Irrational Numbers Do Not Exist by

> Armando M. Evangelista Jr. <u>arman781973@gmail.com</u> March 17, 2025

The Rational Number ρ

Let *r* and *n* be integers whose absolute values approach *infinity*, then

$$\lim_{|r|,|n| \to \infty} \frac{r}{n} = \rho \tag{1}$$

Any rational number that is very near to r/n will converge to ρ

$$\lim_{|r|,|n|\to\infty,\to\infty} \left(\frac{r}{n} + \frac{k}{n}\right) = \lim_{|r|,|n|\to\infty} \left(\frac{r}{n} + 0\right) = \rho$$

for any small integer *k*.

Because we are dealing with large integers, it is not necessary to assume that they are relatively prime. What is relevant is the limit of their ratio.

Proof that $\sqrt{2}$ is rational

Let $\sqrt{2} = \lim_{r,n \to \infty} \frac{r}{n}$, where *r* and *n* are very large integers.

Squaring both sides

$$\lim_{r,n \to \infty} \frac{r^2}{n^2} = 2$$

Since

$$\lim_{r \to \infty} r^2 = \lim_{n \to \infty} 2n^2$$
$$\infty = \infty$$

we can not know whether the large integers r and n are both even.

Adding 1 to *r* and getting the limits below

$$\lim_{r,n\to\infty} \left(\frac{r+1}{n}\right) = \lim_{r,n\to\infty} \left(\frac{r}{n} + \frac{1}{n}\right) = \lim_{r,n\to\infty} \left(\frac{r}{n} + 0\right) = \sqrt{2}$$

$$\lim_{r,n \to \infty} \frac{(r+1)^2}{n^2} = \lim_{r,n \to \infty} \frac{(r^2 + 2r + 1)}{n^2} = \lim_{r,n \to \infty} \left(\frac{r^2}{n^2} + \frac{2\sqrt{2}}{n} + \frac{1}{n^2} \right)$$
$$= \lim_{r,n \to \infty} \left(\frac{r^2}{n^2} + 0 + 0 \right) = \lim_{r,n \to \infty} \left(\frac{r^2}{n^2} \right) = 2$$

Therefore, $\sqrt{2}$ is a rational number.

$$\sqrt{2} = \frac{14142135623...d}{10000000000...d} = 1.4142135623...d$$

where *d* is the last digit of $\sqrt{2}$.

Remarks: There are *no* irrational numbers. The numbers *e*, π , $\sqrt{3}$, $\sqrt{5}$, ... are *all* rational numbers defined by (1).