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Abstract

As an aid to teachers and students who wish to apply Geometric

Algebra to high-school-level physics, we provide the first installment in a

guide to Hestenes’s treatment of constant-acceleration motion. Specifically,

we present a more-detailed version of Hestenes’ solution to the problem of

finding the time and distance at which a projectile will cross a given line

of sight. We begin by reviewing the GA ideas that we will use, and finish

by verifying the solution via a GeoGebra worksheet.

The hodograph, which illustrates the vector equation −→v =
−→r

t
= −→v 0 +

1

2

−→g t. Here,
−→v is the vector of average velocity for the time interval t, and “i” is the right-handed

unit bivector of the plane that is parallel to (“contains”) the four vectors that are

shown.
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1 Introduction

In this document, I hope to provide some of the “judicious guidance” that David

Hestenes says is necessary for students to get through his book New Foundations

for Classical Mechanics.1

The document is intended to be understandable by students and teachers

who are familiar with the basics of GA.

The examples that are usually presented when teaching constant-acceleration

motion concern the trajectories of projectiles. That is the language that will be

used here, but the analyses, equations, and solutions hold for any situations in

which the acceleration is constant.

2 What We Will See in this Document

❼ The differential equations of constant-acceleration motion

❼ The hodograph

❼ Finding the time and distance at which a projectile will cross a given line

of sight

❼ Validation of the solution via a GeoGebra construction

3 Ideas that We Will Use

Please note that I don’t use the terms “division of vectors” or “division of

bivectors”. Instead, I use the multiplicative inverses that those “divisions”

actually represent.

❼ Transformations (equivalents) of outer products of vectors

– For any two vectors −→a and
−→
b , −→a ∧

−→
b =

[(−→a i
)
·
−→
b
]

i. This equivalent

is especially useful when constructing GeoGebra worksheets to check

solutions.

– For any four coplanar vectors −→a ,
−→
b ,−→c , and

−→
d ,

(
−→a ∧

−→
b
)(

−→c ∧
−→
d
)

=
{[(−→a i

)
·
−→
b
]

i
}{[(−→c i

)
·
−→
d
]

i
}

= −
[(−→a i

)
·
−→
b
] [(−→c i

)
·
−→
d
]

.

1“Though my book has been a continual best seller in the series for well over a decade, it is

still unknown to most teachers of mechanics in the U.S. To be suitable for the series, I had

to design it as a multipurpose book, including a general introduction to GA and material of

interest to researchers, as well as problem sets for students. It is not what I would have written

to be a mechanics textbook alone. Most students need judicious guidance by the instructor to

get through it.” ([2])
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Figure 1: An example of expressing a vector −→v as the sum of its projections upon

two mutually perpendicular unit vectors: −→v =
(−→v · â

)
â+

(−→v · (âi)
]
âi .

– If we express the vectors −→a and
−→
b as −→a = a1

−→e 1 + a2
−→e 2 and

−→
b = b1

−→e 1 + b2
−→e 2 where

{−→e 1,
−→e 2

}
, are orthornormal unit vectors,

then −→a ∧
−→
b = (a1b2 − a2b1)

−→e 1
−→e 2.

The “norm” of a bivector −→a ∧
−→
b (written here as |−→a ∧

−→
b |) is a positive

scalar. It can be calculated in several ways:

– |−→a ∧
−→
b | = |

(−→a i
)
·
−→
b | (the absolute value of the scalar

(−→a i
)
·
−→
b ).

– If we express the vectors −→a and
−→
b as −→a = a1

−→e 1 + a2
−→e 2 and

−→
b = b1

−→e 1 + b2
−→e 2, then |−→a ∧

−→
b |= |a1b2 − a2b1|.

– For any two unit vectors â and b̂, |â∧ b̂|= |sin θ|, where θ is the angle

between â and b̂.

Our last set of ideas concerns the writing of any vector −→v as the sum of its

components with respect to a pair of mutually perpendicular unit vectors

â and b̂ that are coplanar with −→v .

– The component of −→v in the direction of â is
(−→v · â

)
â.

– The component of −→v in the direction of b̂ is
(
−→v · b̂

)

b̂.

– Thus, the vector −→v can be written as −→v =
(−→v · â

)
â+

(
−→v · b̂

)

b̂.

– A suitable pair of mutually perpendicular unit vectors for this purpose

is {â, âi}. Thus, −→v =
(−→v · â

)
â+

[−→v · (âi)
]
âi (Fig. 1).
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Figure 2: The hodograph, which illustrates the vector equation −→v =
−→r

t
=

−→v 0 +
1

2

−→g t. “i” is the right-handed unit bivector of the plane that is parallel to

(“contains”) the four vectors that are shown.

4 The Differential Equations of Motion for Con-

stant Acceleration, and Their Solutions

The differential equation for constant-acceleration motion is
··

−→x=
·

−→v= −→g , which

has the solution
·

−→x = −→v = −→v 0 +
−→g t, and thus

−→r = −→x −−→x 0 = −→v 0t+
1

2

−→g t2, (4.1)

in which we can divide both sides by t to obtain

−→v =
−→r

t
= −→v 0 +

1

2

−→g t. (4.2)

5 The Hodograph

The hodograph represents the vector formulation −→v =
−→r

t
= −→v 0 +

1

2

−→g t (Eq.

(4.2)).

The hodograph isn’t a replacement for the conventional vector equation.

Instead, it’s an additional representation, or tool. Application of GA to that

representation may, in many cases, provide formulations whose geometric in-

terpretations give us productive insights. In addition, the hodograph provides

good opportunities for learning solution techniques for GA equations.
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Figure 3: Relationship between the object’s trajectory and the vectors v̂o, r̂, and

ĝ.

6 Solving Our Projectile-Motion Problem Start-

ing from the Hodograph Equation

Because this introduction is intended for HS-level students, I will provide more

details than usual. But first, a word of encouragement . . .

Don’t let the odd-looking equations and expressions scare you! We will

see how they can be translated easily into other forms that are convenient.

For example, we have seen that one equivalent of |r̂∧ v̂o| is “the absolute

value of the sine of the angle between r̂ and v̂o”.

Our approach will differ from the usual ones in another way. To keep

textbooks down to an affordable length, authors (when they present important

equations) tend to present the most efficient derivations possible. However, those

equations were almost never found via these efficient routes. Instead, someone

in the past had an insight, then “followed her nose”, thus arriving at a useful

result that she (or others) later found a way to derive more efficiently. Because

that process is more or less the way in which good problem-solvers (including

students) often work, our approach here will have a similar “exploratory” spirit.

6.1 Time of Flight t and range r for a Given Direction r̂

Here, r is the range. r̂ is the direction that interests us (Fig. 3).
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6.1.1 The Time of Flight t (Eq. 2.6 in Hestenes’s NFCM, [?], p. 128)

We will derive Hestenes’s Eq. (2.6): t =
2vo
g

[
|r̂ ∧ v̂o|

|ĝ ∧ r̂|

]

, starting from Hestenes’s

Eq. (2.5): −→v =
−→r

t
= −→v 0 + 1

2

−→g t. In keeping with this document’s “exploratory”

spirit, let’s see what we might accomplish by taking the outer product of both

sides. (Recall that −→v = −→r /t.)

−→r

t
= −→v 0 +

1

2

−→g t
(−→r

t

)

∧ −→r =
(−→v 0 +

1

2

−→g t
)
∧ −→r

t

2

(−→g ∧ −→r
)
= −−→v 0 ∧

−→r

t

2

(−→g ∧ −→r
)
= −→r ∧ −→v 0

t = 2
(−→r ∧ −→v 0

) (−→g ∧ −→r
)
−1

t = 2
(−→r ∧ −→v 0

)
[

−−→g ∧ −→r

|−→g ∧ −→r |2

]

t = 2
(−→r ∧ −→v 0

)
[

−→r ∧ −→g

|−→g ∧ −→r |2

]

(6.1)

This is a good time to pause to do a “sanity check”. The time t is a scalar with

For any bivector B,

B−1 = (−B) /|B|2.

a positive algebraic sign, but what about the right-hand side of the result that

we have just now obtained? From Section 3, we know that
(−→r ∧ −→v 0

) (−→r ∧ −→g
)

is a scalar, as is |−→r ∧ −→g |. Therefore, yes, the right-hand side is a scalar. So far,

so good.

Eq. (6.1) is a potentially useful result, but what if we know only the

direction r̂ (in addition to −→v o and −→g ), rather than −→r ? If we examine Eq. (6.1),

we see that both the numerator and the denominator contain the factor r2.

Thus, we will be able to cancel the r’s, leaving only r̂’s:

t = 2 [(rr̂) ∧ (vov̂0)]
[

(rr̂) ∧ (gĝ)

|(gĝ) ∧ (rr̂) |2

]

= 2vor
2g [r̂ ∧ v̂0]

[
r̂ ∧ ĝ

g2r2|ĝ ∧ r̂|2

]

=
2vo
g

[
(r̂ ∧ v̂0) (r̂ ∧ ĝ)

|ĝ ∧ r̂|2

]

. (6.2)

This result can be transformed as suits our needs by using the equivalents that

were discussed in Section 3. To transform this result into Hestenes’s Eq. (2.6)

(i.e., into t =
2vo
g

[
|r̂ ∧ v̂o|

|ĝ ∧ r̂|

]

), we consider the algebraic signs of the bivectors r̂∧ v̂0

and r̂∧ ĝ. The “senses” of rotation of the bivectors r̂∧ v̂0 and r̂∧ ĝ are contrary.

That is, using the sense of i that is shown in Fig. 2, r̂ ∧ v̂0 = |r̂ ∧ v̂0|i, and

r̂∧ ĝ = |r̂∧ ĝ|(−i). Therefore, (r̂ ∧ v̂0) (r̂ ∧ ĝ) = |r̂∧ v̂0||r̂∧ ĝ|. Using this result,

Eq. (6.2) becomes

t =
2vo
g

[
|r̂ ∧ v̂0||r̂ ∧ ĝ|

|ĝ ∧ r̂|2

]

=
2vo
g

[
|r̂ ∧ v̂0|

|ĝ ∧ r̂|

]

, (6.3)

because |r̂ ∧ ĝ|= |ĝ ∧ r̂|.
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6.1.2 The range r (Eq. 2.8 in Hestenes’s NFCM [1], p. 128)

This derivation won’t be as detailed as the derivation of Eq. (6.3), because most

of the details that we will use have already been explained at length.

Later in the derivation, we will use our result for t from Eq. (6.3). However,

the first step is to take the outer product of both sides of Eq. (4.2) with −→g t.

−→r

t
= −→v 0 +

1

2

−→g t
{−→r

t

}

∧
(−→g t

)
=

{−→v 0 +
1

2

−→g t
}
∧
(−→g t

)

−→r ∧ −→g =
(−→v 0 ∧

−→g
)
t

(rr̂) ∧ (gĝ) = [(vov̂) ∧ (gĝ)] t

r = vo

[

(v̂o ∧ ĝ) (r̂ ∧ ĝ)
−1

]

t

= vo

[
(v̂o ∧ ĝ) (−r̂ ∧ ĝ)

‖r̂ ∧ ĝ‖2

]

t.

At this point, we could proceed in any of several ways, but the most straight-

The only change in this line is

that −r̂ ∧ ĝ is replaced with ĝ ∧

r̂.

forward might be to substitute Eq. (6.3) for t, and some of our equivalents for

the various outer products:

r = vo

{
(v̂o ∧ ĝ) (−r̂ ∧ ĝ)

‖r̂ ∧ ĝ‖2

}{
2vo
g

[
‖r̂ ∧ v̂0‖

‖ĝ ∧ r̂‖

]}

︸ ︷︷ ︸
t

= vo

{
(v̂o ∧ ĝ) (ĝ ∧ r̂)

‖r̂ ∧ ĝ‖2

}{
2vo
g

[
‖r̂ ∧ v̂0‖

‖ĝ ∧ r̂‖

]}

=
2v2

o

g

{
[‖v̂o ∧ ĝ‖ (−i)] [‖ĝ ∧ r̂‖i]

‖r̂ ∧ ĝ‖2

}[
‖r̂ ∧ v̂0‖

‖ĝ ∧ r̂‖

]

=
2v2

o

g

[
‖v̂o ∧ ĝ‖‖v̂o ∧ r̂‖

‖r̂ ∧ ĝ‖2

]

. (6.4)

Hestenes gives ([1], p.128)

r =
2v2

o

g

[
(ĝ ∧ v̂o) · (v̂o ∧ r̂)

‖ĝ ∧ r̂‖2

]

.

Why is the numerator in Hestenes’s result the inner product of ĝ ∧ v̂o and

The reader is invited to confirm

that if the “ · ” is omitted,

Hestenes’s result is the same as

our Eq. (6.4).

v̂o ∧ r̂, rather than the simple product of them? The use of the inner product

here may seem especially puzzling because ĝ∧ v̂o and v̂o ∧ r̂ are scalar multiples

of the same bivector i. Therefore, the inner product (ĝ ∧ v̂o) · (v̂o ∧ r̂) is in fact

equal to (ĝ ∧ v̂o) (v̂o ∧ r̂).

The explanation for Hestenes’s use of the inner product is that he will use

his result later, when he derives the maximum range for a given vo. In that

derivation, the “inner-product” form is necessary.

7 GeoGebra Worksheet to Verify the Solution

Readers can test our solution via the worksheet that is available at the GeoGebra

website ([4]). A screenshot of the worksheet is shown in Fig. 4.
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Figure 4: Screenshot of the GeoGebra worksheet for testing the solution.

GeoGebra can calculate inner (“dot”) products of vectors, but its output

writes the vectors in matrix form. For that reason, I used GeoGebra’s built-in

Latex commands to express v̂o and r̂ as sums of their components with respect

to the pair of perpendicular unit vectors ĝ and ĝi. (See Section 3).
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