Conditional Negation of The abc Conjecture

JinHua Fei

ChangLing Company of Electronic Technology Baoji Shannxi P.R.China Email: feijinhuayoujian@msn.com

Abstract. In this paper, the abc conjecture is negated under certain conditions. **Keyword.** the abc conjecture.

MR(2000) Subject Classication 11D99

The abc conjecture is a very famous and difficult problem. In this paper, we got some results, I hope it can help solve the abc conjecture completely.

The abc conjecture. let $\varepsilon > 0$, a, b, c are three nonzero pairwise

coprime integers such that a = b + c, then

$$max(|a|,|b|,|c|) \leq C(\varepsilon) (rad (abc))^{1+\varepsilon}$$

Where $rad(N) = \prod_{p|N} p$, $C(\varepsilon)$ is a positive constant related to ε . See page483 of the references [1]

In this paper, we prove the following theorem.

Theorem Let M be any positive integer and $M \ge 10$,

then when $C(\varepsilon) \leq \varepsilon^{-1+\frac{2}{M}} C_0$, the abc conjecture is wrong.

where C_0 is any given positive constant. it has nothing to do with ε .

Lemma. Let k and m are the positive integers,

If $(\mathbf{k}, \mathbf{m}) = 1$, then $k^{\varphi(\mathbf{m})} \equiv 1 \pmod{\mathbf{m}}$.

where $\varphi(\mathbf{m})$ be Euler's function.

See page 25 of the references [2].

Now, we begin our proof.

Let M be any positive integer and $M \ge 10$.

In the Lemma, we take k = 2, $m = p^{M}$, the prime number $p \ge 8C_0$,

where C_0 is any given positive constant in the Theorem.

By the Lemma, we have

 $2^{\phi(p^{M})} \equiv 1 \pmod{p^{M}}$, namely $2^{\phi(p^{M})} = 1 + np^{M}$

we write $a = 2^{\varphi(p^M)}$, b = 1, $c = np^M$, then a = b + c

Evident
$$(a,b) = (2^{\varphi(p^M)}, 1) = 1, (c,b) = (np^M, 1) = 1.$$

Because a = 1 + c, therefore (a, c) = 1.

By the abc conjecture, we have

$$c \leq C(\varepsilon) (rad(abc))^{1+\varepsilon}$$
, namely $np^M \leq C(\varepsilon) (rad(2^{\varphi(p^M)}np^M))^{1+\varepsilon}$,

According to the definition of rad(N), we have

 $\begin{aligned} & rad\left(2^{\varphi(p^{M})}np^{M}\right) \leq 2np \ , \quad \text{therefore} \quad np^{M} \leq C(\varepsilon)\left(2np\right)^{1+\varepsilon}, \\ & \text{namely} \quad np^{M} \leq C(\varepsilon)2^{1+\varepsilon}n^{1+\varepsilon}p^{1+\varepsilon}, \quad p^{M-1} \leq \varepsilon^{-1+\frac{2}{M}}C_{0}2^{1+\varepsilon}n^{\varepsilon}p^{\varepsilon}. \end{aligned}$ $\begin{aligned} & \text{Because} \quad n \leq p^{-M}2^{\varphi(p^{M})} \leq p^{-2}2^{p^{M}}, \quad \text{therefore} \quad n^{\varepsilon} \leq p^{-2\varepsilon}2^{\varepsilon p^{M}}, \\ & \text{we take} \quad \varepsilon = p^{-M}, \quad \text{then} \quad n^{\varepsilon} \leq 2p^{-2\varepsilon}, \quad \varepsilon^{-1+\frac{2}{M}} = p^{M-2}, \end{aligned}$ $\begin{aligned} & \text{Therefore} \quad p^{M-1} \leq p^{M-2}C_{0}2^{2+\varepsilon}p^{-\varepsilon}, \quad p \leq 4C_{0} \end{aligned}$

Previously, we already assumed that $p \ge 8C_0$, hence the contradiction. This completes the proof of the theorem.

REFERENCES

 Henri Cohen, Number Theory Volume II: Analytic and Modern Tools Springer Science + Business Media, LLC 2007

[2] Hua Loo Keng, Introduction to Number Theory, Springer-Verlag Berlin Heidelberg New York, 1982.

Negation of The Strong abc Conjecture

JinHua Fei

ChangLing Company of Electronic Technology Baoji Shannxi P.R.China Email: feijinhuayoujian@msn.com

Abstract. In this paper, we negate the strong abc conjecture.

Keyword. the abc conjecture.

The abc conjecture is a very famous and difficult problem. In this paper,

we give a weak result. Hope to help solve the abc conjecture.

The abc conjecture. let $\varepsilon > 0$, if a, b and c are three nonzero pairwise coprime integers such that a = b + c, then

$$max(|a|,|b|,|c|) \leq C(\varepsilon) (rad (abc))^{1+\varepsilon}$$

Where $rad(N) = \prod_{p|N} p$, $C(\varepsilon)$ is a positive constant related to ε . See page483 of the references [1]

Under the same conditions, we define

the strong abc conjecture. $max(|a|, |b|, |c|) \leq C(rad(abc))^{1+\varepsilon}$

Where C is a positive constant, it has nothing to do with ε .

In this paper, we prove the following theorem. **Theorem** the strong abc conjecture is wrong.

Lemma. Let k and m are the positive integers,

If (k,m) = 1, then $k^{\varphi(m)} \equiv 1 \pmod{m}$.

where $\varphi(\mathbf{m})$ be Euler's function.

See page 25 of the references [2].

Below, we give the proof of the theorem.

In the Lemma, we take k = 2, $m = p^2$, the prime number $p \ge 10C$.

where C is a positive constant in the strong abc conjecture.

By the Lemma, we have

 $2^{\varphi(p^2)} \equiv 1 \pmod{p^2}$, namely $2^{\varphi(p^2)} = 1 + np^2$

we write $a = 2^{\varphi(p^2)}$, b = 1, $c = np^2$, then a = b + c

Evident $(a,b) = (2^{\varphi(p^2)}, 1) = 1$, $(c,b) = (np^2, 1) = 1$.

Because a = 1 + c, therefore (a, c) = 1.

By the strong abc conjecture, we have

$$c \leq C \left(rad \left(abc \right) \right)^{1+\varepsilon}$$
, namely $np^2 \leq C \left(rad \left(2^{\varphi(p^2)} np^2 \right) \right)^{1+\varepsilon}$,

1. .

According to the definition of rad(N), we have

$$rad\left(2^{\varphi(p^{2})}np^{2}\right) \leq 2np , \quad \text{therefore} \quad np^{2} \leq C\left(2np\right)^{1+\varepsilon},$$

namely $np^{2} \leq C2^{1+\varepsilon}n^{1+\varepsilon}p^{1+\varepsilon}, \quad p \leq C2^{1+\varepsilon}n^{\varepsilon}p^{\varepsilon}.$
Because $n \leq p^{-2}2^{\varphi(p^{2})} \leq p^{-2}2^{p^{2}}, \quad \text{therefore} \quad n^{\varepsilon} \leq p^{-2\varepsilon}2^{\varepsilon p^{2}},$
we take $\varepsilon = p^{-2}, \quad \text{then} \quad n^{\varepsilon} \leq 2p^{-2\varepsilon},$

therefore $p \le C \ 2^{2+\varepsilon} \ p^{-\varepsilon} \le 4C$,

Previously, we already assumed that $p \ge 10C$, hence the contradiction.

This completes the proof of the theorem.

REFERENCES

[3] Henri Cohen, Number Theory Volume II: Analytic and Modern Tools Springer Science + Business Media, LLC 2007

[4] Hua Loo Keng, Introduction to Number Theory, Springer-Verlag Berlin Heidelberg New York, 1982.