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Abstract 

The thermal conductivity is a fundamental property of plasmas, yet its experimentally 

observed reduction remains an enigmatic phenomenon. Over the past half-century, 

extensive efforts have been dedicated to elucidating the mechanisms behind this 

reduced thermal conductivity and the associated heat-flux limiter, but a definitive 

solution has remained elusive. In this work, we present an analytical model for plasma 

thermal conductivity that is free of artificial parameters. This model employs Maxwell 

distributions for both electrons and ions and provides analytical expressions for thermal 

conductivity and the heat-flux limiter. Importantly, the predictions of the model are in 

good agreement with experimental observations. Its validity extends across plasmas 

with both small and large temperature gradients, significantly enhancing its 

applicability. This straightforward model not only offers insights into the underlying 

physics of reduced thermal conductivity and the heat-flux limiter but also plays a crucial 

role in advancing our understanding of thermal transport in plasmas across diverse areas.  
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The thermal conductivity is a fundamental property of plasmas that impacts a broad 

spectrum of scientific and technological domains, including nuclear fusion 1 and 

astrophysics 2. Since the 1940s, extensive research has focused on the thermal 

conductivity of the ionized plasmas 3, with the seminal work of Spitzer and Härm (SH) 

4 providing a cornerstone for classical understanding. However, experimental 

measurements have consistently revealed that the observed electron thermal 

conductivity is significantly lower than the values predicted by the classical SH theory 

5, 6, 7. 

To address this discrepancy, numerous theoretical efforts have been proposed, such 

as nonlocal heat transport arising from the delocalization of heat flux 8-11 and non-

Maxwell-Boltzmann (n-MB) electron velocity distributions distorted by inverse 

bremsstrahlung (IB) absorption of laser light 12-16. These theories often rely on arbitrary 

tuning parameters and remain challenging to verify quantitatively 2, despite 

experimental investigations into nonlocal electron heat transport 17 and n-MB electron 

distribution functions 18, 19, 20. In simulation codes, an empirical heat-flux limiter has 

traditionally been employed to match the experimental temperature evolution of laser-

heated plasmas 1, 7,11, 21, 22. However, experimental measurements of the temporal and 

spatial evolution of electron density have shown that flux-limited heat transport is 

inconsistent with the spatial extent of plasma X-ray emission 17. Overall, the observed 

reduction in electron thermal conductivity has been a subject of intense scrutiny for 

decades. Yet, the underlying physical mechanisms remain debated and elusive, making 

it a long-standing open question in plasma physics 1, 2. 



   In this work, we introduce a simple analytical model for the reduced thermal 

conductivity of plasmas and the phenomenological heat-flux limiter commonly used in 

simulations. This model employs Maxwell distribution functions for both electrons and 

ions, offering a straightforward approach to understanding these phenomena   

 

 

Figure 1 Schematic diagram for the local plasma in the mathematical micro-region with 

electrons (orange circles) and the ions (magenta circles). 

To examine the physical properties of local plasmas in a steady state, charge 

neutrality is typically assumed due to the extremely short electric relaxation time, 

τ=ε0ε/σe. Here, τ represents the electron relaxation time required to reach electric 

equilibrium, σe denotes the electrical conductivity attributed to electrons, and ε0 and 

ε correspond to the vacuum permittivity and the relevant dielectric constant, 

respectively. Under charge neutrality, the kinetic momentum of the local plasma is 

primarily determined by the ions. This is because ion masses are significantly 

greater than electron masses, causing the lighter electrons to move in concert with 

the heavier ions. Consequently, the position of a charge-neutral plasma in a 

mathematical micro-region with uniform number density and temperature can be 

represented by the ion position rather than the electron position. In such a micro-



region, the electron and ion positions are indistinguishable, as illustrated in Fig. 1. 

Thus, the Maxwell distribution functions for ions and electrons can be expressed as 
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where ݂, ݂ denote the Maxwell distribution functions for the ions and electrons, 

respectively. ni(ri, t), ne(ri, t) represent the ion and electron number densities, which 

depend on the ion position ri and time t. viT (ri) and veT (ri) are the position-dependent 

thermal velocities of the ions and electrons, respectively, and they satisfy the 

following relations 23. 
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where kB represents the Boltzmann constant, mi and me denote the ion and electron 

masses, respectively, while Ti(ri) and Te(ri) describe the position-dependent ion and 

electron temperatures. 

  The most notable departure from the conventional SH theory lies in the electron 

Maxwell distribution function, where the position of electrons in the local plasma is 

determined by the ion position. This distinction is crucial for the subsequent theoretical 

development.  



Based on the SH theory 4, 23, the distribution functions for ions and electrons during 

the transport process can be expressed as the sum of an isotropic term and an anisotropic 

term, as shown below: 
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where ݂and ݂ଵ  denote the isotropic and anisotropic components of the electron 

distribution function, respectively. Similarly, ݂	and ݂ଵ represent the isotropic and 

anisotropic components of the ion distribution function. 

Based on the non-equilibrium Boltzmann transport equation and the SH theory 

for electron thermal conductivity 3, 23, 24, the anisotropic component of the electron 

distribution function can be expressed as 
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where re denotes the electron position, ve is the electron velocity, e represents the 

electron charge, E is the electric field, and τei is the electron relaxation time due to 

electron-ion collisions. 

Because the electron position coincides with the ion position in the local plasma 

micro-region, the spatial gradient of the electron distribution function with respect 

to the electron position is zero. 
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This is a key step in the analysis. Substituting the electron Maxwell distribution 

function into Eq. (3) yields  
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The electron current density can be expressed as 
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Substituting Eq. (5) yields 
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Similarly, the anisotropic component of the ion distribution function is given by  
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where τi denotes the ion relaxation time due to the ion-ion collisions. Therefore, the 

electrical current density induced by the directional drift of ions can be expressed 

as 

1
i i i ij Ze dv v f= − 

 
 

where Z denotes the net charge of the ion. Combining Eq. (7) with the above 

expression yields the ion current density in Eq. (8). 
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During thermal transport, the electrical transport processes are typically much faster 

than thermal transport, leading to the charge neutrality assumption that the total 

electrical current is zero. This assumption, widely used in related theoretical studies 

4, 9, 12, 23, 24, 25, allows one to derive the electric field using Eq. (6) and (8): 
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The electron thermal current density is given by 23, 24 

   2 11

2e ei e ei e eq dv m v v f= 
 

    

where qe denotes the electron thermal current density. Using Eq. (5), the electron 

thermal current density can be calculated as 
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Given that electron mobility is much larger than ion mobility (τei/me>>Zτi/mi) 23, 

substituting Eq. (9) into the electron thermal current density yields 
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where LT and Ln represent the temperature-gradient scale length and the number 

density-gradient scale length, respectively. These quantities are commonly defined 

in the literatures 12, 23-26 
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Hence, the electron thermal conductivity can be expressed as 
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where κe denotes the electron thermal conductivity. This formulation indicates that 

the electron thermal conductivity depends on the ion mobility (τi/mi) rather than the 



electron mobility (τei/me), a key departure from the classical SH theory. This 

property likely arises from charge neutrality, which requires electrons and ions to 

move collectively in the local plasma micro-region. 

Similarly, the ion thermal current density is given by 
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where qi signifies the ion thermal current density. The ion thermal conductivity can 

be expressed as 
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where κi denotes the ion thermal conductivity.  

The total heat flux, qt, is obtained by summing the electron and ion thermal 

current densities: 
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The combined plasma thermal conductivity, contributed by both electrons and ions, 

is given by 
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In laser-plasma experiments, the temperature gradient is often much larger than the 

density gradient in the transport domain between the laser ablation surface and the 

laser absorption critical surface (LT<<Ln) 5, 23. Consequently, the plasma thermal 

conductivity and heat flux can be simplified as 
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For comparison, the conventional SH thermal conductivity and the free-streaming 

limit for heat flux are given by 5, 23, 27, 28 
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where κSH denotes the classical SH thermal conductivity, and qf signifies the free-

streaming limit. 

The thermal conductivity ratio κt/κSH and the heat-flux limiter f can be derived based 

on the relaxation time expressions 23, 
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where λe denotes the electron mean free path. The ratio κt/κSH is proportional to the 

square root of the electron-to-ion mass ratio and varies as (Ti/Te)3/2 approximately. 

To validate this theory, comparisons between experimental estimates and 

theoretical predictions for κt/κSH and f are essential. In laser-plasma experiments, 

physical variables such as electron temperature, ion temperature, and the ratio λe/LT 

vary with position and time 29. Consequently, κt/κSH and f must also vary spatially 

and temporally, consistent with simulations of direct-drive target implosions 30. 



Thus, constant values for these parameters may not fit experimental results 

accurately. 

For example, in long-pulse laser experiments with Te≈Ti and λe/LT ≈0.04 for 

hydrogen plasma 6, 7, Eq. (17) yields a heat-flux limiter value of f≈0.1, which aligns 

with simulation results of 0.06<f<0.1 6. Under these conditions, Eq. (16) gives 

κt/κSH≈0.2, consistent with experimental estimates of 0.4±0.2 6. 

 

Figure 2. Comparison between the experimental heat-flux limiter 6(magenta 

pentagram with the error bar) and the predicted heat-flux limiters versus the ratio of 

the electron mean free path to the temperature-gradient scale length for the fully 

ionized hydrogen (black squares), deuterium (blue circles) and tritium (cyan 

triangles) plasmas, based on Eq. (17). The electron temperature is assumed to be the 

same as the ion temperature in the plasmas.  

In short-pulse laser experiments with hydrogen plasma, where the peak electron 

temperature is Te≈5Ti and λe/LT =0.5 7, the heat-flux limiter f calculated using Eq. 

(15) and the free-streaming limit definition 7 is f≈0.02. As time progresses and λe/LT 



decreases, Te approaches the nearly constant Ti 29, and the heat-flux limiter increases 

to f≈0.06. Thus, the calculated range for f is 0.02<f<0.06, which matches 

experimental observations of 2%–5% 7. 

The consistency between theoretical results and experimental estimates suggests 

the validity of the proposed model. 

Lastly, the validity of the model should be discussed. The theoretical treatments 

described above require the conditions ݂ଵ ݂⁄ ≪ 1 and ݂ଵ ݂⁄ ≪ 1. Based on Eqs. 

(5), (7), and (9), the ratios can be expressed as follows: 
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For experiments with a small temperature gradient (λe/LT<<1), these conditions are 

easily satisfied. In high-power experiments with a large temperature gradient 

(λe/LT~1) and significantly higher electron temperatures than ion temperatures 

(Ti(ri)<<Te(ri)) 7, 29, the required conditions can still be met. In other words, the 

model appears to be valid for both small and large temperature gradients in relevant 

plasma experiments. Additionally, the relaxation times for electrons and ions are of 

critical importance. These relaxation times are widely believed to be dominated by 

small-angle scatterings 23. During these small-angle scatterings, the electron 

screening effect should be considered for the ion charge, as it will reduce the 

scattering rate and increase the relaxation time to some extent.  

In summary, we have developed an analytical model for the reduced thermal 



conductivity in the plasmas, based on the classical SH theory and Maxwell 

distribution functions for electrons and ions. This model provides accurate estimates 

of plasma thermal conductivity and heat-flux limiters, validated against 

experimental results. Unlike the classical SH theory, which is limited to plasmas 

with small temperature gradients, the model is applicable to both small and large 

temperature gradients. This broader applicability enhances our understanding of 

plasma behavior across diverse conditions and has significant implications for 

plasma research in various scientific and technological contexts. 
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