptic geometry
of Riemann. However, non-Euclidean data suffers the curse of dimensionality, we need
an exponential number of samples to approximate even a basic multidimensional function.
Principal component analysis as a technique for dimensionality reduction was described
in Subsection 2.1.1, however, sometimes losing important information about the data is
inevitable. Thus, we employ the geometric structure of the input data to overcome this
problem and this is formalized as geometric priors. For example, in geometric deep learning,
functions used must respect two priors;
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� Symmetry: This is respected by functions that leave an object invariant. These func-
tions must be composable, and invertible and their collection should contain the iden-
tity map.

� Scale preparation: This deals with the stability of a function under slight deformation
of its domain.

3 Applications

Linear regression is a fundamental supervised learning algorithm that is employed on data
with continuous input and output variables. In linear regression, we seek to obtain a com-
bination of inputs that best explains the output by assuming a linear connection between
the input and output variables [4]. Simple linear regression models involve one independent
variable and one dependent variable. The words; independent variable, predictor and ex-
planatory variable can be used interchangeably with input variable. Also, the words; labels,
dependent variable and target variable are used interchangeably with the output variable.
The simple linear regression model estimates the intercept and the slope of a line of best fit
between the input and output variables.

3.1 A Simple Linear Regression Task

We begin with an example to motivate an understanding of simple linear regression. In chem-
istry and various industries, pH measurements play a key role in the success of experiments
and the formation of desired products. Various factors affect the pH of a given solution. The
data in Table 1 shows how pH of pure water varies with increasing temperature.

Temperature(◦C) 0 10 15 20 25 30 40 50 100

pH 7.47 7.27 7.17 7.08 7.00 6.92 6.77 6.63 6.14

Table 1: Shows how pH of pure water varies with changes in temperature.

The goal here is to predict the pH of pure water when given a particular temperature.

3.1.1 The Approach

Using matplotlib.pyplot library in python, we create a scatter plot for visualization of the
trend of the data using 8 of the data points leaving out the third data point and this is as
shown in the first subplot in Figure 1. We fit a simple linear regression model using linear
regression model from sklearn.linear model provided by the scikit-learn library in Python.
This process fits a model to the data and we obtain the optimal estimates of the intercept
and the slope. The second subplot of Figure 1 shows the fitted linear regression model trend
line. Generally, the equation of a straight line is y = mx + c which we use in this work as
y = β1x+ β0, where m = β1 is the gradient and c = β0 the y-intercept.

Thus, the values of parameters are β̂0 = 7.3585 and β̂1 = −0.01305. The equation of
model is

y = 7.3585− 0.01305x. (9)

Prediction: The model was tested on its capacity to generalize using x = 15◦C and the
corresponding prediction was a pH value, ŷ = 7.16279 while the actual value was y = 7.17.
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Figure 1: The left plot shows a scatter plot of the data points. The right plot shows the
linear regression model line fitted to the data.

3.1.2 Interpretation: A Chemistry Perspective

When temperature increases, pH reduces, however, this does not necessarily imply that a
given sample of pure water has become acidic. Increasing temperature increases molecular
vibrations within water molecules causing more dissociation of the water molecules thus
yielding more hydroxyl and hydrogen ions. The increased hydrogen ions cause a decrease in
the pH of water as pH is simply a measure of the hydrogen ion concentration of a solution.
However, the hydroxyl and hydrogen ions are liberated in equimolar proportions and this
ensures that the pure water remains neutral. The implication is that when one sets out to
measure the pH of pure water or any other solution, the temperature too should be measured.
Notably, a pH value without a corresponding temperature is incoherent. Using a pH sensor
that has an automatic temperature compensation stands as a viable alternative.

Remark: We would like to know how accurate the values of the model parameters obtained
are, gauge the closeness of the predicted to the actual values and also we want to know
about the general performance of the entire model. This calls for rigorous mathematical
formulations which are covered in the proceeding sections of this chapter.

3.2 The Least Squares Regression Approach

We consider a case where we have a single real-valued feature as input and a real-valued
output. Let us denote the input-output pairs as (xi, yi) with xi, yi ∈ R and i ∈ {1, 2, . . . , n}.
The model here is from a family of straight line functions mapping from R to R. As earlier
noted, we use the equation of a straight-line as y = β1x + β0 and in linear regression, the
task is to find the best combination of β0 and β1 that best describes the trend observed in
the data [5].

To obtain a straight line that best describes the trend in a dataset, we use a loss function
that tells us how far off we are from the true value y when we use its approximation ŷ. We
denote the loss function as `(y, ŷ) such that ` : R×R→ R. There are different kinds of loss
functions, we use the quadratic loss function also known as the squared loss function defined
as;

`(y, ŷ) = (y − ŷ)2. (10)

The cost obtained using the squared loss function is non-negative and it increases quadrat-
ically, for example, every time we double y− ŷ, the cost increases by a factor of four. Figure

9



2 shows the distances we wish to minimize on the left subplot and how the losses vary
quadratically when using the squared loss function on the right subplot for an arbitrary
dataset.

Figure 2: The first subplot shows vertical distances from the data points to the regression
line. The second subplot shows how losses are varying with the squared loss function.

Using the equation of a straight line and working with the data points (xi, yi), we have;

ŷi = β1xi + β0.

The left subplot of Figure 2 can aid in the visualization of labels predicted by the fitted
regression line and the true labels as by the data. Thus, for any datum, we have the squared
loss as;

`(yi, ŷi) = (yi − β1xi − β0)2.

If we take n data points which are usually the number of rows in a dataset and consider the
average loss also known as the empirical loss, then, we have that;

L(β0, β1) = 1
n

∑n
i=1 `(yi, ŷi),

= 1
n

∑n
i=1(yi − β1xi − β0)2,

L(β0, β1) = 1
n

∑n
i=1(β1xi + β0 − yi)2. (11)

The empirical loss function, L(β0, β1) can be minimized with respect to the parameters
β0 and β1 in order to obtain optimal estimates β̂0 and β̂1 that minimize it;

β̂0, β̂1 = argminβ0,β1 L(β0, β1),

β̂0, β̂1 = argminβ0,β1
1
n

∑n
i=1(β1xi + β0 − yi)2. (12)

Arguments that minimize the empirical loss function or empirical risk function, L(β0, β1)
are denoted in Equation (12) as ′′arg min′′. The problem of obtaining estimates of β0 and
β1 that minimize L(β0, β1) is the empirical risk minimization and we accomplish it with
the use of partial derivatives of the empirical risk function concerning the parameters β0 and
β1. Taking the partial derivative of L(β0, β1) with respect to β0, we have that;
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∂

∂β0

L(β0, β1) = ∂
∂β0

(
1
n

∑n
i=1(β1xi + β0 − yi)2

)
,

= 1
n

∑n
i=1

∂
∂β0

(β1xi + β0 − yi)2,

= 2
n

∑n
i=1(β1xi + β0 − yi),

∂

∂β0

L(β0, β1) = 2β1

(
1
n

∑n
i=1 xi

)
+ 2β0 − 2

(
1
n

∑n
i=1 yi

)
. (13)

Also, taking the partial derivative of L(β0, β1) with respect to β1, we have that;

∂

∂β1

L(β0, β1) = ∂
∂β1

(
1
n

∑n
i=1(β1xi + β0 − yi)2

)
,

= 1
n

∑n
i=1

∂
∂β1

(β1xi + β0 − yi)2,

= 2
n

∑n
i=1 xi(β1xi + β0 − yi),

∂

∂β1

L(β0, β1) = 2β1

(
1
n

∑n
i=1 xi

2
)

+ 2β0

(
1
n

∑n
i=1 xi

)
− 2( 1

n

∑n
i=1 xiyi). (14)

The expressions in Equations (13) and (14) involve four averages and for convenience,
these can be simplified as;

ȳ = 1
n

∑n
i=1 yi , x̄ = 1

n

∑n
i=1 xi, (15)

λ = 1
n

∑n
i=1 xi

2 , α = 1
n

∑n
i=1 xiyi. (16)

For minimum values, we set the partial derivatives in Equations (13) and (14) to zero.
We obtain a system of two equations in two unknowns β̂0 and β̂1;

∂

∂β0

L(β0, β1) = 0,

2(β̂1x̄+ β̂0 − ȳ) = 0,

β̂1x̄+ β̂0 − ȳ = 0, (17)

Also, we have;

∂

∂β1

L(β0, β1) = 0,

2(β̂1λ+ β̂0x̄− α) = 0,

β̂1λ+ β̂0x̄− α = 0, (18)

We multiply the Equation (17) by x̄ and then we subtract it from Equation (18). After
such an operation, we obtain that;

β̂1 = α−x̄ȳ
λ−x̄2 =

1
n

∑n
i=1 xiyi−

[(
1
n

∑n
i=1 xi

)(
1
n

∑n
i=1 yi

)]
1
n

∑n
i=1 xi

2−
(

1
n

∑n
i=1 xi

)2 , (19)

β̂0 = ȳ − β̂1x̄ = 1
n

∑n
i=1 yi −

β̂1
n

∑n
i=1 xi. (20)
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If ŷi = β̂1xi+ β̂0 is the predicted value of y based on some ith value of x, then, ei = yi− ŷi
is the value of the ith residual. Thus, ei is the difference between the value of the ith observed
response value and the value of the ith prediction made by the linear regression model. The
residual sum of squares (RSS) is defined as;

RSS = e1
2 + e2

2 + . . .+ en
2 =

n∑
i=1

ei
2. (21)

This can equivalently be represented as;

RSS = (y1 − β̂1x1 − β̂0)2 + (y2 − β̂1x2 − β̂0)2 + . . .+ (yn − β̂1xn − β̂0)2,

RSS =
∑n

i=1(yi − β̂1xi − β̂0)2. (22)

3.2.1 Assessing the Accuracy of Coefficient Estimates

When we have data about the input and the output variables, the true relationship between
the two is unknown. We assume that the true relationship is of the form y = f(x) + ε with
f some an unknown function and ε is a normally distributed independent error term that is
a catch-all for what we miss in the model [6]. We can approximate f by a linear function
between x and y as;

y = β1x+ β0 + ε. (23)

The Equation (23) provides us with the best linear approximation to the true relationship
between variables x and y which is also known as the population regression line. The least
squares regression coefficient estimates in Equations (19) and (20) are characteristic of the
least squares regression line. The distinction is visualized by Figure 3 using a randomly
generated set of 20 data points for a hypothetical model y = 3+4x+ε with epsilon randomly
generated from a normal distribution.

Figure 3: In the first subplot, the green line represents the linear regression line and the red
line the population regression line. The second subplot includes three more regression lines
for more random sets of observations.

The red line in Figure 3 shows the true relationship f(x) = 3 + 4x whereas the green line
shows the least squares estimate based on the input data. In real-life applications, we are
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given a set of data from which we compute the least squares regression coefficients, however,
the population regression lines remain unknown.

We are interested in assessing the accuracy of the least squares regression coefficients, β̂0

and β̂1. A good analogy is the sample mean and the population mean for n observations,
Z = z1, z2, . . . , zn. An unbiased estimate for the population mean,µ is the sample mean,µ̂
with

µ̂ = z̄ =
1

n

n∑
i=1

zi. (24)

Similarly, the true population coefficients β0 and β1 remain unknown but, β̂0 and β̂1

provide their unbiased estimates and this is proved in Section 3.3.3. If we separately average
the estimates β̂0 and β̂1 over a large number of datasets, then, the average of the estimates
would be very close or even equal to the actual β0 and β1 of the population.

3.2.2 How close β̂0 and β̂1 are to β0 and β1

We again uses the µ and µ̂ analogy. A single µ̂ can underestimate or overestimate µ. Thus,
the standard error,SE(µ̂) of a single µ̂ can be obtained from its variance that is given by;

var(µ̂) = SE(µ̂)2 =
σ2

n
. (25)

Equation (25) tells us how a single estimate µ̂ on average differs from µ and how the variance
shrinks concerning n. For least squares regression, the estimate of the standard error is;

SE(β̂i) = RSE =

√
RSS

n− 2
, (26)

where RSE is the residual standard error and the denominator is (n− 2) because we would
have already estimated β0 and β1. The estimators β̂0 and β̂1 follow the distributions;

β̂0 ∼ N
(
β0, σ

2
[ 1

n
+

x̄2∑n
i=1(xi − x̄)2

])
, β̂1 ∼ N

(
β1,

σ2∑n
i=1(xi − x̄)2

)
. (27)

Therefore, the standard errors SE(β̂0) and SE(β̂1) are;

SE(β̂0) =

√
σ2
[ 1

n
+

x̄2∑n
i=1(xi − x̄)2

]
, SE(β̂1) =

√
σ2∑n

i=1(xi − x̄)2
, (28)

where σ2 is V ar(ε).

3.2.3 Confidence Intervals

The standard errors in Equations (28) can be used to compute confidence intervals within
which we can capture the unknown values of the population parameters β0 and β1. A 95%
confidence interval in simple linear regression takes the form;

β̂1 ± 2SE(β̂1).

This is to say that we have 95% chance that the interval, [β̂1− 2SEβ̂1, β̂1 + 2SEβ̂1] captures
the true value of β1. A similar reasoning applies to β̂0.
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Null hypothesis,H0 Alternative hypothesis,Ha

There is no relationship between x and y. There is a relationship between x and y.

Table 2: The table highlights the null and alternative hypothesis on β1.

3.2.4 Hypothesis Testing

In simple linear regression, standard errors are also used for hypothesis testing on coefficients.
For a predictor,x and a tareget variable y, let us have a null hypothesis,H0 and an alternative
hypothesis,Ha as;

Which corresponds to testing; H0 : β1 = 0 versus Ha : β1 6= 0.
If β1 = 0, then we have that y = β0 + ε and this gives an implication that x is not

associated with y. To test the null hypothesis, we need to determine if β̂1 is sufficiently large
and far from zero so that we are sure β1 is not zero. If SE(β̂1) has a small value, then, even
relatively small values of β̂1 provide sufficient evidence that β1 is not zero. If SE(β̂1) has a
large value, then, β̂1 should to be large enough such that β1 is not zero.

In practice, we use the t-statistic from the t-distribution to measure the number of
standard deviations that β̂1 is away with from zero. The t-statistic is defined as;

t =
β̂1

SE(β̂1)
.

We compute the probability of having any number say q ∈ R such that q ≥ |t| assuming
β1 = 0. This probability is what we call the p-value. If the p-value is small, then we can
conclude that there is an association between x and y then we reject the null hypothesis.
Using the data on pH of pure water in Table 1, we have the following results;

coefficient standard error t-statistic p-value

Intercept 7.35850 0.04223 174.21542 2.41301e-12

Temperature -0.01305 0.00094 -13.86829 8.75248e-06

Table 3: The table shows the coefficients from the simple linear model in Equation ??, the
standard errors, t-values and p-values.

� The intercept,β̂0 is a positive coefficient and has a very high t-value, indicating that it
is significantly different from zero.

� The temperature coefficient,β̂1 is negative with a big negative t-value indicating that
there is a significant inverse relationship between temperature and pH. The associated
p-value is very low, confirming the statistical significance of this inverse relationship.

3.2.5 The Residual Standard Error(RSE)

When we reject the null hypothesis and accept the alternative hypothesis, then we would
like to know the extent to which the model fits the data. We assess the quality of the simple
linear regression fit using the residual standard error(RSE) and the R2-statistic [7].
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By the Equation (23), the presence of ε tells us that we are not able to accurately predict
the output,y when we have the input feature,x. The residual standard error is an estimate
of the standard deviation of ε which is typically the average amount by which the estimates
ŷ’s deviate from the true regression line of the population. It is given by the formula;

RSE =

√
1

n− 2
RSS. (29)

As we saw in Section 3.2, the residual sum of squares, RSS =
∑n

i=1(yi− ŷi)2 and thus;

RSE =

√√√√ 1

n− 2

n∑
i=1

(yi − ŷi)2. (30)

� Residual standard error (RSE): This is a measure of the lack of fit of a given linear
regression model to the data. For a model that fits the data well, the RSE value is
small and for a model that does not fit the data well, the RSE value is large indicating
that the estimates ŷi’s are far from the ground truths yi’s.

� The R2-statistic: This is a measure of fit that quantifies the proportion of variance in
the response variable,y that is explained by the predictor variable,x. The R2-value is
calculated by the formula;

R2 =
TSS −RSS

TSS
= 1− RSS

TSS
.

where total sum of squares, TSS =
∑n

i=1(yi − ȳ)2 and RSS is as in Equation (21),

Now, using the data on the variation of pH of pure water with temperature in Table 1,
we can observe the following about the entire constructed model;

Statistical Quantity Value

RSE 0.0768

R2 0.9697

Table 4: The table shows the residual standard error and the R2 value based on the data.

� The residual standard error, RSE tells us that, on average, the predicted pH values
deviate from the actual pH values by about 0.07862 units and this is a small residual
standard error indicating a better fit of the model to the data.

� The R2-value of approximately, 0.9697 indicates that about 96.97% of the variability
in pH of pure water can be explained by the linear relationship with temperature. This
tells us that the model provides a good fit for the observed trend between pH values
of pure water and temperature.
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3.3 The Foundation of Multiple Linear Regression

In practice, we usually have more than one predictor for the output variable(s). Instead of
fitting separate linear regression models for each predictor, we extend the model to take in
more predictors [8]. The multiple linear regression model takes the form;

y = β0 + β1x1 + β2x2 + · · ·+ βmxm + ε, (31)

where each βi represents an association between some predictor,xi and the response,y, m
is the total number of features and ε is the error term. Using the data in the Table, we can
have the following multiple linear regression model;

pH = β0 + β1(Temperature) + β2(δw) + β3(Kw). (32)

We can have some of the predictors in the model as; powers of the original predictor, inter-
actions of the predictors or else as a mixture of powers and interactions of the predictors;

y = β0 + β1x+ β2x
2 + · · ·+ βmx

m + ε, (33)

y = β0 + β1x1 + β2x2 + β12x1x2 + · · ·+ βmxm + ε, (34)

y = β0 + β1x1 + β2x2 + β11x1
2 + β12x1x2 + · · ·+ βmxm + ε. (35)

We hold the following assumptions which apply to both multiple and simple linear re-
gression;

Cov(εi, εj) = 0, for i 6= j, with i, j ∈ {0, 1, 2, ..., n}.
E(εi) = 0 and V ar(εi) = σ2 ∀i with i ∈ {0, 1, 2, ..., n}.

The three Equations (33), (34) and (35) are all multiple linear regression models, here,
linearity is in terms of the regression coefficients. If we consider a sample of size n, then the
sample version of the Equation (31) is;

yi = β0 + β1xi1 + β2xi2 + · · ·+ βmxim + εi, with i ∈ {0, 1, 2, ..., n}. (36)

For each of the n observations from a given dataset, we have the following system of
equations;

y1 = β0 + β1x11 + β2x12 + · · ·+ βmx1m + ε1,

y2 = β0 + β1x21 + β2x22 + · · ·+ βmx2m + ε2,
...

...

yn = β0 + β1xn1 + β2xn2 + · · ·+ βmxnm + εn. (37)

Expressing the above system of equations in matrix form yields;
y1

y2
...
yn

 =


1 x11 x12 · · · x1m

1 x21 x22 · · · x2m
...

...
... · · · ...

1 xn1 xn2 · · · xnm



β0

β1
...
βm

+


ε1
ε2
...
εn

 .
The above matrix form can be condensed to;

y︸︷︷︸
n×1

= X︸︷︷︸
n×p

· β︸︷︷︸
p×1

+ ε︸︷︷︸
n×1

, (38)

with p = m+ 1.
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3.3.1 A Multiple Linear Regression Task

We extend the Table 1 to include two more features that is; conductivity values of pure
water,δw in µS/cm×10−2 and dissociation constants of pure water,Kw in mol2dm−6×10−14.

Temperature(C) δw(µS/cm) Kw(mol2dm−6) pH value

0 0.1162 0.114 7.47

10 2.312 0.293 7.27

20 4.205 0.681 7.08

25 5.512 1.008 7.00

30 7.105 1.471 6.92

40 11.298 2.916 6.77

50 17.071 5.476 6.63

100 77.697 51.300 6.14

Table 5: Shows temperature, conductivity values, dissociation constants and pH values of
pure water.

For the data in the Table 5, the multiple linear regression line is of the form;

ŷ = β̂0 + β̂1x1 + β̂2x2 + β̂3x3, (39)

where; β̂1,β̂2 and β̂3 are gradients corresponding to the features; temperature(x1), electric
conductivity(x2), dissociation constant(x3) respectively and β̂0 is a constant. The dependent
variable estimate,ŷ denotes the pH value of pure water depending on the three input features,
x1, x2 and x3.

The Equation (39) can be rewritten as;

ŷ =
3∑
i=0

β̂ixi = β̂0x0 + β̂1x1 + β̂2x2 + β̂3x3, (40)

with x0 = 1.
We convert the Equation (40) to matrix form. Then insert feature values and output

values;

y =
[
x0 x1 x2 x3

]

β̂0

β̂1

β̂2

β̂3

 ,

17





7.47
7.27
7.08
7.00
6.92
6.77
6.63
6.14


︸ ︷︷ ︸

y

=



1 0 0.1162 0.114
1 10 2.312 0.293
1 20 4.205 0.681
1 25 5.512 1.008
1 30 7.105 1.471
1 40 11.298 2.916
1 50 17.071 5.476
1 100 77.697 51.300


︸ ︷︷ ︸

X


β̂0

β̂1

β̂2

β̂3


︸ ︷︷ ︸

β̂

.

Given the feature matrix,X, we can find the values of parameters β̂i for i ∈ {0, 1, 2, 3}
as;

β̂ = (XTX)−1XTy, (41)

where β̂ = [β̂0, β̂1, β̂2, β̂3]T with T for transpose. The theorem in subsection 3.3.2 shows
us how we can arrive at the Equation (41). Using a python library,NumPy, we utilize the
NumPy arrays to handle the data which is in two dimensions. If we had a large dataset, we
would split it into training and validation sets. Then, we implement multiple linear regression
using the LinearRegression model from the sklearn.linear model which is provided by the
scikit-learn library in python. This process fits a multiple linear regression model to data
and yields the optimal parameters as;

β̂0 = 7.464836, β̂1 = −0.02479, β̂2 = 0.23045, β̂3 = 0.019051, (42)

Thus, the equation of the model becomes;

y = 7.464836− 0.02479x1 + 0.23045x2 + 0.019051x3. (43)

Prediction: After creating the model, we test its power to generalize using data it has not
seen before. New [x0, x1, x2, x3] = [1, 15, 4.833, 0.895]. The algorithm predicted a pH value,
ŷ = 7.2213.

3.3.2 The Least Squares Estimation

We can still employ the least squares approach to fit a model to data with multiple predictors.
The coefficients β0, β1, · · ·, βm are unknown and we would like to estimate them in such a
way that they minimize the squared loss function,

min
β̂

`(β̂) = min
β̂

n∑
i=1

(yi − ŷi)2 = min
β̂

n∑
i=1

ei
2 with i ∈ {0, 1, 2, ..., n}. (44)

If we let e = ei ∈ Rn and ŷ = ŷi = Xβ̂ ∈ Rn, then, e is obtained as e = y − ŷ. By the
Equation (38), the minimization problem becomes;

min
β̂

`(β̂) = min
β̂
||e||2 = min

β̂
||y −Xβ̂||2. (45)

Theorem: If XTX is nonsingular, then the least square estimate of β is [9]

β̂ = (XTX)−1XTy. (46)
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Proof: For the proof of this theorem, the following ideas about gradient of a function of
multiple variables are required;

∂

∂X
(XTa) = ∂

∂X
(aTX) = a,

∂

∂X
(||X||2) = ∂

∂X
(XTX) = 2X,

∂

∂X
(XTAX) = 2AX,

∂

∂X
(||AX||2) = ∂

∂X
(XTATAX) = 2ATAX,

where X and a are vectors of same dimension,n and A is an n× n symmetric matrix.
For the proof of the theorem, we use the identity ||U − V ||2 = ||U ||2 + ||V ||2− 2UTV . Using
Equation (45) and the stated identity, we have that;

`(β̂) = ||y||2 + ||Xβ̂||2 − 2(Xβ̂)Ty,

= yTy + β̂TXTXβ̂ − 2β̂TXTy.

We compute the derivative of the loss function with respect to β̂ utilizing the ideas in the
equations stated after the theorem statement;

∂`

∂β̂
= 0 + 2XTXβ̂ − 2XTy. (47)

We set the gradient function, ∂`
∂β̂

to zero and this yields the least squares normal equations
as;

XTXβ̂ = XTy. (48)

Multiplying both sides of Equation above by (XTX)−1, we obtain β̂ as;

β̂ = (XTX)−1XTy. (49)

Remark: The very first normal equation of XTXβ̂ = XTy is;

nβ̂0 + β̂1

n∑
i=1

xi1 + β̂2

n∑
i=1

xi2 + · · ·+ β̂m

n∑
i=1

xim =
n∑
i=1

yi. (50)

Dividing through by n yields;

β̂0 + β̂1x̄1 + β̂2x̄2 + · · ·+ β̂mx̄m = ȳ. (51)

This shows us that the centroid of the data is on the least squares regression plane. This
signifies that the plane is a good representation of the central tendency of the data.

Remark
The fitted values of the least squares model are;

ŷ = Xβ̂ = X(XTX)−1XT︸ ︷︷ ︸
H

y = Hy. (52)

By the Equation (EQN:squares), the residuals can be visualized as;

e = y − ŷ = y −Hy = (I −H)y. (53)

The matrix, H ∈ Rn×n is known as the hat matrix and it has the following characteristics;

� It is symmetric, that is; HT = H.

� It is idempotent, that is; H2 = H.

� H(I −H) = O where O is the zero matrix.
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3.3.3 Point Estimation in Multiple Linear regression

The least squares estimator, β̂ is an unbiased linear estimator for β. This still holds for a
simple linear regression case. Under the assumptions of multiple linear regression,

E(β̂) = β. (54)

That is, β̂ is a component-wise unbiased estimator for β; E(β̂i) = βi ∀i ∈ {0, 1, 2, ...,m}.
By the theorem in the subsection 3.3.2, we have that;

β̂ = (XTX)−1XTy. (55)

However, y = Xβ + ε, thus we have that;

β̂ = (XTX)−1XT · (Xβ + ε),

= (XTX)−1XT ·Xβ + (XTX)−1XT · ε,
= (XTX)−1(XTX)β + (XTX)−1XT · ε,

= Iβ + (XTX)−1XT · ε,
= β + (XTX)−1XT · ε. (56)

Taking the expectation,E on both sides of Equation ?? yields;

E(β̂) = E(β + (XTX)−1XT · ε),
= β + (XTX)−1XT E(ε)︸︷︷︸

0

,

E(β̂) = β. (57)

Remark

1. Similar to the simple linear regression case, in multiple linear regression we can; assess
the accuracy of coefficient estimates, estimate confidence intervals, carry out hypothesis
testing and also assess the accuracy of the entire model.

2. When we fit a linear regression model to a given dataset, some problems may arise and
these need to be handled carefully. Some of these problems can be dealt with during
the data pre-processing stage of machine learning. They include [10];

� Outliers.

� High leverage points.

� Collinearity of predictors.

� Correlation of error terms.

� Non-constant variance of error terms.

� Non-linearity of the response-predictor relationship.

4 Conclusion

In this work, we have explored the profound interconnection between mathematics and ma-
chine learning, specifically through the lens of linear regression models. We began the study
with a comprehensive overview of machine learning and how it is important to our world
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today. We looked at various mathematical topics that underpin machine learning algorithms
and we established a foundation for understanding how mathematical principles are indis-
pensable to the field of machine learning.

Both simple and multiple linear regression, served as a focal point to aid us in illustrating
the theoretical as well as practical applications of mathematical principles and concepts in
machine learning. Using data on the pH of pure water, we demonstrated how machine
learning models are employed to derive meaningful insights and predictions from data with
the vast utility of mathematical frameworks. Through the examples provided, we showed
how linear algebra facilitates the representation and manipulation of data, how calculus is
used to optimize model parameters and how statistics provides the framework for making
inferences about data.

In our detailed examination of simple and multiple linear regression, we showcased the
step-by-step mathematical processes involved in; model formulation, parameter estimation,
model evaluation and interpretation of results. Through these examples, we emphasized
that mathematics is not just a theoretical foundation but also a practical tool that drives
the development and refinement of machine learning models. The mathematical rigor in-
volved in linear regression models ensures that the predictions are not only accurate but also
interpretable, which is essential for scientific and industrial applications.

The applications of mathematics in machine learning extend far beyond the examples
covered in this work. From the simplest of algorithms to the most complex neural networks,
mathematics forms the backbone of machine learning enabling the creation of models that
can learn from data and make useful predictions. As the field of machine learning continues
to evolve, the integration of advanced mathematical techniques will undoubtedly lead to
more sophisticated powerful algorithms and this is a possible orientation for future studies.
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