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Abstract
The success of DeepSeek-R1 (DeepSeek-AI et al.,
2025) has demonstrated the effectiveness of the
GRPO algorithm. However, due to the absence
of process rewards, GRPO often suffers from in-
efficiencies in exploration, as a single detailed
error can result in an entirely incorrect final an-
swer, leading to zero rewards.To address these
challenges, we propose MGRPO (Multi-layer
GRPO). In the first layer, GRPO operates identi-
cally to the original version, generating an initial
response. This response is then fed into a second-
stage GRPO process, which primarily trains the
model to correct errors. Experimental results in-
dicate that MGRPO outperforms standard GRPO,
achieving superior performance.

1. Introduction
Sparse Outcome Rewards provide feedback only at the final
step of reasoning, which often leads to inefficiencies in rein-
forcement learning (RL) for large language models (LLMs).
A minor mistake in an intermediate step can result in a com-
pletely incorrect final answer, leading to zero rewards and
making the exploration process highly inefficient (Uesato
et al., 2022; Lightman et al., 2023a; Wang et al., 2023; Yuan
et al., 2024a).

In contrast, Dense Process Rewards demonstrate significant
advantages in terms of reasoning scalability, training effi-
ciency (Sutton & Barto, 2018), and credit assignment (Leike
et al., 2018). However, the practical application of dense
rewards in RL training remains limited (Setlur et al., 2024),
and current state-of-the-art industrial models still primarily
rely on verifiable outcome rewards without achieving break-
throughs in dense reward utilization (DeepSeek-AI et al.,
2025; Team et al., 2025). The core challenge lies in how to
efficiently obtain and leverage high-quality dense rewards
and integrate them effectively into policy learning (Gao
et al., 2022).
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To address these challenges, we propose MGRPO (Multi-
layer GRPO ), which unifies the generative model and pro-
cess reward model into a single framework. For each data
instance, MGRPO simultaneously trains the model in both
aspects. It employs a multi-layer Group Relative Policy
Optimization (GRPO) approach, where the data generated
in the first GRPO layer is used to synthesize labeled data for
training the process reward model in the second GRPO layer,
enabling a spiral improvement of the model’s capabilities.
MGRPO introduces a two-layer GRPO process:

• First Layer - Standard GRPO: The model generates ini-
tial responses using GRPO, following the conventional
approach.

• Second Layer: The input and output from the first stage
are concatenated, followed by some guiding prompts as
input, guiding the model to identify and correct errors.
If errors cannot be corrected, the data is discarded.
If successfully revised, GRPO training is applied to
reinforce the model’s ability to rectify mistakes.This
process implicitly includes a reward for the first layer
GRPO process.

Experimental results demonstrate that MGRPO outper-
forms standard GRPO in mathematical reasoning tasks.
Specifically, in the Qwen2.5-Math-7B-Base benchmark,
MGRPO achieves superior performance compared to us-
ing GRPO alone. MGRPO effectively replaces the costly
human-annotated process rewards by reusing data generated
through the GRPO process (Yuan et al., 2024a).We found
that as the error correction ability improves, the first-layer
generation also becomes more capable of producing correct
answers.

Overall, MGRPO introduces a structured multi-layer learn-
ing paradigm that enables LLMs to simultaneously enhance
their reasoning capabilities and error correction abilities,
allowing the model to learn from its own mistakes. Further-
more, MGRPO can be generalized to other RL algorithms,
opening new directions for reinforcement learning in large-
scale models.
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2. Background and Related Work
Following the success of DeepSeek-R1 (DeepSeek-AI et al.,
2025), rule-based reinforcement learning has garnered sig-
nificant attention. DeepSeek-AI et al. (2025) observed that
self-correction capability naturally emerges during rein-
forcement learning training, a phenomenon they referred
to as the ”AHA moment” in their study.Open-source repli-
cation studies based on Qwen-2.5-Math (Liu et al., 2025;
Zhang et al., 2025; Cheng et al., 2025) indicate that while
the base model exhibits a certain degree of self-correction
ability, this capability remains sparse. Through our replica-
tion of DeepSeek-R1 and continuous manual inspection of
every model output, we identified the underlying mechanism
behind the emergence of the AHA moment: (1) The pre-
training corpus inherently contains self-correction patterns,
which endow the model with an intrinsic but latent self-
correction ability. (2) During inference, self-correction be-
haviors can occur probabilistically. When a self-correction
instance happens to yield the correct answer, it receives a
positive reward, thereby reinforcing the likelihood of self-
correction behaviors through iterative learning.

(Yuan et al., 2024b) propose integrating the reward model
into the language model itself, enabling it to generate and
evaluate training data autonomously, thereby achieving self-
alignment. However, this approach poses a risk of reward
hacking, where the model inflates rewards by generating
excessively verbose responses that are not necessarily of
higher quality. Additionally, its improvements in mathe-
matical and logical reasoning tasks remain limited. Our
MGRPO method relies on an external ground-truth reward
model to provide training signals, effectively mitigating the
risk of reward hacking.

Li et al. (2024) propose a method where a teacher model
generates multiple reflective responses, and a student model
selects the most compatible one for supervised fine-tuning
(SFT). This approach enhances the student model’s self-
reflection capability.

(Kumar et al., 2024) proposes a reinforcement learning
method called SCoRe (Self-Correction via Reinforcement
Learning), designed to train large language models (LLMs)
to achieve effective self-correction using self-generated data.
Through multiple rounds of online reinforcement learning,
SCoRe addresses two key issues in traditional methods (such
as Supervised Fine-Tuning, SFT): distribution mismatch
(where training data does not align with the distribution of
the model’s own errors) and behavioral collapse (where the
model tends to generate an optimal initial response, making
subsequent corrections ineffective). Experiments demon-
strate that SCoRe significantly outperforms baseline models
in mathematical reasoning (MATH) and code generation
(HumanEval) tasks, achieving self-correction performance
improvements of 15.6% and 9.1%, respectively. SCoRe

suffers from the issue of behavioral collapse, which requires
the introduction of two-stage RL training, reward shaping,
and other methods, thereby increasing the complexity of the
training process. In contrast, our MGRPO method avoids
the problem of behavioral collapse through careful design.

3. Methods
3.1. GRPO

We employ Group Relative Policy Optimization (GRPO),
which eliminates the necessity for an additional value func-
tion approximation as required in Proximal Policy Optimiza-
tion (PPO). Instead, GRPO utilizes the average reward of
multiple sampled outputs—generated in response to the
same query—as a baseline. Formally, given a query q,
GRPO first samples a set of responses {o1, o2, · · · , oG}
from the previous policy πθold . The policy is then updated
by optimizing the following objective:

JGRPO(θ) = E[q ∼ P (Q), {oi}Gi=1 ∼ πθold(O|q)]

1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

{min[
πθ(oi,t|q, oi,<t)

πθold(oi,t|q, oi,<t)
Âi,t,

clip
(

πθ(oi,t|q, oi,<t)

πθold(oi,t|q, oi,<t)
, 1− ϵ, 1 + ϵ

)
Âi,t]

− βDKL [πθ||πref ]},

(1)

where ϵ and β are hyper-parameters, and Âi,t represents
the advantage computed exclusively based on the relative
rewards within each sampled group. GRPO’s group-relative
approach to advantage estimation is inherently aligned with
the comparative nature of reward models, as these models
are typically trained on datasets comprising pairwise com-
parisons of outputs for the same query. Notably, instead of
incorporating a KL penalty term directly into the reward,
GRPO regularizes the policy by explicitly adding the KL
divergence between the trained policy and a reference pol-
icy to the loss function. This design choice simplifies the
computation of Âi,t by avoiding additional complexity in-
troduced by KL-based reward penalties. Furthermore, in
contrast to the KL penalty used in Proximal Policy Opti-
mization (PPO), GRPO estimates the KL divergence using
the following unbiased estimator, as proposed in Schulman
(2020):

DKL [πθ||πref ] =
πref (oi,t|q, oi,<t)

πθ(oi,t|q, oi,<t)
−log

πref (oi,t|q, oi,<t)

πθ(oi,t|q, oi,<t)
−1,

(2)
which is guaranteed to be positive.
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4. MGRPO: Multi-layer Group Relative Policy
Optimization

MGRPO extends GRPO by introducing a multi-layer struc-
ture, leveraging a generate-correct-select-augment process
to enhance model optimization.

4.1. Layer1-GRPO

The first layer follows the standard GRPO framework, where
group-wise sampling and relative advantage estimation are
applied:

JLayer1-GRPO(θ) =Eq∼P (Q),{oi}G
i=1∼πθold

(O|q)

[
1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

min

(
ri,t(θ)Âi,t,

clip(ri,t(θ), 1− ϵ, 1 + ϵ)Âi,t

)
− βDKL(πθ||πref )

]
,

(3)
where:

- ri,t(θ) =
πθ(oi,t|q,oi,<t)

πθold
(oi,t|q,oi,<t)

is the importance ratio.

- Âi,t represents the relative advantage estimated solely
within each sampled group.

- The KL divergence term DKL(πθ||πref ) constrains policy
deviation.

4.2. Layer2-GRPO

In the second layer, MGRPO introduces a correction-
selection-augmentation mechanism:

1. Correction: Each response oi is transformed into a
new query q′i:

q′i = fconcat(q, oi) + pguide, (4)

where fconcat concatenates the original query with
the output, and pguide is a randomly selected guiding
phrase.

The guiding prompts are randomly selected from a
predefined pool to prevent the model from overfitting
to a single template. Examples of guiding prompts
pguide are as follows:

• Where might I have gone wrong this time? Let
me double-check carefully.

• Wait, let me double-check that.
• Wait a minute, let me make sure I didn’t make a

mistake.

• Hmm, let me think if there’s another way to ap-
proach this problem.

• Wait, maybe I can think about it like this:
• Another thought: maybe I can
• But wait, let me just make sure I didn’t miss any-

thing in the original problem.

2. Selection: A rule-based verifier filters valid corrected
responses {õj}G

′

j=1 (where G′ ≤ G).

3. Augmentation: Each selected response õj is aug-
mented by generating H additional variations:

{õ(1)j , õ
(2)
j , . . . , õ

(H)
j }. (5)

The Layer2-GRPO objective follows the same form as
Layer1-GRPO:

JLayer2-GRPO(θ) =E
q′∼P (Q′),{õ(h)

j }H
h=1∼πθold

(O|q′)[
1

H

G′∑
j=1

H∑
h=1

1

|õ(h)j |

|õ(h)
j |∑

t=1

min
(
r̃
(h)
j,t (θ)Â

(h)
j,t ,

clip(r̃(h)j,t (θ), 1− ϵ, 1 + ϵ)Â
(h)
j,t

)
− βDKL(πθ||πref )

]
.

(6)

where:

- q′ is the modified query after correction.

- õ
(h)
j represents the corrected, selected, and augmented

responses.

- r̃(h)j,t (θ) and Â
(h)
j,t are the importance ratio and relative ad-

vantage estimates for Layer2.

5. Experiment
Tasks. We mainly focus on reasoning problems in math :
(1) MATH (Hendrycks et al., 2021): following (Lightman
et al., 2023b), we augment the MATH training set with
4500 problems from the test set, and report results on the
remaining 500 problems (MATH500).

(2) gsm8k (Cobbe et al., 2021):We report results on 1000
test samples.

(3) Minerva Math (Lewkowycz et al., 2022) is primarily
used to assess the capability of language models in quantita-
tive reasoning tasks. It consists of scientific and mathemati-
cal problems that require multi-step reasoning.

(4) OlympiadBench (He et al., 2024) consists of 8,476 math
and physics problems from the International Olympiads,
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Figure 1. Flowchart of MGRPO.
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Layer1 grpo:
Input:<|begin-of-sentence|><|User|>Tobias is buying a new pair of shoes that
costs $95. He has been saving up his money each month for the past three
months. He gets a $5 allowance a month. He also mows lawns and shovels
driveways. He charges $15 to mow a lawn and $7 to shovel. After buying the
shoes, he has $15 in change. If he mows 4 lawns, how many driveways did he
shovel?<|Assistant|>

output: <think> First, I need to determine how much money Tobias has saved in
total. The shoes cost $95, and after purchasing them, he has $15 left. This
means he had $110 in total savings. , I’ll calculate how much he earned from
mowing lawns. He mowed 4 lawns at ...Finally, I’ll verify that 7 driveways
yield $49, leaving exactly $1 left over, which matches the given information.
</think> Let’s break down the problem step by step to find out how ...

Layer2 grpo:
Input:<|begin-of-sentence|><|User|>Tobias is buying a new pair of shoes that
costs $95. He has been saving up his money each month for the past three
months. He gets a $5 allowance a month. He also mows lawns and shovels
driveways. He charges $15 to mow a lawn and $7 to shovel. After buying the
shoes, he has $15 in change. If he mows 4 lawns, how many driveways did he
shovel?<|Assistant|><think> First, I need to determine how much money Tobias
has saved in total. The shoes cost $95, and after purchasing them, he has $15
left. This means he had $110 in total savings. , I’ll calculate how much
he earned from mowing lawns. He mowed 4 lawns at ...Finally, I’ll verify
that 7 driveways yield $49, leaving exactly $1 left over, which matches the
given information.Where might I have gone wrong this time?Let me double-check
carefully:

output:Total savings after earning and before buying shoes: $110 ...
Therefore, Tobias shoveled 5 driveways.</think> Let’s break down the problem
step by step to ...

Table 1. An example of MGRPO inference, with the detailed reasoning process omitted.

Chinese Olympiads, and China’s Gaokao (National College
Entrance Examination). Each problem is accompanied by an
expert-level detailed solution, demonstrating the reasoning
process step by step.

The model is configured with a maximum context length
of 4096 tokens, with inference accelerated by VLLM 0.6.3
(Kwon et al., 2023).

Models. Qwen2.5-Math-7B-base.

Evaluation metrics. Following Kumar et al. (2024), we
adopt the following metrics to assess the model’s mathemat-
ical reasoning and self-correction capabilities.

1. Accuracy@t1: accuracy of the first turn;

2. Accuracy@t2: accuracy of the second turn;

3. ∆(t1, t2): improvement in accuracy from the first turn
to the second turn;

4. ∆i→c(t1, t2): fraction of problems changed from in-
correct to correct;

5. ∆c→i(t1, t2): fraction of problems changed from cor-
rect to incorrect.

Experiment setup of reinforcement learning. For GRPO
training, we configure the hyperparameters as follows: learn-
ing rate = 5.0e-7, LR scheduler type = cosine, warmup ratio
= 0.03, beta=0.001, maximum completion length = 8196,
number of generations = 8, and batch size = 32.

Baseline: STaR (Zelikman et al., 2022) generates reason-
ing chain data based on the given questions and answers,
which is then used for supervised fine-tuning (SFT). We
further enhance STaR by incorporating external prompts,
using the base model to generate a large number of reason-
ing trajectories, filtering out failed attempts, and fine-tuning
on successfully revised responses. Intrinsic self-correction
(Huang et al., 2023) relies entirely on prompting for er-
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Table 2. Results of experiments with Qwen2.5-Math-7B-base.We set the temperature to 0.7. The one-round baselines do not include error
correction. The baselines marked with ′ attempt to perform self-correction by relying on external prompts.

Benchmark Method Acc.@t1 Acc.@t2 ∆(t1, t2) ∆i→c(t1, t2) ∆c→i(t1, t2)

One-round STaR 77.1 77.1 - - -
One-round PPO 79.3 79.3 - - -

MATH One-round GRPO 80.9 80.9 - - -
Intrinsic self-correction′ 65.1 52.7 -12.4 2.6 15.0

STaR with external prompts′ 71.4 70.5 -0.9 5.1 6.0
MGRPO 87.5 90.4 2.9 3.0 0.1

One-round STaR 79.6 79.6 - - -
One-round PPO 82.2 82.2 - - -

GSM8K One-round GRPO 83.4 83.4 - - -
Intrinsic self-correction′ 77.9 71.1 -6.8 5.1 11.9

STaR with external prompts′ 78.5 77.8 -0.7 2.3 3.0
MGRPO 93.4 95.6 2.2 2.3 0.1

One-round STaR 31.7 31.7 - - -
One-round PPO 33.3 33.3 - - -

Minerva Math One-round GRPO 35.1 35.1 - - -
Intrinsic self-correction′ 21.3 17.8 -3.5 2.3 5.8

STaR with external prompts′ 29.1 28.5 -0.6 1.9 2.5
MGRPO 36.1 39.3 3.2 3.9 0.7

One-round STaR 39.6 39.6 - - -
One-round PPO 39.8 39.8 - - -

OlympiadBench One-round GRPO 39.9 39.9 - - -
Intrinsic self-correction′ 27.3 22.4 -4.9 2.5 7.4

STaR with external prompts′ 36.9 33.8 -3.1 6.1 9.2
MGRPO 45.5 50.4 4.9 5.3 0.4

ror correction. The prompts used for these methods are
as follows:The solution above may contain errors due to
a misunderstanding of the question. Please identify and
correct any mistakes, then rewrite the solution clearly and
accurately.

6. Experiment Results
Our results are shown in Table 2. We find that intrinsic
self-correction generally fails in the absence of ground-truth
reward signals, as it lacks a mechanism to determine when
to revise an answer and when to terminate the correction
process, leading to a decrease in final test accuracy. More-
over, even when provided with ground-truth rewards, the
improvement remains minimal, indicating that the model
itself has a weak capability as a process reward model.

We observe that MGRPO significantly reduces the correct-
to-incorrect transition rate by training on synthetic trajec-
tories of corrective behavior, indicating that the additional
reward signals help the model learn when to terminate cor-
rections. As training progresses, the incorrect-to-correct

transition rate gradually increases, and this ability general-
izes to the first-layer GRPO, where corrective steps become
inherently embedded in the generated answers. This enables
the first-layer GRPO, even with rule-based rewards, to train
the model’s ability to correct errors, which in turn facilitates
the training of the second-layer GRPO.

Compared to GRPO, MGRPO improves the accuracy on
MATH from 80.9% to 90.4%, achieving a 9.5% increase.
Additionally, MGRPO achieves a correct-to-incorrect tran-
sition rate of only 0.1%, which is significantly better than
Intrinsic Self-Correction and STaR with external prompts.

7. Ablation Studies
In our experiments, we compared GRPO and MGRPO to de-
termine the necessity of multi-layer GRPO. The results show
that compared to single-layer GRPO, multi-layer GRPO sig-
nificantly improves model accuracy.
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8. Conclusion
This paper introduces MGRPO, which reuses the data gen-
erated during the GRPO process and integrates the process
reward model with the generation model into a single model,
guiding the model to learn to correct erroneous steps during
reasoning, thereby significantly improving accuracy.

9. Limitations
Training Iteration Constraints: The current experiments
are limited to two rounds of GRPO (one correction round),
and the effectiveness of additional GRPO iterations remains
unexplored.

Insufficient Generalization Verification: The experiments
are primarily conducted on mathematical tasks, without vali-
dating the approach in open-domain dialogue or multimodal
scenarios.

Efficiency: Compared to GRPO, MGRPO significantly
increases training costs and requires further optimization to
improve training speed.
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